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Motivations & contributions 

 Space is a contested warfighter operational scenario.

 Resident Space Object ID, on-orbit SSA, and multi-S/C coordination are key elements of the new scenario.

 The ADAMUS efforts focus on solving the following problems (long term)

 Propellant-less relative maneuvering with respect to unknown space objects (cost effective & stealth).

 Increase autonomy by eliminating dependence on atmospheric density forecasts for differential-drag based

maneuvers.

 Build the foundations to design complex multiple spacecraft missions. RT4 (networked agent

coordination)

 This talk shows (work so far)

 Simultaneous formation control and estimation of the target’s drag parameter (may augment/substitute orbit

determination). RT2 (Adaptation)



Relative Maneuvering & Online System ID

 G. Chowdhary, T. Yucelen, M. Muhlegg, E. N. Johnson, “Concurrent learning adaptive control of linear systems
with exponentially convergent bounds disturbances”, International Journal of Control and Signal Processing 27
(4)(2013) 280-301.
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Drag Acceleration

 D. Guglielmo, S. Omar, R. Bevilacqua, et al., "Drag De-Orbit Device - A New Standard Re-Entry
Actuator for CubeSats", Journal of Spacecraft and Rockets, Vol. 56, No. 1 (2019), pp. 129-145.

 Atmospheric drag acceleration experienced by a spacecraft

𝜌(𝑡) : Time-varying atmospheric density

𝐶𝐷: Drag coefficient

𝑆: Cross-sectional Area of the spacecraft

𝑽𝒓: Spacecraft-atmosphere relative velocity vector.

𝑚 : mass of the spacecraft

 There exist several atmospheric models with different levels of accuracy, one of the more

complex is the semi-empirical NRLMSISE-00 model, which considers the spacecraft location,

date and solar and geomagnetic activity indices. In addition to be computationally expensive, it

relies on forecasts of some indices, limiting autonomy.



Choosing an Atmospheric Density Model 

 Variations of the atmospheric density in circular LEO are mostly due to day/night

changes and 𝐽2 perturbation.

 Previous work from different authors has shown that the density in this orbit regime

has its principal Fourier components at zero and the (constant) orbit angular velocity Ω.

Motivating the following model:

𝜌 𝑡 = 𝐷1 + 𝐷2 sin Ω𝑡 + 𝐷3 cos(Ω𝑡)

 𝐷1, 𝐷2 and 𝐷3 are constants.

 This model is valid for short-term maneuvers (few days).

 The model is linearly parameterizable with respect to 𝐷1, 𝐷2 and 𝐷3. This is a property

that will be exploited in the controller development.

 G. Gaias, J.-S. Ardaens, O. Montenbruck, “Model of J2 perturbed satellite relative motion with
time-varying dierential drag”, Celestial Mechanics and Dynamical Astronomy 123 (2015) 441-433.



Spacecraft Relative Motion Dynamics

 The SS model is a linear representation of the relative motion between two spacecraft valid for relatively small

distances (~tens of kilometers) in circular LEO.

 It considers the influence of the Earth’s oblateness (𝐽2 perturbation).

 Given that the drag acceleration acts mostly opposite to the direction of motion, only maneuvers within the

same orbit plane can be performed with differential drag.
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ሶ𝑿 = 𝐴𝑿 + 𝑩𝑢𝑦

• 𝑎 and 𝑏 are known constants
and 𝑢𝑦 is the differential drag.

 S. A. Schweighart, R. J. Sedwick, High-fidelity linearized J2 model for satellite formation flight, Journal of Guidance, Control and
Dynamics 25 (6)(2002) 1073-1080.



 Adaptive controller designed using the Integral Concurrent Learning (ICL) technique
for online parameter estimation.

 The use of an ICL-based adaptive controller results in exponential convergence of the
states and the estimates provided a verifiable condition of finite excitation.

ሶ𝑿 = 𝐴𝑿 + 𝑩𝑢𝑦

𝑢𝑦 is called the auxiliary control input and is defined as
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where the subscripts 𝑡 and 𝑖 represent the target and 𝑖𝑡ℎ chaser, respectively.

ത𝑢 is the actual control input that represents the area-to-mass ratio of the 𝑖𝑡ℎ chaser.



 The auxiliary control input 𝑢𝑦 is linearly parameterized as

𝑢𝑦 = 𝒀𝚯

where 𝒀 is a measurable regression matrix and 𝚯 is the vector of uncertain parameters
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 The control law is designed using the estimates (𝚯) of 𝚯 as

ത𝑢 = ො𝜌𝑖(𝑡) መ𝐶𝐷,𝑖
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where K is a vector of constant gains and 𝑿 is the measurable state vector.



 The estimates are updated with the following ICL-based adaptive update law

ሶ𝚯 = 𝑝𝑟𝑜𝑗 2Γ𝒀𝑇𝑩𝑇𝑃𝑇𝑿 + Γ𝐾𝐼𝐶𝐿 
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Θ

where Δ𝑡 represents an user-defined sampling time, Γ is the adaptation gain, 𝐾𝐼𝐶𝐿 is a

symmetric positive definite gain matrix, 𝑃 is a symmetric positive definite matrix and

𝓨i = 𝑡−Δ𝑡
𝑡

𝒀 𝜎 𝑑𝜎 ,     𝓤i = 𝑡−Δ𝑡
𝑡

𝐴𝑿 𝜎 𝑑𝜎.

 Since 𝑿 𝑡𝑖 − 𝑿 𝑡𝑖 − Δ𝑡 − 𝓤𝒊 = 𝑩𝓨𝑖𝚯. The adaptive update law can be rewritten as
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 For the Lyapunov-based analysis, the candidate Lyapunov function is

𝑉 = 𝑿𝑻𝑃𝑿 +
1

2
෩𝚯𝑻Γ෩𝚯

 After taking the time derivative and substituting the dynamics, control and adaptive
update laws we get

ሶ𝑉 = −𝑿𝑇𝑄1𝑿 − 𝚯𝑻𝐾𝐼𝐶𝐿 σ𝑖=1
𝑁𝑠 𝓨𝑖

𝑇𝓨𝑖
෩𝚯

where 𝑄1 is a positive definite matrix. 

 The condition of finite excitation assumes there exists a time t=T >0 such that

𝜆𝑚𝑖𝑛 

𝑖=1

𝑁𝑠

𝓨𝑖
𝑇𝓨𝑖 > ҧ𝜆

where ҧ𝜆 is a user-defined positive threshold .



 Before 𝑡 = 𝑇, KICLσ𝑖=1
𝑁𝑠 𝓨𝑖

𝑇𝓨𝑖 is at least positive semi-definite. Therefore

ሶ𝑉 ≤ −𝑿𝑄1𝑿

which is a negative semi-definite result. By Barbalat’s Lemma we can conclude that
before 𝑡 = 𝑇

lim
𝑡→∞

𝑿 → 0

 After t=T, KICLσ𝑖=1
𝑁𝑠 𝓨𝑖

𝑇𝓨𝑖 becomes positive definite, and 𝑉 𝑡 can be upper bounded

as

𝑉(𝑡) ≤ 𝑉 𝑇 exp −𝜆 𝑡 − 𝑇 ∀𝑡 ≥ 𝑇

 Then, the states 𝑿 and the estimation error ෩𝚯 is guaranteed to exponentially
converge to zero after 𝑡 = 𝑇.



Results – leader follower

 Numerical simulation with the physical properties of seven identical DMD-equipped
CubeSats, full nonlinear individual dynamics, and NRLMSISE-00 atmospheric. Along-
orbit formation maneuver with 1km inter-spacecraft separation.



 Each maneuverable chaser
estimates the unknown
parameters of the target.

 Affecting estimation:
nonlinear dynamics and
density approximation model

Results – leader follower



Results – rendezvous



 Since all spacecraft are
identical, the cross sectional
areas converge to the same
level.

Results – rendezvous



Conclusion and Future Work

 Adaptive controllers have been proposed for autonomous spacecraft differential drag-based simultaneous
relative estimation and maneuvers.

 The results are potentially implementable on-board small satellites.

 ICL adaptive controller including natural torques is under development in collaboration with the NCR.

 Future work includes networking the chasers and their estimations to enhance the performances.

Related Publications:
 C. Riano-Rios, R. Bevilacqua, W. E. Dixon, “Relative maneuvering for multiple spacecraft via differential drag using LQR

and constrained least squares”, 495 in: AAS Space Fight Mechanics Meeting, Maui, Hawaii, 2019, Paper No. AAS-19-346.
please, look here for collision avoidance

 C. Riano-Rios, S. Omar, R. Bevilacqua, W. Dixon, “Spacecraft attitude regulation in low earth orbit using natural torques”,
in: 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 2019.

 C. Riano-Rios, R. Bevilacqua, W. E. Dixon, “Adaptive control for differential drag-based rendezvous maneuvers with an
unknown target”, Acta Astronautica. To appear.

 C. Riano-Rios, R. Bevilacqua, W. E. Dixon, “Differential Drag-Based Multiple Spacecraft Maneuvering and On-Line
Parameter Estimation Using Integral Concurrent Learning”, Submitted to Acta Astronautica.

 Others in preparation…
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COLLISIONS

“The presence of multiple spacecraft maneuvering at relatively small 

distances increases the risk of possible collisions, especially for 

rendezvous maneuvers. Having the same controller driving each 

chaser to the rendezvous state with respect to the target yields a 

similar behavior in the relative path that a chaser follows to reach it, 

and given the state feedback term in the control law it is expected that 

the control effort is reduced as the chaser approaches the target. 

Therefore, if a rendezvous maneuver is required, some chasers could 

follow similar paths and will be maneuvering in close proximity to the 

target for a

significant portion of the maneuver, increasing the collision risk.

To reduce the collision risk, this undesired behavior could be 

addressed by introducing an along-orbit formation as an intermediate 

step…”e stage where the desired separations represent \parking" 

positions. Then, once the positions of the chasers are stable along the 

same orbit, these separations can be sequentially reduced to drive 

each chaser to the rendezvous state in a more controlled way when in 

close proximity to the

target”



IC leader-follower formation



IC rendezvous



Stability Analysis for ICL Adaptive controller 

 Candidate Lyapunov function is

𝑉 = 𝑿𝑻𝑃𝑿 +
1

2
෩𝚯𝑻Γ෩𝚯

 For analysis purposes, express 𝑢𝑦 as

𝑢𝑦 = 𝑢𝐹𝐵 + 𝑢𝐴𝐷

where 𝑢𝐹𝐵 and 𝑢𝐴𝐷 are feedback and adaptive terms respectively. 

𝑢𝐹𝐵 = −𝑲𝑿

where  𝑲 is a constant gain vector obtained from solving an LQR problem that 
minimizes the cost function

𝐽 = න
0

∞

𝑿𝑇𝑄𝑿 + 𝑅𝑢𝐹𝐵
2



Stability Analysis for ICL Adaptive controller 

 The solution of the LQR problem produces the symmetric positive definite matrix 𝑃
by solving the Algebraic Riccati Equation. 𝑃 is the matrix used in the Lyapunov
Candidate Function.

𝑉 = 𝑿𝑻𝑃𝑿 +
1

2
෩𝚯𝑻Γ෩𝚯

 Since 𝑢𝑦 = 𝒀෩𝚯+ 𝒀𝚯, then

𝑢𝐴𝐷 = 𝒀෩𝚯 + 𝒀𝚯 + 𝐊𝐗

and

𝒀𝚯 = ො𝜌𝑡 𝑡 መ𝐶𝐷,𝑡 𝑉𝑟,𝑡
2 𝑆𝑡

2𝑚𝑡
− ො𝜌𝑖 𝑡 መ𝐶𝐷,𝑖 𝑉𝑟,𝑖

2 ത𝑢

 The Lyapunov derivative can be written as 

ሶ𝑉 = 𝑿𝑇 𝑃𝐴∗ + 𝐴∗𝑇𝑃 𝑿 + 2𝑿𝑇𝑃𝑩𝑢𝐴𝐷 − ෩𝚯𝑇Γ−1 ሶ𝚯

where 𝐴∗ = 𝐴 − 𝑩𝑲 is Hurwitz since 𝑲 is obtained by solving the LQR problem



Stability Analysis for ICL Adaptive controller 

 Substituting 𝑢𝐴𝐷 and ሶ𝚯 in the Lyapunov derivative yields

ሶ𝑉 = −𝑿𝑇𝑄1𝑿 + 2𝑿𝑇𝑃𝑩 𝒀෩𝚯 + ො𝜌𝑡 𝑡 መ𝐶𝐷,𝑡 𝑉𝑟,𝑡
2

𝑆𝑡
2𝑚𝑡

− ො𝜌𝑖 𝑡 መ𝐶𝐷,𝑖 𝑉𝑟,𝑖
2 ത𝑢 + 𝐊𝐗 +

-෩𝚯𝑇Γ−1 2Γ𝒀𝑇𝑩𝑇𝑃𝑇𝑿 + Γ𝐾𝐼𝐶𝐿 σ𝑖=1
𝑁𝑠 𝓨𝑖

𝑇𝓨𝑖
෩𝚯

where 𝑄1 is the symmetric positive definite matrix that satisfies the Lyapunov equation 

𝑃𝐴∗ + 𝐴∗𝑇𝑃 = −𝑄1

 Substituting the control law ത𝑢 we get

ሶ𝑉 = −𝑿𝑇𝑄1𝑿 + −෩𝚯𝑇𝐾𝐼𝐶𝐿 σ𝑖=1
𝑁𝑠 𝓨𝑖

𝑇𝓨𝑖
෩𝚯



Stability Analysis for ICL Adaptive controller 

 Before t=T, ሶ𝑉 can be upper bounded by

ሶ𝑉 ≤ −𝑿𝑻𝑄1𝑿

using Barbalat’s Lemma results in asymptotic regulation of the state vector 𝑿.

 After t=T,

ሶ𝑉 = −𝑿𝑇𝑄1𝑿 + −෩𝚯𝑇𝐾𝐼𝐶𝐿 σ𝑖=1
𝑁𝑠 𝓨𝑖

𝑇𝓨𝑖
෩𝚯

From this result, if can be shown that after t=T, V decreases exponentially as

𝑉(𝑡) ≤ 𝑉 𝑇 exp −𝜆 𝑡 − 𝑇 ∀𝑡 ≥ 𝑇

where

𝜆 = min 𝜆𝑚𝑖𝑛 𝑄1 , 𝜆𝑚𝑖𝑛 𝐾𝐼𝐶𝐿 σ𝑖=1
𝑁𝑠 𝓨𝑖

𝑇𝓨𝑖


