Assuring Autonomy in Contested Environments Protecting Information

Y. Wang, S. Nalluri, and M. Pajic, "Hyperproperties for Robotics: Motion Planning via HyperLTL", IEEE International Conference on Robotics and Automation (ICRA), 2020, to appear

- CPS properties of interest commonly include properties such as
 - sensitivity to modeling errors,
 - probabilistic fairness, and
 - anomaly detectability
- These should capture a relationship between multiple simultaneous continuous-time runs

Example: System **Sensitivity** to Modeling Errors

Y. Wang, M. Zarei, B. Bonakdarpour and M. Pajic, "Statistical Verification of Hyper-properties for Cyber-Physical Systems", 19th ACM SIGBED International Conference on Embedded Software (EMSOFT), Oct 2019, Best Paper Award Finalist

How does dynamical response change due to modeling errors or *wear-and-tear*?

RATT SCHOOL of

For example, start time change under probabilistic uncertainty?

Probabilistic hyperproperties: Sensitivity under probabilistic parameter change $\mathbf{Pr}_{\pi_1,\pi_2}(|\tau^{\pi_1} - \tau^{\pi_2}| \le \delta) > 1 - \varepsilon$

We need new logic to reason over *multiple* random paths!

PRATT SCHOOL of

HyperSMC tool for SMC of HyperPSTL with desired confidence/significance level https://gitlab.oit.duke.edu/cpsl/hypersmc

Walking Robot Benchmark

With Reinforcement Learning Controller

Example: Sensitivity Verification for real-world CPS

h

$$\mathbb{P}^{(\pi_1,\pi_2)} \begin{pmatrix} (\neg Q^{\pi_1} \land \neg Q^{\pi_2}) \\ u \left((Q^{\pi_1} \land \mathcal{F}_{[0,\delta]} Q^{\pi_2}) \lor (Q^{\pi_2} \land \mathcal{F}_{[0,\delta]} Q^{\pi_1}) \right) \end{pmatrix} > 1 - \varepsilon$$

Toyota Powertrain Benchmark

\checkmark							
θ_{R_1}	δ	Е	α	Acc.	Sam.	Time (s)	Ans.
θ_{L_1}	2.4	0.02	0.01	1.00	7.4e+01	3.0e-01	False
$\theta_{L_{2}}$	2.4	0.02	0.05	0.99	4.4e+01	1.4e-01	False
θ_{R_2}	2.4	0.12	0.01	1.00	4.2e+01	1.2e-01	True
	2.4	0.12	0.05	1.00	2.1e+01	7.0e-02	True
	2.4	0.2	0.01	1.00	1.3e+01	4.0e-02	True
θ_{R_3}	3.0	0.02	0.01	1.00	1.1e+01	2.4e-02	False
Z	3.0	0.02	0.05	1.00	6.5e+00	1.1e-02	False
x	3.0	0.12	0.05	0.98	7.0e+01	4.3e-01	False
p_r	3.0	0.2	0.01	1.00	1.6e+02	5.5e-01	True
	30	0.2	0.05	0 08	1 00+02	200-01	Truo

δ	Е	α	Acc.	Sam.	Time (s)	Ans.
0.15	0.95	0.05	1.00	5.9e+01	8.1e+00	True
0.15	0.95	0.01	1.00	9.0e+01	1.3e+01	True
0.15	0.99	0.05	0.99	6.6e+01	9.1e+00	False
0.15	0.99	0.01	1.00	9.7e+01	1.4e+01	False
0.20	0.95	0.05	0.98	5.9e+01	8.1e+00	True
0.20	0.95	0.01	1.00	9.0e+01	1.2e+01	True
0.20	0.99	0.05	1.00	3.0e+02	4.2e+01	True
0.20	0.99	0.01	0.99	4.6e+02	1.8e+02	True

SMC procedure extended to support verification of learning enabled controllers

[1] M. Zarei, Y. Wang, and M. Pajic, "Statistical Verification of Learning-Based Cyber-Physical Systems", 23rd ACM International Conference on Hybrid Systems: Computation and Control (HSCC), 2020, to appear.

J G I N F

Hyperproperties for Motion Planning

Privacy-aware Motion Planning

 $\exists \pi_1 \exists \pi_2. (\pi_1 \text{ and } \pi_1 \text{ are different paths}) \\ \land (\pi_1 \text{ and } \pi_1 \text{ give identical observation}) \\ \land (\pi_1 \text{ and } \pi_1 \text{ reach goal}). \\ \exists \pi_1 \exists \pi_2. (\operatorname{sec}(\pi_1) \neq \operatorname{sec}(\pi_2)) \land (\operatorname{obs}(\pi_1) = \operatorname{obs}(\pi_2)) \end{cases}$

Optimality of Synthesized Plans $\exists \pi_1 \forall \pi_2. (\mathbf{s}_0^{\pi_1} \land \mathbf{s}_0^{\pi_2}) \land (\Diamond_T (g^{\pi_2} \Rightarrow \Diamond_T g^{\pi_1}));$ $\exists \pi. ((\pi \text{ reaches goal}) \land (\neg (\pi \text{ reaches goal})))$ $\exists \pi_1 \forall \pi_2. (\mathbf{s}_0^{\pi_1} \land \mathbf{s}_0^{\pi_2}) \land (\Diamond_T (g^{\pi_1} \Rightarrow \Diamond_T g^{\pi_2})))$

Robustness of Synthesized Plans

 $\exists \pi \forall \pi'. (\pi \text{ is derived by disturbing } \pi') \\ \land (\pi \text{ and } \pi' \text{ reach goal}).$

$$\exists \pi_1 \forall \pi_2. \ \mathrm{cls}_{\mathbf{s}_0}(\pi_1, \pi_2) \land \mathrm{cls}_{\mathbf{A}}(\pi_1, \pi_2) \Rightarrow \left(\varphi^{\pi_1} \land \varphi^{\pi_2}\right)$$

HyperLTL

As a HyperLTL objective may contain multiple path variables, its satisfaction involves assigning concrete (infinite) paths to all these path

$$V : \Pi \to (2^{\mathsf{AP}})^{\omega}$$

The satisfaction relation for the HyperLTL path formulas is then defined for V by

HyperLTL for Motion Planning

PRATT SCHOOL of ENGINEERING

Initial-state opacity for fixed strategy

$$\exists \pi_1 \exists \pi_2. (\mathbf{s_0}^{\pi_1} \wedge (\neg \mathbf{s_0}^{\pi_2})) \\ \wedge (\Box_T (\mathbf{a}^{\pi_1} = \mathbf{a}^{\pi_2})) \wedge ((\Diamond_T g^{\pi_1}) \wedge (\Diamond_T g^{\pi_2}))$$

Current-state opacity

$$\exists \pi_1 \exists \pi_2. (\mathbf{s_0}^{\pi_1} \wedge \mathbf{s_0}^{\pi_2}) \wedge \\ \wedge (\neg \Box_T (\mathbf{a}^{\pi_1} = \mathbf{a}^{\pi_2})) \wedge (\Box_T (o^{\pi_1} = o^{\pi_2}))$$

Shortest Path

Longest Path

 $\exists \pi_2 \forall \pi_1. \ \left(\mathbf{s_0}^{\pi_1} \wedge \mathbf{s_0}^{\pi_2} \right) \land \left(\diamondsuit (g^{\pi_2} \Rightarrow \diamondsuit g^{\pi_1}) \right) \\ \exists \pi_2 \forall \pi_1. \ \left(\mathbf{s_0}^{\pi_1} \wedge \mathbf{s_0}^{\pi_2} \right) \land \left(\diamondsuit (g^{\pi_1} \Rightarrow \diamondsuit g^{\pi_2}) \right) \\ \end{cases}$

Initial-state robustness

Action robustness

 $\exists \pi_1 \forall \pi_2. \left(\mathbf{s}_0^{\pi_1} \wedge S_0^{\pi_2} \right) \wedge \left(\varphi^{\pi_1} \wedge \varphi^{\pi_2} \right) \wedge \left(\Box_T (\mathbf{a}^{\pi_1} = \mathbf{a}^{\pi_2}) \right) \\ \exists \pi_1 \forall \pi_2. \left(\mathbf{s}_0^{\pi_1} \wedge \mathbf{s}_0^{\pi_2} \right) \wedge \left(\varphi^{\pi_1} \wedge \varphi^{\pi_2} \right) \end{aligned}$

- A HyperLTL objective contains multiple paths => unlike with LTL formulas, the required time horizon may be different among the utilized path variables
- $H(\varphi, \pi)$ the required time horizon for a path variable π in a HyperLTL objective φ

$$\begin{split} H(\mathbf{a}^{\pi}, \pi') &= \begin{cases} 0 & \text{if } \pi' = \pi \\ -\infty & \text{otherwise.} \end{cases} & H(\neg \varphi, \pi) = H(\varphi, \pi), \\ H(\varphi_1 \wedge \varphi_2, \pi) &= \max\{H(\varphi_1, \pi), H(\varphi_2, \pi)\}, \\ H(\exists \pi'. \psi, \pi) &= H(\psi, \pi), \quad H(\forall \pi'. \psi, \pi) = H(\psi, \pi), \\ H(\varphi_1 \, \mathcal{U}_T \, \varphi_2, \pi) &= \max\{H(\varphi_1, \pi), H(\varphi_2, \pi)\} + T \end{split}$$

Example:

 $H(\exists \pi_2 \forall \pi_1. (\mathbf{s_0}^{\pi_1} \land \mathbf{s_0}^{\pi_2}) \land (\diamond_T(g^{\pi_2} \Rightarrow \diamond_T g^{\pi_1})), \pi_1) = H(\diamond_T(g^{\pi_2} \Rightarrow \diamond_T g^{\pi_1}), \pi_1) = H(\diamond_T(g^{\pi_1}, \pi_1) + T = 2T)$

Symbolic Synthesis from HyperLTL Model Conversion for SMT-Based Synthesis

• A general HyperLTLf objective φ

$$\varphi = Q_1 \pi_1 \dots Q_n \pi_n$$
 where $Q_i \in \{\exists, \forall\}$ for $i \in \{1, \dots, n\}$

$$P_i = \bigwedge_{t \in [H_i]} \left(\mathbf{s}_i(t) = \mathbf{T}_{\mathcal{M}}(\mathbf{s}_i(t-1), \mathbf{a}_i(t-1)) \right)$$
$$[\mathbf{Q}_i \pi_i] = \mathbf{Q}_i \mathbf{s}_i(0) \mathbf{Q}_i \mathbf{a}_i(0) \dots \mathbf{Q}_i \mathbf{a}_i(H_1 - 1)$$

Resulting in a first-order formula:

$$[\mathsf{Q}_1\pi_1]\ldots[\mathsf{Q}_n\pi_n].(\bigwedge_{i\in[n]}P_i)\wedge\varphi$$

Can be solved with an SMT solver (e.g., Z3)

ENGINEERING

Symbolic Synthesis from HyperLTL [ICRA'20]

Shortest path

Current-state opacity

Initial-state opacity

MPHyper tool – Motion Planning from HyperLTL: <u>https://gitlab.oit.duke.edu/cpsl/mp_hyper</u>

Thank you

