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* Approximately optimal control methods for
forward and inverse decision-making problems

RT2 will establish new strategies for the

e Real-time optimal control methods that can development of approximately optimal

handle uncertainty, complex mission control methods for continuous and
‘e . . . stochastic hybrid systems for forward and
specifications, and rely on sophisticated inverse decision-making problems under

complex mission specifications

approximation, learning, and sampling
techniques to enhance scalability (avoid
explicit discretization of continuous dynamics)

e Tractable optimal control methods under complex mission specifications captured by
temporal logic (TL) formulas, and extend them to systems with unknown uncertainties
and run-time computational limitations

Hybrid dynamics
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‘%,\\‘.’/ ’ ation, Optimality, and Synthesis

« Temporal Logic (TL) Planning and Learning
o Scalable TL robot planning
o Abstraction-free TL robot planning
o Transfer planning for TL tasks
o Transfer learning with unobserved contextual information

« Approximate Dynamic Programming (ADP) Methods
o Improved asymptotic performance under ime varying parameters

o “Safe” (Barrier function) Reinforcement Learning (RL) methods for
Approximate Dynamic Programming (ADP)

o Emerging results on Switched ADP methods

 Eliminate the use of high-accuracy orbit determination to
estimate physical parameters of unknown targets.
o Adaptive control to compensate for unknown physical parameters.
o Regulation of underactuated system using a single control input.
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Planning and Learning under High-Level
Temporal Tasks and Unknown Context
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Point-to-point navigation tasks

Robot Motion Planning

L. Kavraki et al (TRA 1996), S. LaValle et al (IJJR 2001),
S. Karaman et al (IJJR 2011), L. Janson (IJRR 2015)

“Starting from point A, reach point B while avoiding
obstacles”

High-level complex tasks

“Pick up the mail by visiting houses in a given order”
“Next visit a delivery site”

“Never leave the delivery site until a ground robot is
present to pick up the mail’

“Repeat this process every day”

How to express complex tasks in a formal way?

How to synthesize optimal and correct-by-

construction controllers? Delivery Task

M. Kloetzer et al (TRO 2010), S. Smith et al (IJRR 2011)
A. Ulusoy et al (IJRR 2013), M. Guo et al (IJRR 2015)
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Expressing Complex Tasks using Linear
Temporal Logic (LTL)

Reachability task ~ Qrj °o™*

Reachability with  —(g¥oomt \/ groom2)z s proon3
avoidance

Coverage task O1 2 A On o AR

Sequencing Gl 2B iy (Oar ™ A Om P2 ))

Recurrent CIiEr o8t o (602222 i O 52Y))

sequencing

Compositional tasks: ¢ = DO( OO A (o U RO ) A (<>D( rOOI’“?’))

Robot 1: visit Robot 1: never visit room1  Robot 2: eventually

room1 infinitely often until robot 2 visits room 2 always visit room 3 D ke
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Challenges & Key Accomplishments

Known Environments

Unknown Environments

Scalability: Multiple Robots,
Complex Environments & Tasks

Formal Methods and Learning

Unknown Contextual
Information

Optimality: Large-scale problems,
Effect of Abstractions

Planning in almost infinite spaces
Abstraction-free methods

Transferring experience and skills
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Challenges & Key Accomplishments

Known Environments

Scalability: Multiple Robots,
Complex Environments & Tasks

Optimality: Large-scale problems,
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Continuous World

Discrete Abstractions

Environment and

Abstraction of

Dynamics
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Optimal Control Synthesis

Given N robots, an abstraction of the environment and robot dynamics, and a collaborative

task captured by a global LTL specification ¢, synthesize a discrete motion plan 7 such that
TE¢ anda user-specified metric J(7), such as total traveled distance, is minimized.

'Room 3 Room4 | Room 5
',/'” | ':: ¢ :O(Wgoomz A (Oﬂ.;‘oomél A (Oﬁioom5 A (Oﬂ.;oomG))))
-------- A (0Im*°™E) A (D-moom?)
Roomny2 Corridor :
! + —— 7 =rooml,room2,corridor,room4,
: ®. roomb.corridor.room6. [room6|*
b b 9
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Key ldea

Model
______________________ / ~All possible robot behaviors
wTS1 ! - J(7) .
l Optimal Flan
T . —
wTS:2 | PBA | Graph
Search S
: ] No feasible plan
WTSN : : found
- i Contains possible pickvthe best
Q5 | intersections of  “pehavior’
. NBA - “behaviors” (optimal plan)

~ ~* Desired robot behaviors
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Challenges

Optimal Control Synthesis

Model
"""""""" M. Kloetzer (TRO 2010)
wTS; [ I S. Smith et al (IJRR 2011)
| PBA | Graph Discrete A. Ulusoy et al (IJRR 2013)
wTS, | : '| Search Controllers M. Guo et al (IJRR 2015)
i A
State explosion, Computationally
WTSy NBA expensive, Centralized (less than
________________ f ~107 states)
¢
Model Checking / Verification
NuSMV 2, nUxmy, More scalable (~10% states) but no optimality guarantees.
SPIN, SPOT Return a feasible, and not the optimal, solution.

We propose an algorithm that can solve optimally hundreds of orders of magnitude larger

planning problems than state-of-the-art methods (~108% states and beyond).




STyLuS™: Large-Scale Temporal Logic Synthesis

Initialize
the free | sample astate g™ € Qp
Y
— =Y € Vp?
No
Extend (if possible) the tree
towards ¢p " € Qp
No P —
Extended? P —
W R Rewire
l Yes
Rewire (if possible) the tree to
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Completeness and Optimality

Theorem: The proposed sampling-based algorithm is probabilistically complete.

Theorem: The proposed sampling-based algorithm is asymptotically optimal, i.e.,

. nsuf "
P lim J(r siex) =J =1
Npax —00,n38 00 max

max

Duke
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Convergence Rate Analysis

Theorem: Let p denote a feasible prefix or suffix path

K—
p — Q}37 Q?Da "°7QP 17 qg

Then there exist parameters ., (p) € (0, 1] such that the probability Tlsuc (g5 ) of finding the
feasible prefix/suffix path p within Mmax iterations satisfies

— an (p)
1 2 Hsuc(qg) 2 I —e ! if Npax > K

Depend on the selected sampling functions
NEW BIASED SAMPLING METHOD !!!

Theorem: Let p* denote the optimal prefix or suffix path

* K—
p — C.I]137QJ237 "'7QP 1a511}§

Then there exist parameters «,(p*) € (0,1] and 2% q%) € (0,1] and iterations ™k for
every state ¢’ in the optimal path such that the ability of finding the optimal\path within
Nmax > 2K iterations satisfies

Do
ops (p%) = (1— €™

&= srmex  bn(ab)




Comparative Results: Large NBA

MATLAB runtimes to detect
the first feasible plan

FEASIBILITY AND SCALABILITY ANALYSIS: |Q | = 59

TABLE 1I

N 9, Op| | nprer +nsunt | [VE<' 4+ VP Prel+Sufl NuSMV/nuXmyv
1 100 103 54 + 92 533 + 274 2.18+1.55 (secs) < 1 sec

1 1000 10° 78 +51 326 + 252 1.84+1.37 (secs) < 1 sec

1 10000 | 10% 150 + 107 769 + 364 19.2+11.2 (secs) M/M

9 9 1010 93 + 27 400 + 168 20.7+18.9 (secs) < 1 sec
10 100 1021 51+ 39 650 + 239 2.1+0.74 (secs) ~ 3/2 secs
10 1000 1031 36 + 154 450 + 404 3.9+6.1 (secs) ~ 80/65 secs
10 2500 10°° 61 + 98 710 + 516 10.4+11.9 (secs) M/~ 32 mins
10 | 10000 | 10% 47 + 164 722+604 56.6 + 98.1(secs) M/M
100 100 10200 21 + 117 154 + 1431 1.6+18.5 (secs) F/F
100 | 1000 | 10399 52 + 74 401 + 856 19.8453.32 (secs) M/M
100 | 10000 | 10%99 39 + 89 398 + 1621 5.1+28.3 (mins) M/M
150 | 10000 | 10599 39 + 112 526+1864 8.3 + 60.11 (mins) M/M
200 | 10000 | 10899 48 + 103 588 + 1926 11.7+65.9 (mins) M/M
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Challenges & Key Accomplishments

Known Environments

Scalability: Multiple Robots,
Complex Environments & Tasks

Optimality: Large-scale problems,
Effect of Abstractions

Abstraction-free methods
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Continuous World

Discrete Abstractions

Environment and

Abstraction of

Dynamics
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Abstraction-Free Optimal Control Synthesis

Given N robots, a continuous environment and a collaborative task captured by a global LTL
specification ¢, synthesize a discrete motion plan 7 such that 7 |= ¢ and a user-specified

metric J(7), such as total traveled distance, is minimized.

6= O(m;*) ADO(m* A (Om*)) A (- Un?) A D (=)

BN refix path
H suffix path
i

0.8 -----

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 l I e
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Initialize the tree

\

Sampleastate gp " € Qp

\ 4

Extend ) (if possible) the tree
towards gp " € QOp

Extended?
No

N

Rewire Jif possible) the tree to

gp = € Qp

TL-RRT*: Temporal Logic RRT*

nearest

Sample

Extend

Rewire
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Theorem:

Completeness and Optimality

Let Assumptions 1 and 2 hold and further assume that sampling in the free
workspace is unbiased. Then, TL-RRT* is probabilistically complete.

Let Assumptions 1 and 2 hold and further assume that sampling in the free
workspace is unbiased. Consider also the connection radius

. 1o Vol 1/dim
’I“n<V7') = min {'VTL-RRT* (%) 777} )

where

WN 1/dim
YTL-RRT* > 4 [M] :

Cdim
Then, TL-RRT* is asymptotically optimal, i.e.,

. nsuf
lim J (1 piex) = J*}> =1
’n?;llafx_)OO e




Performance for Different Sizes of Regions

TABLE 11
COMPARISON OF RUNTIMES AND COST FOR DIFFERENT SIDE LENGTH OF REGIONS

< unfime cost
Trirer(8)  Tomc(s) | Thpgrr+(s)  TRrG(S) | Jpiggrs  Jsmc | Sfgrrs  JRRG
0.25 0.66 10.99 8.39 50.02 1.63 2.19 2.33 3.68
0.20 0.61 9.70 12.43 249.67 1.67 2.68 2.75 3.67
0.15 2.17 10.10 20.94 - 1.93 248 2.54 -
0.10 3.11 10.25 106.97 - 1.88 2.27 2.75 -
0.05 8.01 14.55 444.26 - 1.89 2.17 2.85 -
<

C. I. Vasile and C. Belta, “Sampling-based temporal logic path planning,” IROS 2013. 1

Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-Vincentelli, S. A. Seshia, G. 02 .

J. Pappas, and P. Tabuada, “Linear temporal logic motion planning for teams of oL\

underactuated robots using satisfiability modulo convex programming,” CDC 2017. 0 e

1.0




Performance for Different Complexity of Tasks
¢ = 00 A OO ADOOE ATO(E4 A O(&5 /\ — e =N,

A Q& NOOE A (17 U &g).

l;

SMC runtimes with "perfect
initial horizons

tH

TABLE IV
COMPARISON OF RUNTIMES AND COST FOR TASKS WITH INCREMENTAL CoﬁPLEXITY
Task TL-RRT™ SMC-basedi/
Tore(s)  Tawi(s) | Tow(s) J(7) | Tsar(s) TcpLex(s) | Tow(s)  J(7) CI}S}I (s)
o8 0.92 0.29 1.21 2.99 8.18 0.29 8.47 3.30 12.07
D16 12.05 2.88 14.93 7.73 88.34 1.47 89.81 8.27 131.66
24 11.75 3.68 15.44 8.75 167.39 3.16 170.54 9.93 25143
P32 34.25 39.41 73.67 13.80 314.25 7.09 321.35 11.81 470.07
®40 77.94 16.77 04.71 13.45 1011.06 14.58 1025.65 14.16 1599.50
P48 113.46 32.81 146.27 15.91 922.70 38.14 960.84 17.19 1380.63
?56 253.13 118.70 371.84 16.69 1244.26 85.28 1329.53 17.53 1632.21
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Challenges & Key Accomplishments

Known Environments

Scalability: Multiple Robots,
Complex Environments & Tasks

Optimality: Large-scale problems,
Effect of Abstractions

Transferring experience and skills
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Transferring Skills in LTL Planning

A delivery task

“Pick up the mail by visiting houses IN A

GIVEN ORDER’

« “Next visit a delivery site”

« “NEVER LEAVE THE DELIVERY SITE
UNTIL A GROUND ROBOT IS PRESENT
TO PICK UP THE MAIL”

» “Repeat this process every day”

Already know how to visit
New Delivery Task houses and delivery site.

» “Pick up the mail by visiting houses in ANY order’ Why plan from scratch?
» “Next visit a delivery site AND DROP OFF THE MAIL"

 “Repeat this process every day”
Duke
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Transferring Skills in LTL Planning

Library of . Sampling-Based

Atomic Skills Controller Synthesis

)
Haroral

i
[ |
Ramnem o : Extend to other
el €3 Sample Extend Rewire XsubtaSkS
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Control Synthesis for New LTL Tasks

Step 1: Decompose the new LTL into subtasks and match with skills in the library.

Step 2: Grow a tree by sampling and reusing skills from the library.

: Extend to
reused skills

Theorem: Probabilistically
Complete and

,qB) /\‘ -~ Asymptotically Optimal

reusable skills
Duke

UNIVERSITY
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Transfer Planning for LTL Different Tasks

Library:

Tasks:

<>7T7 1.0

¢1 =

P2 =

¢z ="

P4 =

s _ 0.4
A

¢6 _ 0.2
A

0.0

0.0

e
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Transfer Planning for LTL Different Tasks

Table 1: Runtimes and costs for different L'TL tasks

tasks | ¢ t[18]| J = J[1§]
é 002 022 1.85 1.86
d, | 001 020] 1.60 1.47
O3 0.01 0.70| 3.40 3.45
os | 007 1.16| 325 3.15
O 0.20 3.40| 5.10 2.83
06 0.98 9.85| 4.50 3.67
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Transfer Planning in Different Environments

1.0
02
0.6 4 &
09 013
- (05 0g
0.6-
o 9
os 012 i4 011 i?,
| o7 03
5 010
0.2- i
01
0.0

0.0 0.2 0.4 0.6 0.8 1.0 k
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Transfer Planning in Different Environments

Table 1: Runtimes in the slightly changed environment

fasks |m: m = 2 m:3|

t t[18] t t[18] t t[18]
D1 031 033 035 031 040 0.31
0D 0.30 0.22 034 0.18 0.35 0.22
O3 0.35 0.76 039 089 043 0.&4
D4 038 1.10 034 1.18 042 0.98
?5 031 332 037 4.17 041 3.77
D6 034 949 038 10.17 044 13.38

Duke
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Challenges & Key Accomplishments

Unknown Environments

Unknown Contextual
Information

Transferring experience and skills
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el
@@

i

Hospital A specializes in

Contextual Motion Planning

0@

G

treating disease 1

4.

e

QU pag

m o0

Hospital A has larger capacity and,

therefore, lower waiting time

Diagnosis

Disease 1

Disease 2

—~—
I o

Context

0

)

\ Reward

Hospital B specializes in
treating disease 2

u

Red(+10)

Green(+5)

0

1 L

0.6
0.1

0.3
0.8

Probabilities

TRANSFER
PATIENT TO
HOSPITAL

More likely patient with disease 1
will be cured in Hospital A

More likely patient with
disease 2 will be cured
in Hospital B
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Transfer Learning in Contextual MDPs

Contextual MDP: (St7 at, Pu(st-l-l |St7 at)) Ru(8t7 A, St+1 )5 IO(Q

Transition and reward functions are Contextual variable u subject to a stationary
parameterized by the contextual variable u distribution

In traditional transfer or
imitation learning, the
demonstrator and learner
make decisions based on
the same information

Transfer Learning under Unobserved Contextual Information

Given the observed data distribution P(s¢, as, s¢+1, 7¢) collected by a demonstrator agent who

makes decisions based on the contextual information, design learning algorithms for a context-
unaware learner agent to use these data to find the optimal policy with fewer new data samples.

A contextual optimal policy 7* (a¢|s,u;) (or an optimal policy 7*(a¢|s;) when
the contextual information is unobservable) is the one that maximizes the
accumulated reward. Duke

UNIVERSITY




Causal Inference

U u

do(a) : intervention

on a regardless of

the context

> O >
a T a T
Demonstrator knows Learner does NOT
context u know context u

Causal Inference: Given the observed data distribution P(r,a,u), or P(r,a), induced from the
demonstrator’s causal graph, estimate the learner’s probability P(r | do(a)) of the outcome r when
intervening on the variable a.

The causal effect P(r | do(a)) cannot be estimated
without bias when there is an unobserved
confounder u in the observation data.

Duke
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Estimation Bias

o(a) : intervention

d
The Learner cares to estimate:  E[r|do(a)] = ) _rP(r|do(a)) Nﬂ i re?hagsifeiz
T o

SAME DIFFERENT a r
where:  P(r[do(a) Z P(r|a,u E —> Learner does NOT KNOW the context P(u)
Demonstrator’s

. . observational data by
Instead Learner can estimate: ~ E[r|a] = ) rP(rla) =) s executing policy 7 (als, )

Compare E[r|do(a)] and E[r|a] :

DIFFERENT
>, P(rla,u)P(alu)P(u) P(a|lu)P(w) L(u)scaled by

P(r|a) = = = |
>, Pal0)Pw) S Plak)Plw) (71O

Since P(r|do(a)) # P(r|a) , we have that | E[r|do(a)] # E[r|a] Estimation
Bias

@
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Example

Reward
Action space: UP (1), RIGHT (2), DOWN (3), LEFT (4) u | Red(+10) | Green(+5)
0 0.6 0.3
Contextu: P(u=0)=0.2, P(u=1)=0.8 (Bernoulli) 1 0.1 0.8

Demonstrator’s policy: P(a =4|u =0) =0.7, P(a = 4ju = 1) = 0.1

Learner’s expected reward based on demonstrator’s observational data:

0.1-0.8

= 0.418

=" P(rla,u) Plalwblu) g 07-02 g4

S P(au)P(u) 0.7-02+0.1-0.8 ' ~0.7-02+0.1-0.8

P(r|a)
E[rla] = ) rP(r|a) =10-0.418 + (=1) - (1 — 0.418)

T

Learner
overestimates reward
of moving to Red

P(r|do(a) }:Pﬂau u)=0.6-0.2+0.1-0.8=0.2

E[r|do(a) E:wjhm _1002+4—n-u—02y<:>

Learner’s true expected reward:

(o/0)




This Bias is why...

... Students should not blindly trust their advisors, BUT
they should also read and explore their own ideas.

Advisors often guide students (the policy), WITHOUT
explaining their thought process (the context).

Still, advisors can help students learn faster and avoid
major mistakes...
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Causal Bound Constrained Q-Learning

While the causal effect E[r|do(a)] is unidentifiable when there is an unobserved
confounder u in the observational data, we can compute causal bounds on E[r|do(a)]
(and the Q-function) given the demonstrator’s observational data.

Linear
Programming!

Causal Bound Constrained Q learning

a; + e-Greedy (Q(s¢,a))

[Q(Staat)aé(st,at)] (1 - at)Q(St’ at) + t (T(St’ a’t) + fymc?’XQ(St‘H’ a))) ‘

Projection on causal bounds avoids exploration of the
state space in directions that decrease the Q function D
uke
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Accumulated reward at state [2, 0]

Numerical Experiments

-1 3
ittt e S i 2
-3 // 1
4+ - 0

0
5t _

= () learning
— () learning with Causal Bounds
— = Actual optimal value

Actual value without causal inference

- = Expected value without causal inference

|

2000

4000 6000 8000
Number of Episodes

10000

Much faster convergence!
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Summary

Known Environments

Unknown Environments

Scalability: Multiple Robots,
Complex Environments & Tasks

Formal Methods and Learning

Unknown Contextual
Information

Optimality: Large-scale problems,
Effect of Abstractions

Planning in almost infinite spaces

Abstraction-free methods

Transferring experience and skills
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Thank You

. . . N((MENT ()3 THEN,q
STyLuS*: Large-Scale Temporal Logic optimal Synthesis i
« Y. Kantaros and M. M. Zavlanos, “Sampling-Based Optimal Control Synthesis for Multi-Robot | | |§ E @
Systems under Global Temporal Tasks,” IEEE Transactions on Automatic Control, 2019.

* Y. Kantaros and M. M. Zavlanos, “STyLuS*: A Temporal Logic Optimal Control Synthesis

Algorithm for Large-Scale Multi-Robot Systems,” International Journal of Robotics Research,
accepted.

* Y. Kantaros and M. M. Zavlanos, “Temporal Logic Optimal Control for Large-Scale Multi-
Robot Systems: 10400 States and Beyond,” 57th IEEE Conference on Decision and Control,
2018.

TL-RRT*: Temporal Logic RRT*
» X. Luo, Y. Kantaros, and M. M. Zavlanos, “An Abstraction-Free Method for Multi-Robot
Temporal Logic Optimal Control Synthesis,” IEEE Transactions on Robotics, under review.

Transfer Planning and Learning

 X. Luo and M. M. Zavlanos. Transfer planning for temporal logic tasks. Proc. 58th IEEE
Conference on Decision and Control (CDC), December 2019.

* Y. Zhang and M. M. Zavlanos. Transfer Reinforcement Learning under Unobserved
Contextual Information. 11th ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), April 2020.
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