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Challenge: Adversaries can observe us

I Adversaries can observe us, and actions can reveal intent/knowledge

I Direction of travel can reveal a destination

I Avoiding an area can reveal knowledge of hazards

Unsafe
Region

Refueling
Station

Fundamental Problem
A task must be completed without revealing the information driving it.
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Goals of private synthesis

I There are 3 goals in this work:

Privacy
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Goal #1 Goal #2

1 Provably protect the information driving a decision
2 Synthesize an altered, privacy-preserving decision policy
3 Quantify the “cost of privacy,” formalize tradeoffs between privacy

and performance
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Problem Setup

I We consider MDP models:
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s5

p(s1, a, s4)
p(s1, a, s3)

p(s1, a, s2)

I We want to take actions that don’t reveal transition probabilities
I In state s, taking action a transitions to state s′ with prob. p(s, a, s′)
I For all s, we have p(s, a, s′) ≥ 0 and

∑
s′ p(s, a, s′) = 1
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How should we provide privacy?

Differential Privacy (DP)
DP is a privacy framework with several key features:
I It offers a formal definition of “privacy”

I It is immune to post-processing
I x private ⇒ f(x) private for all f

I It is robust to side information

I Used by:

Apple Google Uber

DP Idea
Make probability vectors look “similar”
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Differential Privacy is a Statistical Guarantee

Fundamental Inequality of Differential Privacy
For probability vectors p and q, we generate private forms p̃, q̃ to satisfy

P(p̃) ≤ eεP(q̃) + δ

I For us this will take the form

Dirichlet(kp)
p p̃

Vector Private Vector

where Dirichlet(kp) =
Γ (
∑n
i=1 kpi)∏n

i=1 Γ(kpi)

n∏
i=1

xkpi

i

Privacy Theorem (ACC 2020 Paper; Gohari, Wu, Hale, and Topcu)
The Dirichlet mechanism provides

(
ε(k), δ(k)

)
-differential privacy.

I Example: k = 24 gives (1.18, 0.05)-DP
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Private Synthesis

I Objective is to maximize the accumulated reward

T∑
t=1

γtR(st, at)

I We privatize transition probabilities, then synthesize a decision policy
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Goal #1 Goal #2

I Synthesis is just post-processing, so its output protects p as well
I Our actions protect transition probabilities!
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The cost of privacy

I Set Cost of privacy = (Reward without DP) - (Reward with DP)

Theorem: Cost of Privacy
I Privatize all transition probabilities with the Dirichlet mechanism. Then:

Cost of privacy ≤ w0 − v0,

where, for all t ∈ {0, . . . , T},

vt =
∑
a∈As

π(a | s)
(
R(s, a) + γmin

p∈P̂
p(s, a, s′)vt+1(s′)

)
wt =

∑
a∈As

π(a | s)
(
R(s, a) + γmax

p∈P̂
p(s, a, s′)wt+1(s′)

)

I This is computable in O
(
T |S|4.5|As|

)
time
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Simulation Results

I Implement privacy and synthesize a policy for a 30-state MDP

I Total time required is 4.88s on a desktop computer
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Next Steps

I Incorporating temporal logic specifications:
I What are the tradeoffs in privacy, safety, and performance?
I What is the complexity of computing a safe, private policy and

bounds on the cost of safety & privacy?

I What are the effects of privatizing other characteristics of MDPs?
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