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Why Study Random Graphs?

1 Adversaries can jam communications, which makes them
unpredictable

2 Congested bandwidth makes information flow intermittent
3 Randomness encodes the lack of control over these events

Fundamental Goal
Understand when “enough” information flows for a team of autonomous
agents to collaborate.



Time-Varying Graphs are Common

I With autonomous agents, communication graphs may look like

I No single graph is connected, but their union is
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How to Make Connected Unions of Graphs?

Common Assumption

There exists an N such that
t+Nt

k=t+1
G(k) is connected for any t.

I This lets autonomous agents
1 Rendezvous

2 Assemble formations

3 Solve optimization problems

I The value of N tells us how quickly we do these, relates the flow of
information to performance

Mathematical Question
Q: What is the probability that a specific union is connected?
A: P

Ëtt+N
k=t+1 G(k) connected
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Erd�s-Rényi Graphs

I Defined by parameters n œ N and p œ (0, 1)
I Graphs are on n nodes:
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I Each edge appears with probability p:
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New Analyses Required for Multi-Agent Systems

I We require innovations beyond the existing literature:
I Common to take #nodes æ Œ, but we have small networks

I The standard Erd�s-Rényi model includes all edges, but we won’t

have that

I We also avoid assuming p ≥ log n
n or p = f(n) because p is outside

our control



We Study Graphs using Algebraic Connectivity

I Define L = D ≠ A, and denote its ith eigenvalue by ⁄i(L)
I A classic result says G is connected if and only if ⁄2(L) > 0
I What is
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I We don’t prioritize any graph



Working on Question 2

I Applying the Paley-Zygmund inequality, we find
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I Plan:
1 Upper bound E[⁄2

2(L)]
2 Lower bound E[⁄2(L)]2



Bounding E[⁄2
2(L)]

I Let ¸ be a uniformly sampled positive eigenvalue of L

I Then E[⁄2
2(L)] Æ E[¸2]

I Because of how we sample,

E[¸2] = 1
n ≠ 1 tr
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Lemma: Upper bound on E[⁄2
2(L)]

I For m total possible edges, edge probability p, di the possible degree of node i: a union

of N random graphs has
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Bounding E[⁄2(L)]2

I Now take n uniformly sampled eigenvalues. Let ¸n be the smallest
I Then
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Lemma: Lower bound on E[⁄2(L)]

I For n nodes, edge probability p, m total possible edges, agent i with possible degree di:

a union of N random graphs has p̂(N) = 1 ≠ (1 ≠ p)N
and
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Main Results: Connected Random Graphs

Theorem: Random Graphs
For n nodes, m possible edges, probability p, agent i’s degree di: a union of N
random graphs has p̂(N) = 1 ≠ (1 ≠ p)N and
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Numerical Results

I Consider n = 20 agents, vary p and N



Next Steps

I Formalize tradeo�s between locomotion, communication and
performance:
I When is it worth it to move to improve comms?

I What balance of communication and motion best uses limited

energy?

I Assess vulnerability to attacks on comms:
I How bad can comms get before performance is unacceptable?

I How close are we to failing to complete our task?
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