Probabilistic Connectivity of Random Graphs and Their Unions

Matthew Hale

Department of Mechanical and Aerospace Engineering University of Florida

Joint work with Beth Bjorkman, Thomas Lamkin, Ben Robinson, and Craig Thompson

AFOSR Center of Excellence Review April 14, 2020

Why Study Random Graphs?

- 1 Adversaries can jam communications, which makes them unpredictable
- 2 Congested bandwidth makes information flow intermittent
- **3** Randomness encodes the lack of control over these events

Fundamental Goal

Understand when "enough" information flows for a team of autonomous agents to collaborate.

Working on Question 2 Applying the Paley-Zygmund inequality, we find $\mathbb{P}[\lambda_2(L) > 0] \ge \frac{\mathbb{E}[\lambda_2(L)]^2}{\mathbb{E}[\lambda_2^2(L)]}$ μ σ^2 Plan: 1 Upper bound $\mathbb{E}[\lambda_2^2(L)]$ 2 Lower bound $\mathbb{E}[\lambda_2(L)]^2$ UF FLORIDA Duke **TEXAS** 🗶 UC SANTA CRUZ

- Then $\mathbb{E}[\lambda_2^2(L)] \leq \mathbb{E}[\ell^2]$
- Because of how we sample,

Duke

$$\mathbb{E}[\ell^2] = \frac{1}{n-1} \mathrm{tr}\left(\mathbb{E}[L^2]\right)$$

Bounding $\mathbb{E}[\lambda_2^2(L)]$

🗶 UC SANTA CRUZ

Lemma: Upper bound on $\mathbb{E}[\lambda_2^2(L)]$

UF FLORIDA

For m total possible edges, edge probability p, d_i the possible degree of node i: a union of N random graphs has

$$\mathbb{E}[\lambda_2^2(L)] \le \frac{4m(1-(1-p)^N) - 2m(1-(1-p)^N)^2 + (1-(1-p)^N)\sum_{i=1}^n d_i^2}{n-1}$$

TEXAS

Bounding $\mathbb{E}[\lambda_2(L)]^2$ Now take n uniformly sampled eigenvalues. Let ℓ_n be the smallest Then $\mathbb{E}[\lambda_2(L)] \ge \left(1 - \left(\frac{n-2}{n-1}\right)^{n-1}\right)^{-1} \left[\mathbb{E}[\ell_n] - \frac{2m\left(1 - (1-p)^N\right)}{n-2} \left(\frac{n-2}{n-1}\right)^n\right]$

Lemma: Lower bound on $\mathbb{E}[\lambda_2(L)]$

For n nodes, edge probability p, m total possible edges, agent i with possible degree d_i : a union of N random graphs has $\hat{p}(N) = 1 - (1 - p)^N$ and

Duke

IIC SANTA CRII7

Theorem: Random Graphs

For n nodes, m possible edges, probability p, agent i 's degree d_i : a union of N random graphs has $\hat{p}(N)=1-(1-p)^N$ and

Thank you

