Probabilistic Connectivity of Random Graphs and Their Unions

Matthew Hale

Department of Mechanical and Aerospace Engineering University of Florida

Joint work with Beth Bjorkman, Thomas Lamkin, Ben Robinson, and Craig Thompson
AFOSR Center of Excellence Review
April 14, 2020

Duke
: TEXAS
The Universityot Texas at Austin

Why Study Random Graphs?

1 Adversaries can jam communications, which makes them unpredictable
2 Congested bandwidth makes information flow intermittent
3 Randomness encodes the lack of control over these events

Fundamental Goal

Understand when "enough" information flows for a team of autonomous agents to collaborate.

Duke
匃TEXAS

Time-Varying Graphs are Common

- With autonomous agents, communication graphs may look like

- No single graph is connected, but their union is

How to Make Connected Unions of Graphs?

Common Assumption
There exists an N such that $\bigcup_{k=t+1}^{t+N} G(k)$ is connected for any t.

- This lets autonomous agents

1 Rendezvous
2 Assemble formations
3 Solve optimization problems

- The value of N tells us how quickly we do these, relates the flow of information to performance

Mathematical Question

Q: What is the probability that a specific union is connected?
A: $\mathbb{P}\left[\bigcup_{k=t+1}^{t+N} G(k)\right.$ connected $] \geq f$ (graph parameters)

Duke
衡TEXAS
The Unversity of Texas at Austin

- Defined by parameters $n \in \mathbb{N}$ and $p \in(0,1)$
- Graphs are on n nodes:

Each edge appears with probability p :

(j)
with probability p(i) with probability $1-p$

Duke
國
TEXAS
©ils SMII CHIL

New Analyses Required for Multi-Agent Systems

- We require innovations beyond the existing literature:
- Common to take \#nodes $\rightarrow \infty$, but we have small networks
- The standard Erdős-Rényi model includes all edges, but we won't have that

- We also avoid assuming $p \sim \frac{\log n}{n}$ or $p=f(n)$ because p is outside our control

We Study Graphs using Algebraic Connectivity

- Define $L=D-A$, and denote its $i^{\text {th }}$ eigenvalue by $\lambda_{i}(L)$
- A classic result says G is connected if and only if $\lambda_{2}(L)>0$
- What is

$$
\mathbb{P}\left[\lambda_{2}\left(L\left(\bigcup_{k=t+1}^{t+N} G(k)\right)\right)>0\right] ?
$$

- We don't prioritize any graph

Duke

Working on Question 2

- Applying the Paley-Zygmund inequality, we find

$$
\mathbb{P}\left[\lambda_{2}(L)>0\right] \geq \frac{\mathbb{E}\left[\lambda_{2}(L)\right]^{2}}{\mathbb{E}\left[\lambda_{2}^{2}(L)\right]}
$$

- Plan:

1 Upper bound $\mathbb{E}\left[\lambda_{2}^{2}(L)\right]$
2 Lower bound $\mathbb{E}\left[\lambda_{2}(L)\right]^{2}$

Oils silf Chll

Bounding $\mathbb{E}\left[\lambda_{2}^{2}(L)\right]$

- Let ℓ be a uniformly sampled positive eigenvalue of L
- Then $\mathbb{E}\left[\lambda_{2}^{2}(L)\right] \leq \mathbb{E}\left[\ell^{2}\right]$
- Because of how we sample,

$$
\mathbb{E}\left[\ell^{2}\right]=\frac{1}{n-1} \operatorname{tr}\left(\mathbb{E}\left[L^{2}\right]\right)
$$

Lemma: Upper bound on $\mathbb{E}\left[\lambda_{2}^{2}(L)\right]$
For m total possible edges, edge probability p, d_{i} the possible degree of node i : a union of N random graphs has
$\mathbb{E}\left[\lambda_{2}^{2}(L)\right] \leq \frac{4 m\left(1-(1-p)^{N}\right)-2 m\left(1-(1-p)^{N}\right)^{2}+\left(1-(1-p)^{N}\right) \sum_{i=1}^{n} d_{i}^{2}}{n-1}$

Bounding $\mathbb{E}\left[\lambda_{2}(L)\right]^{2}$

- Now take n uniformly sampled eigenvalues. Let ℓ_{n} be the smallest
- Then

$$
\text { Then } \mathbb{E}\left[\lambda_{2}(L)\right] \geq\left(1-\left(\frac{n-2}{n-1}\right)^{n-1}\right)^{-1}\left[\mathbb{E}\left[\ell_{n}\right]-\frac{2 m\left(1-(1-p)^{N}\right)}{n-2}\left(\frac{n-2}{n-1}\right)^{n}\right]
$$

Lemma: Lower bound on $\mathbb{E}\left[\lambda_{2}(L)\right]$

For n nodes, edge probability p, m total possible edges, agent i with possible degree d_{i} : a union of N random graphs has $\hat{p}(N)=1-(1-p)^{N}$ and
$\mathbb{E}\left[\lambda_{2}\right] \geq \max \left\{0,\left(1-\left(\frac{n-2}{n-1}\right)^{n-1}\right)^{-1}\left[\frac{2 m \hat{p}(N)}{n-1}\left(1-\left(\frac{n-2}{n-1}\right)^{n-1}\right)\right.\right.$

$$
\left.\left.-\frac{1}{n-1}\left(2 m \hat{p}(N)(n-1)(2-\hat{p}(N))+\hat{p}(N)^{2}(n-1) \sum_{i=1}^{n} d_{i}^{2}-4 m^{2} \hat{p}(N)^{2}\right)^{1 / 2}\right]\right\}
$$

UF
 Duke

Main Results: Connected Random Graphs

Theorem: Random Graphs
For n nodes, m possible edges, probability p, agent i 's degree d_{i} : a union of N random graphs has $\hat{p}(N)=1-(1-p)^{N}$ and

$$
\begin{aligned}
& \mathbb{P}\left[\lambda_{2}(L)>0\right] \geq \\
& \frac{\left(\max \left\{0,2 m \hat{p}(N)\left(1-\left(\frac{n-2}{n-1}\right)^{n-1}\right)-S\left(m, n, \hat{p}(N),\left\{d_{i}\right\}_{i \in[n]}\right) \sqrt{n-1}\right\}\right)^{2}}{(n-1)\left(1-\left(\frac{n-2}{n-1}\right)^{n-1}\right)^{2}\left(4 m \hat{p}(N)-2 m \hat{p}(N)^{2}+\hat{p}(N)^{2} \sum_{i=1}^{n} d_{i}^{2}\right)}
\end{aligned}
$$

$S\left(m, n, \hat{p}(N),\left\{d_{i}\right\}_{i \in[n]}\right)=\sqrt{2 m \hat{p}(N)(n-1)(2-\hat{p}(N))+\hat{p}(N)^{2}(n-1) \sum_{i=1}^{n} d_{i}^{2}-4 m^{2} \hat{p}(N)^{2}}$

Numerical Results

- Consider $n=20$ agents, vary p and N

\# of graphs in union N

Next Steps

- Formalize tradeoffs between locomotion, communication and performance:
- When is it worth it to move to improve comms?
- What balance of communication and motion best uses limited energy?
- Assess vulnerability to attacks on comms:
- How bad can comms get before performance is unacceptable?
- How close are we to failing to complete our task?

Duke
(T) TEXAS

Thank you

