Assuring Autonomy in Contested Environments

Attack-Resilient Design
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Attack Surfaces for Autonomous Systems

The Cloud

= Cyber attack surfaces |
= e.g., communication, networks, computers, databases, ... i Kw’ _—
N S
" Physical attack surfaces f:‘ , Ous
= e.g., locks, casings, cables, ... sensors e feonnelinemerk - Adustors
.
= Environmental attack surfaces 32%“;3
= e.g., GPS signal, electro-magnetic interference, battery * ‘fhysica.woﬂd

draining/cycling/heating, ...

= Human attack surfaces
= e.g., phishing, bribing, blackmail
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Physical

1. Sensor attacks

%Sytm “
s

= The attacker can arbitrarily change sensor measurements

LHLTJ?J

2. Actuator attacks gﬁ’*

= The attacker can arbitrarily change actuator values — ”"wfiff‘%

i o
3. Controller attacks “ ceree

= The attacker can change the controllers’ parameters, resources (e.g., execution model) or even the

controllers’ code

4-5. Communication attacks

= The attacker can change messages: sensors -> controllers, controllers -> actuators/controllers

Most of these attacks manifest themselves as malicious interference signals, and the

defenses against them have to be introduced in the control/autonomy design.
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___________ ControlStack ~ Controlview  Modelingview Adding Resiliency
T, [ICRAL9, ICRA20a, ICRAZ0,
iews CAV’19a, THMS19]
h hori [CDC19a,CDC19b, TAC20%,
Tactical Planner Short-horizon TII19, TASE20*]
] l views ’
Continuous/discrete fr(z(t)):[f g(m(t),h(t))dH[ |(t) 1 2dt, [TAC19a ,TAC19b, TCPS20,
Low-level Control control with min f,(z,(t)) + fa(za(?)) ACC20, AUT20a*, AUT20,
] l constraints s.t. zr(t) = zp(t), up(t) = up(t), AUT1Y9,
* —— ]

e
-—
-_—----
-
-
-~
b
-,

Our Goal: Add resiliency to controls across different/all levels
of control stack



Platform-aware Execution/Integration of Cyber-Physical Duke

Security Components ENGINEERING
Control view _ ] .
Constrained computation Our Goal: Provide
Tactical planner and communication quantitative tradeoff
Low-level Control . :
( ey e ve! Controh resources limit the full use procedure to map security-
____(nmodes) of developed cyber-physical aware modules onto
Resilient Controller Control techniques available architecture

ReConfig.

L (m modes)

Vs

Legacy Controller [CMS17, TCNS17, TECS/EMSOFT17, RTSS17, TCPS20, TECS/EMSOFT’19, TAC’'19]
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Attack Resilient Desigh — Some Major Contributions

Security for network systems (strong connection with RT 3&4) via a novel moving target defense
strategy that randomly changes the availability of sensor data

Integrating security on resource-constrained platforms/environments (strong connection to RT3)
Attack resilience supervisory control of discrete event systems (strong connection to RT1)
Security-aware planning via delay-actions games and reinf. learning (strong connection to RT2)
Design of security-aware human-autonomy interaction

Resilient distributed hypothesis testing

Modeling, design and analysis for security- and privacy-aware systems using (probabilistic)
hyperproperties (strong connection to RT6)

Open-source tool/testbed development

Working with NATO Science and Technology IST-164 RTG Securing Unmanned and Autonomous
Vehicles For Mission Assurance



Low-Level Control in the Presence of Attacks
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Plant
Xp+1 = [ (X, ug) + Wy
Actuators Vi = g(xi) + € + vy Sensors
Controller Estimator

Alarm

4@— Intrusion Detector

a a &
@ =X —




Can Attacker Reach Any State? Duke
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Xr4+1 = AXy + Buy, + wy, supp(ay) = K
yk=ka+ak ak,i=0,Vi67CC

Theorem 1 [1,2,3,4,5*]:
A system presented above is perfectly attackable if and only if it is unstable, and at least

one eigenvector v corresponding to an unstable mode satisfies supp(Cv) € K andvis a
reachable state of the dynamic system.

Physical detectors cannot always protect us from an intelligent attacker..

[1] Y. Mo and B. Sinopoli, “False data injection attacks in control systems,” in First Workshop on Secure Control Systems, 2010
[2] C. Kwon, W. Liu, and |. Hwang, “Analysis and design of stealthy cyber attacks on unmanned aerial systems”, Journal of Aerospace Information
Systems, 1(8), 2014

[3] I. Jovanov and M. Pajic, “Relaxing Integrity Requirements for Attack-Resilient Cyber-Physical Systems”, IEEE Trans. on Automatic Control, 2019
[4] A. Khazraei and M. Pajic, “Perfect Attackability of Linear Dynamical Systems with Bounded Noise,” ACC 2020.
[5] A. Khazraei and M. Pajic, “Attack-Resilient State Estimation with Intermittent Data Authentication,” Automatica, submitted
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Can Attacker Reach Any State?

Xr4+1 = AXy + Buy, + wy, supp(ay) = K
yk=ka+ak ak,i=0,Vl’EIK‘C

Theorem 1 [1,2,3,4,5]:
A system presented above is perfectly attackable if and only if it is unstable, and at least

one eigenvector v corresponding to an unstable mode satisfies supp(Cv) € K andvis a
reachable state of the dynamic system.

Theorem [3,4,5]: A system X with a global data integrity police u(L) is not perfectly attackable.

[1] Y. Mo and B. Sinopoli, “False data injection attacks in control systems,” in First Workshop on Secure Control Systems, 2010

[2] C. Kwon, W. Liu, and |. Hwang, “Analysis and design of stealthy cyber attacks on unmanned aerial systems”, Journal of Aerospace Information
Systems, 1(8), 2014

[3] I. Jovanov and M. Pajic, “Relaxing Integrity Requirements for Attack-Resilient Cyber-Physical Systems”, IEEE Trans. on Automatic Control, 2019
[4] A. Khazraei and M. Pajic, “Perfect Attackability of Linear Dynamical Systems with Bounded Noise,” ACC 2020.

[5] A. Khazraei and M. Pajic, “Attack-Resilient State Estimation with Intermittent Data Authentication,” Automatica, submitted



Why Resources might be a problem
Data Authentication Example
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Two transmitters sharing a network:

TX1:

TX2:

39bits 16bits 25bits transmission time (non-authenticated) = 0.8ms (@ 100kbps)
(header) (data) (tailer) period: 2ms

39bits 16bits 25bits transmission time (auth.) = 1.1ms
(header) (data) (tailer) period: 2ms \

39bits 25bits transmission time (non-auth.) = 0.9ms 6ms
39bits 32bits 25bits transmission tizhe (auth.): = 1.21ms
(header) (MAC) (tailer) period: 2ms

6

8 10

12

Security-per-S: Communication and computation resources are shared.
So how to add security mechanisms without affecting ‘normal’ operation?



State Estimation Error Duke

In the Presence of Stealthy Attacks ENGINEERING
Reachable region of the state estimation error under attack 5]
R[k] = le e R ee’ < E[ea[k]]E[ea[k]]T + yCov(e?) a; , = [a[1]"...a[k]"]"
e?[k] = e¥(a; x),a; € Ay A, is the set of all stealthy attacks

e; (a,_j) is the estimation error evolution due to attack a;_

0.01¢
0.01 <
v” 0 o 0
-0.01 4
\'\l T T T 1 0.01 !
0 4 2 0 2 4 4 4
62 el
0.01 0.01
o or 0" 0
0.01 -0.01
5 0 5 4 -2 0 2 4
ez x 10 3 el

----- k=1--k=2---k=3 —k=4 w/o int. enf. . . . i e

[3] I. Jovanov and M. Pajic, “Relaxing Integrity Requirements for Attack-Resilient Cyber-Physical Systems”, IEEE Trans. on Automatic Control, 2019
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Integrity Enforcement Policy

Integrity enforcement policy ensures attacker’s influence is zeroed at enforcement points

Data integrity enforcement policy (u, [) where u = {t; }p—o, With t,_; < t,,Vk >0
and [ = supy~o ty — tx—, ensuresthata; , =0,Vk =0

This means that at points of authentication y*““[k] = y?[k]

0.01r
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QoC Under Attack as Function of Resources?

Evolution of the state-estimation error due to attack is a sound performance metric

(0]

JO = sup{lle?]l,|e* € R'} Rl = k_ORl[k]

where R![k] denotes R[k] computed over all integrity enforcement policies with parameter I

1.5
1.25

0.75 .
0.5 |
0.25 .

0 | ! | | | | ! ! |
1 5 10 15 20 25 30 35 40 45 50

Inter-enforcement distance

Maximum induced error

V. Lesi, I. Jovanov, and M. Pajic, “Integrating Security in Resource-Constrained Cyber-Physical Systems”, ACM Transactions on
Cyber-Physical Systems, 2020, accepted
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QoC Under Attack as Function of Resources?

Evolution of the state-estimation error due to attack is a sound performance metric

(0]

JO = sup{lle?]l,|e* € R'} Rl = k_ORl[k]

where R![k] denotes R[k] computed over all integrity enforcement policies with parameter I

Piecewise-linear approximation of the QoC-degradation curves
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(3}

—
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=
)
St

0.015 +

—_
T
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o
o

e
o
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0.25 ¢

Maximum induced error e}'**
Maximum induced error ey'**

Maximum induced error e[***

)
o
)

1 2 3 4 5 1 5 10 15 20 25 30 1 10 20 30 40 50
Inter-enforcement distance [y Inter-enforcement distance [, Inter-enforcement distance 5

V. Lesi, I. Jovanov, and M. Pajic, “Integrating Security in Resource-Constrained Cyber-Physical Systems”, ACM Transactions on
Cyber-Physical Systems, 2020, accepted



Security-Aware Design Framework
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b

Message ID

40H

Security-aware task modeling: Two-frame, implicit deadline tasks with peak frame offsets

eak
Cctrl Cp

. 4

B

Si Di

»d
O

")
li pi

—

0 10 30 40
tme [ms

Network idle times

60

80

Ty(Ci, by, Dy, 1y, 5;) where C;=[cf™, clpeak], Di=[df", dfeak], 1<i<N,and:
il WCET time of a control frame
. cip ealk WCET time of both control — and security — related parts
>t Di task period
! ds' = p; relative deadline of a normal frame
dPer = Di relative deadline of a peak frame
L; inter — peak frame distance
L Si offset of the initial peak frame in the range [0, [; — 1] )

F.B.\ Plant Model

jfl

QoC Guarantees under attack J;(l;, f;)

L 2

Task and Message Models (p;, ¢;)

s Schedulable set of secure control transactions (¢;, d;, s;)
% \ i»4iroi
Real-time task/message parameters (¢;, d;)

Cumulative authentication policy p; (f;,l;, ;)
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Control Stack Control view Modeling view

Long-horizon
views

[ Tactical Planner J Short-horizon

________________ i l“‘ews

ARSC: A tool for design of attack-
resilient supervisory controllers, 2020
https://gitlab.oit.duke.edu/cpsl/arsc

Continuous/discrete fr(r(t))zAT g(;c(t),h(t))dt-}-AT||z(t)||2dt,
[ Low-level Control J control with min f,(z,(8) + fa(zh(t)
I constraints s.t. zp(t) = zp(t), ur(t) = up(t),
* —mrwr_== T o T
Vehicle _---"“n--,

Y. Wang, A. Bozkurt, and M. Pajic, “Attack-Resilient Supervisory Control of Discrete Event Systems”, IEEE Transactions on Automatic Control, submitted.
Z. Jakovljevic, V. Lesi, and M. Pajic, “Attacks on Distributed Sequential Control in Manufacturing Automation”, IEEE Transactions on Industrial Informatics, accepted.

V. Lesi, Z. Jakovljevic and M. Pajic, “Security-Analysis for Distributed loT-Based Industrial Automation”, IEEE Tra

ns. on Automation Science and Engineering, submitted.

Y. Wang and M. Pajic, “Supervisory Control of Discrete Event Systems in the Presence of Sensor and Actuator Attacks”, IEEE CDC, 2019.
Y. Wang and M. Pajic, “ Attack-Resilient Supervisory Control with Intermittent Authentication”, IEEE CDC, 2019.

V. Lesi, Z. Jakovljevic and M. Pajic, “Reliable Industrial loT-Based Distributed Automation”, 4th ACM/IEEE loTDI, 20109.


https://gitlab.oit.duke.edu/cpsl/arsc

Security-Aware Planning for Autonomous Systems
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Control Stack

Control view

Modeling view

Long-horizon
views

Tactical Planner

Short-horizon
views

Continuous/discrete
control with
constraints

Vehicle

r T
Jr(x(t)) / o(z(t), h(t))dt / = (2)|dt,
0 0

min fr(zr(t)) + fu(zn(t))
s.t. z,(t) = zp(t), ur(t) = up(t),

_______
L
_______
-~
-~
-~
-
-
-

Operator

Adversary

o
UAV°§°\¢; , q
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DAG | Hidden-Information Semantics

UAV Model Advisory System Model
pl =uav| xgz = xg + Ax(d)
@ fly! dg =d pl = as update|pl = uav
Muav d € Ayay pl == ad pl:=uav XB = X7
Pplxr,xB) |
Adversary Model
Mas 1 PO, xp) |

pl = adv
S
Madv pl = as

------------------------------------------------------------------------------------------------------------------------

Off-the-shelf model checkers do NOT support hidden variables
Strategies CANNOT be synthesized based on hidden information
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Delay

Approach

Belief
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Information is hidden from one player (H-UAV) by delaying the actions of the other

player (ADV)



Approach: Delaying Actions
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Hidden Information Game

pl = uav (b) pl:=uav update

Definition 9 (Game Proper Simulation). A game Gp properly simulates
Gn, denoted by Gp ~~ Gy, iff Vo € Prop(Gy), 36 € Prop(Gp) such that o ~ 0.

fly(dg),dg € Ayay pl = hgl Xp = X7
xp = xg + A(dg) pl == uav A~

Myav pl = adv \ p(x7,xp)

"""""""""""" ' X5, 5) |
xT = Xy + A(dT) ]V[hgl L ___Z_)(__:C_}i)__'
| dr € Aaay(dp) 5 '
M, ' =

1
Legend uard action assignment state =» transition i hidden information !
Legend g g ]

____________________

(a) pl = uay  pl=uav (pl = adv) A (pl = adv) A Legend
start! fly(dg)!, dg € Ayay (Smrd = Smwr) (Smrd < Smwr)
pl == adv Xp = x5 + Adp) check! read! guard
’ pl = hgl ’ channel transmit (!)
@ @ channel receive (?)
assignment
B pl = adv O state
Muav vzl)li"i;elllav Madv xr = xp +A(dy), - transition
' dT € Aadv(d’B)
(o) L= as write? write?
update! 1 = dp my = dg
pl == uav » . > , ., .,
Xp = Xy Q 9 @ Q
p(x7,%x3)
Mmwr update? m; =0
geo Qdecide?
task read? read?
1— P(XT Xp) dr = dr =my,
thl (= =)
= hgl X
faLl
mrd update?

Delayed Action Game

Theorem 1 (Probabilistic Simulation). For any sq ~ $9 and o € Prop(Gp)

where first(o) = sg, it holds that

Pr [last(p) = s'] = Pr [(move(g)) (809) = §’} Vs', 8" st s~
Theorem 2 (DAG-HIG Simulation). For any HIG Gy there exists a DAG

Gp = D[GR] such that Gp ~ Gy (as defined in Def. 9).

M. Elfar, Y. Wang, and M. Pajic,

“Security-Aware Synthesis using
Delayed Action Games”, 315t Int.
Conference on Computer-Aided

Verification (CAV), 2019.

N
S .
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A

r

.

Primary
Components

My, My, Mo

s

\

Auxiliary
Components

M mrd M mwr

Model Refinement

Composition

&

Composition

DAG 4
Construction

(Alg. 1, MC)

N Strategy
Synthesis

—
(Alg. 2, MC, ¢g)

Analysis

MC: Model Checker
¢, : Synthesis query
¢, : Analysis query



Duke

Model-free Control Synthesis from LTLs T e

ENGINEERING

Problem Statement

Given an MDP M = (§,A4, P, sy, AP, L) where P is fully unknown and an LTL specification ¢, design a model-free RL
algorithm that finds a finite-memory objective policy ¥ that satisfies

Prpe(s E @) = Phipg(s E @),

wherejPr,.. (s E @) = max;Pr,(s = @) forall s € S.

[ Specification (¢) ] [System Model (M)]

< <

[ Controller ]

[1] A. Bozkurt, Y. Wang, M. Zavlanos, and M. Pajic, "Control Synthesis from Linear Temporal Logic Specifications using Model-Free Reinforcement
Learning", IEEE International Conference on Robotics and Automation (ICRA), 2020, accepted.

[2] Q. Gao, M. Pajic, and M. Zavlanos, "Deep Imitative Reinforcement Learning for Temporal Logic Robot Motion Planning with Noisy Semantic
Observations", IEEE International Conference on Robotics and Automation (ICRA), 2020, accepted.



Model-free Control Synthesis from LTLs
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Problem Statement

Given an MDP M = (§,A4, P, sy, AP, L) where P is fully unknown and an LTL specification ¢, design a model-free RL
algorithm that finds a finite-memory objective policy ¥ that satisfies

[ Specification (¢) ] [System Model (M)]

L =

BT

[ Controller ]

CSRL — Control synthesis for LTL
objectives via model-free
reinforcement learning,2020.

https://gitlab.oit.duke.edu/cpsl/csrl

Prpe(s E @) = Phpg(s F ¢),
where Py, (s E @) = max;Pr,(s = @) forall s € S.

[ LTL (o) J

[ LDBA (4,) ][ MDP (M)

A V.

Product MDP (M*)

v

Learning
( {} )
Controller

Limit-Deterministic Biichi Automata (LDBA) —
consist of two deterministic components the
initial and accepting. The only nonde-
terministic transitions are the e-moves from the
initial component to the accepting components.

(a) A derived LDBA A for the LTL
formula ¢ = ¢0a Vv OOb

(b) An example MDP M; the circles
denote MDP states, rectangles denote ac-
tions, and numbers transition probabilities

(c) The obtained product MDP


https://gitlab.oit.duke.edu/cpsl/csrl

Duke

PRATT SCHOOL of
ENGINEERING

Model-free Learning for Stochastic Buchi Games

Theorem 1: For a given two-player stochastic Buchi game
G with B C S, the value of the game vl for the strategy

Problem Statement pair (c,e) and the discount factor ~ satisfies
S 5 |
Given an MDP M = (S,4,P, sy, AP, L) lim vl (s) = Pree(s = LOB) (8)

where P is fully unknown and an LTL
specification ¢, design a model-free RL ~
algorithm that finds a finite-memory Gi(o) := ZizoRB(U[t‘”])‘Hj
objective policy m? that satisfies

for all states s € S, if the return of a path is defined as

1
JIe(olt+i]) )

where ]_[j_:lo =1, Rp:S—[0,1])and ' : S — (0,1) are
the reward and the discount functions defined as:

Proo(s E @) = Pl (s E @),
RB(S):={1_7B seB I"B(s):z{’yB seB

where 0 s¢ B’ YV s¢B
Prax (s E @) = max Pr,;(s E @) (10)
foralls € S. Here, we set vyg = vp () as a function of ~ such that

lim — 17 0.

= (11)
v—1- 1 —vB(7)




Humans, Systems, and Security
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" Human-on-the-Loop Autonomy

= Complex systems that involve both autonomous and
human agents with overlapping roles

= Research Question

= How to build security-aware human-autonomy
interaction with performance guarantees?

= Motive
= Collaboration rather than complete autonomy

" [gnoring human factors during design phase may impact
system performance

" How does human presence impact various system
performance measures?

= Human context awareness (in real-time) as part of
security analysis/design?

Cyber-Physical System
(CPS)

Autonomous Agents

_,'q-,.l

Autonomous Planner

Operator Interface —

@

Human Operator

Human-on-the-Loop
(HOL)




RESCHU-SA Testbed Duke
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( )
. . . T | RESCHU-SA
 Simulation environment for human-UAVs . 52 S e
rc 12 pe o
command and control systems i'g, R gl Specifications
1 — WEEs .
* Extendable, open source j i
i g I System-generated
:.; T b ! events
. 1 © ode
Security-Aware Features IS spoofed ,
: g waypoints GPS i
e Live Camera Feed i L Autonomous Planner i
Camera always streams the ground truth " ground [T observed | ' ata Logger
Y ° - e ___y_\’cjlfsfeﬂrt\_i"eln_ Ea_tb updates Att:cktspLec?fi%ation
] = = - — 1 \ System events
. I > Operator events
* Attack Engine | = T operata V| Achieved score
Attack specifications: attack goals, when J o i  ents Lo J
& where to attack a UV i i L , _ E Interpretations i i
Attack model: aggressive vs stealthy b QR ——— SN
Perception Interactions
Reassigq targets
+Randomized Map HE |, O

Trust in automation

Randomly-generated map to ensure unbiased becision making | Operator s,
experiments and diverse features Expertise | (HOL) Observations




Security-aware Human-on-the-Loop Planning
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Payload

Message

05:07:40 Game Started
05:07:47 Vehicle [1] has been assigned to a target.
05:07:47 Vehicle [2] has been assigned to a target

RND

N5-NT7T-A7 ahicla [l hac haan dtn 2 tarnat
>Msg:’ H SEND
ALL | 2(uAv) | 2(uAv) | 3(uav) | aav) | sav) |
@ il HOME
Current Task : ISR |
@ Pt HOME ‘
Current Task : ISR
@ ol HOME IGAGE ‘
Current Task : ISR
@ w1 HOME ‘
Current Task : ISR
@ ikl HOME
Current Task : ISR
Time Line
T+300 T+600 T+000 T+1200
A T ] |
& § ] l I |
6 & 1 I | |
AT | | | |
£2 - | | l

| REMAINS  07:51

Map

[1] M. Elfar, H. Zhu, M. L. Cummings,
and M. Pajic, “Security-Aware
Synthesis of Human-UAV Protocols”,
IEEE Int. Conf. on Robotics and
Automation (ICRA), 2019.

[2] H. Zhu, M. Cummings, M. Elfar, Z.
Wang, and M. Pajic, “Operator
Strategy Model Development in UAV
Hacking Detection”, IEEE Trans. on
Human-Machine Systems, Dec. 2019.



Experimental Setup — Understanding Human Geolocation Duke
Strategies and Context-Awareness ENGINEERING

Two missions 36 Subjects Scoring System

Visit Target Locations

V Avoid Hazard Zones

Detect Cyber Attacks

Finish within the time limit

e =i =i)e =)o
e =)o =De =De
= =B =i)e =)o
=e e =B =D

Low Workload X X X

=)o e =e =)o =)o
=5 e =Be =e =)o
=e e =i)e =i =)o
e e =Be =Be =)o

Sustain damage from hazard zones

Lose assets due to cyber attacks

Miss targets by the time limit

REE s ® 9T®Ty g - [1] M. Elfar, H. Zhu, M. L. Cummings, and M. Pajic, ~"Security-Aware Synthesis of Human-UAV Protocols", 2019
High Workload ) ¢ ¢ ¢ ¢ ¢ X International Conference on Robotics and Automation (ICRA), 2019.

[2] H. Zhu, M. Cummings, M. Elfar, Z. Wang, and M. Pajic, “Operator Strategy Model Development in UAV
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Security-aware Human-on-the-Loop Planning

Environment Setup Synthesis Objectives
Psyn (k) = ((uav))Prmyax—2 [ﬁhazard Usk (locate N reach)}

gA{m 2’:0; ¢ana(n) = <<adv>>Prmin:? [an target]

Synthesis Procedure

Algorithm 2: Protocol synthesis procedure

Input: Initial location x, synthesis query ¢syn, max horizon hmax
Output: H-UAV protocols IT = {(7wuav, 7h)}

1 X < {xo} initialize set of initial locations (subgames)

2 foreach unexplored initial location x; € X do

3 S0 < (UAV, z;, €) set subgame initial state

4 stop < L, h < 1 reset stopping flag and horizon

5 while h < hpmax A —stop do

6 (Tuav, @) < synth (Q;roh, qbsyn) find a winning strategy
7 if muayv exists then

8 IT < ITU (myav, 7h, ¢) add to the protocol

9 X + X U reach (muayv) update reachability set
10 h <— h + 1 explore next horizon

11 | else stop <~ T

12 | prune (II)

M. Elfar, H. Zhu, M. L. Cummings, and M. Pajic, “Security-Aware Synthesis of Human-UAV Protocols”, IEEE Int. Conf. on Robotics and
Automation (ICRA), 2019.



Duke

PRATT SCHOOL of
ENGINEERING

Security-aware Human-on-the-Loop Planning

@@&\/K;ﬁﬁu\

D Reachablhty set

® Subgame initial location
== Path plan

- Geolocation task

M. Elfar, H. Zhu, M. L. Cummings, and M. Pajic, “Security-Aware Synthesis of Human-UAV Protocols”, IEEE Int. Conf. on Robotics and
Automation (ICRA), 2019.
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Analysis Results (PRISM-games)
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M. Elfar, H. Zhu, M. L. Cummings, and M. Pajic, “Security-Aware Synthesis of Human-UAV Protocols”, IEEE Int. Conf. on Robotics and
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