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Motivation
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A network of mobile agents collaboratively 
monitors a large-scale environment 


• Heterogenous sensing capabilities


• Noisy sensors


• Limited communication range


• Time-varying network topology

System hypothesis 
θ* ∈ Θ = {θ0, . . . , θm−1}

Unknown true hypothesis of the system 

(e.g., true position of the object of interest)

Communication

Observation

Agent



Collaboration in the Presence of Adversaries
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How to process local and shared information so that all the good  
(non-adversarial) agents can collaboratively detect the true hypothesis of the system? 

Each agent only receives partial information about the 
state of the system

Sensor 
limitation

• Requires information sharing

Coverage  
limitation

May contain (Byzantine) adversaries

• Requires resilience against adversaries

Good

Bad



The Modeling Framework
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 agentsN

 possible hypotheses, 
m Θ = {θ0, . . . , θm−1}

Each agent follows a given path

At time , agent  gets a local observation  with a probability given by a local likelihood function


                                                          

t i si,t

li(si,t |qi,t, θ*)

Unknown true hypothesis of the system Position of agent  at time i t

Q

Agent

Path

Communication 
range

Set of positions for agents 

One true hypothesis of the environment θ* ∈ Θ

At most   adversaries f ( f < N − f )



How will things work?
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1 
• Makes frequent local 

observations 

• Updates its local belief 

2 
Shares its actual 
belief with neighbors 

3 
• Receives neighbors’ 

actual beliefs

• Updates its own 

actual belief



Distributed Hypothesis Testing Problem
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Problem: 
Design resilient actual belief update rule  such that .g ba

i,t(θ*) → 1

Adversarial agents can share false actual beliefs!

Each agent maintains two beliefs (probability distributions over )          

                        


Local belief                    


Actual belief                   


Θ

bl
i,t+1(θ) =

li(si,t+1 |θ, qi,t+1)bl
i,t(θ)

∑m
p=1 li(si,t+1 |θp, qi,t+1)bl

i,t(θp)

ba
i,t+1(θ) = g(ba

i,t(θ), bl
i,t+1(θ), {ba

j,t(θ)})

Actual beliefs from 
current neighbors

Prior actual 
belief

Current 
local belief

Update rule

Based on purely 
local information

Prior local 
belief

Merges shared beliefs 
from neighbors

Likelihood 
function

(shared with neighbors) 



Related Work

Consensus-based belief update algorithms are established in [1-3] 
• Asymptotic convergence is proved

• No adversaries

• Assumes (periodic) connectivity of the network topology   
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2006, pp. 169–182

[2] A. Lalitha, et al, “Social learning and distributed hypothesis testing,” IEEE Transactions on Information Theory, vol. 64, no. 9, pp. 6161–6179, 2018.

[3] A.  Nedic, et al,  “Fast  convergence rates for distributed non-bayesian learning,” IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 5538–5553, 
2017.

[4] L. Su and N. H. Vaidya, “Defending non-bayesian learning against adversarial attacks,” Distributed Computing, vol. 32, no. 4, pp. 277–289, 2019.

[5] A .  Mitra, et al,  “A new approach for distributed hypothesis testing with extensions to byzantine-resilience,” in 2019 American Control Conference (ACC), July 
2019, pp. 261–266.

[6] .  Mitra, et al,  “A new approach to distributed hypothesis testing and non-bayesian learning: improved learning rate and byzantine-resilience,” arXiv 
1907.03588, 2019.

Byzantine-resilient belief update algorithms are established in [4-6].
• Asymptotic convergence is proved in the presence of adversarial agents

• Static network topology

• Assumes global connectivity of the network topology  
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Contributions

• Resilient algorithms for distributed hypothesis testing with 
time-varying network topology 

• No requirement on the global connectivity of the network 
topology (the underlying communication graph does not 
have to be connected)

• Accommodating different sensor noise levels

[1] B. Wu et al. “Resilient distributed hypothesis testing with time-varying network topology”, American Control Conference, 2020, to appear.

[2] B. Wu et al. “Byzantine-resilient distributed hypothesis testing with time-varying network topology”, journal version work in progress.
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What can local belief evolution tell?
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Given a pair of hypotheses  and , agent  is a source agent, denoted as , if it visits at least one 
position  infinitely often, where  satisfies 


         


θ θ′� i i ∈ S(θ, θ′�)
q q

li( ⋅ |q, θ) ≠ li( ⋅ |q, θ′�)

Agent  can locally distinguish between i ∈ S(θ, θ′�) → i θ and θ′�

li(s |q, θ) =

1
2

1
2

2
3

1
3

1
2

1
2

s0 s1

θ0

θ1

θ2 = θ*

For every  along the pathq

Agent i

Path

bl
i,t(θ0)

bl
i,t(θ2)

bl
i,t(θ1)

Evolution of local belief bl
i,t

Local belief itself may rule out of 
some of the hypotheses

 ruled outθ1



Synchronized Distributed Hypothesis Testing (SDHT)
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Enough informative neighbors


1. Remove  lowest shared actual beliefs on  
(reject extreme beliefs)


2.  
(minimum rule)


f θ

ba
i,t+1(θ) = min{{ba

j,t(θ)}j∈𝒩θ
i,t+1

, bl
i,t+1(θ)}

Agents remained after 
step 1 of case one

Yes

Case one

Not enough informative neighbors


ba
i,t+1(θ) = min{ba

i,t(θ), bl
i,t+1(θ)}

No

Case two

For agent i

 Update the local belief bl
i,t+1 t = t + 1

Normalization of  ba
i,t+1

Neighboring 
agents

More good agents than 
(at most  ) adversarial 
agents

f

for all ,    ?θ′� ≠ θ |S(θ, θ′�) ∩ 𝒩i,t+1 | ≥ 2f + 1

Update actual belief 

for each hypothesis 

ba
i,t+1(θ)

θ

Neighboring agents that can 
distinguish between θ and θ′�



Convergence of SDHT

1. Non-zero initial local and initial actual beliefs for every θ ∈ Θ

2. Every agent that does not interact “often enough” can distinguish by itself.


That is, if case one in SDHT happens only finitely often for a hypothesis , then  for 
any .

θ ∈ Θ i ∈ S(θ, θ′�)
θ′� ≠ θ

Then SDHT guarantees that  almost surely as . ba
i,t(θ*) → 1 t → ∞

For any non-adversarial agent , suppose the following conditions hold:i
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How to Make Better Use of the Shared Information?
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Recall in SDHT 
Case one: If for all , θ′ � ≠ θ |S(θ, θ′�) ∩ 𝒩i,t+1 | ≥ 2f + 1
An agent must have enough number of informative neighboring agents to make use of the shared information.
Enough number of neighbors at the same time instant!

Can we make more frequent use of the shared information?

Key idea: 

• Keep collecting shared actual beliefs over time 

• Until enough actual beliefs collected for actual belief update

+2t+1tt Collected 
actual beliefs 
for green agent

The agent that 
collects the beliefs



Asynchronous Distributed Hypothesis Testing (ADHT)
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Enough informative neighbors


1. Remove  lowest shared actual beliefs on  
(reject extreme beliefs)


2.  
(minimum rule)


f θ

ba
i,t+1(θ) = min{{ba

j,t(θ)}j∈𝒩θ
i,t+1

, bl
i,t+1(θ)}

Agents remained after 
step 1 of case one

Yes

Case one

Not enough informative neighbors


ba
i,t+1(θ) = min{ba

i,t(θ), bl
i,t+1(θ)}

No

Case two

For agent i

 Update the local belief bl
i,t+1 t = t + 1

Normalization of  ba
i,t+1

Update actual belief 

for each hypothesis 

ba
i,t+1(θ)

θ

for all ,    ?θ′� ≠ θ |S(θ, θ′�) ∩ 𝒩i,t+1 | ≥ 2f + 1For all ,    ?θ′� ≠ θ |S(θ, θ′�) ∩ ℳi,t+1 | ≥ 2f + 1

Agents whose actual beliefs 
were collected until t + 1

Agents whose actual beliefs were collected 
and can distinguish between θ and θ′�



“Case 1”: 
Minimum Rule versus Averaging Rule in Actual Belief Update 
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1. Remove  lowest shared actual beliefs on 

2.

f θ
ba

i,t+1(θ) = min{ba
j (θ)}j∈𝒩θ

i,t+1
, bl

i,t+1(θ)}

Minimum rule

Agents remained after step 1

0

0.06

0.12

0.18

0.24

Agent

Actual 
belief

Removed Only one belief used

1. Remove  lowest and  highest shared actual beliefs on 

2.

f f θ
ba

i,t+1(θ) = min{avg{ba
j (θ)}j∈𝒩θ

i,t+1
, bl

i,t+1(θ)}

Averaging rule

Agents remained after step 1

Pro: Quickly rules out unlikely hypothesis 


Con: May have oscillations with noisy sensors

Pro: Averages out the effect of noisy sensors 


Con: May take more time to suppress unlikely hypotheses 

Removed More beliefs used



Case Study: Compromised UAV Classification

A set of agents with persistent surveillance tasks
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Each agent 

• Has a trajectory for prescribed surveillance task

• May follow a set of possible alternative 

trajectories if compromised

• Bad agent shares randomly generated beliefs

Sensor + Communication Range

Surveillance Targets

Bad agent

Nominal trajectory One possible 
trajectory if 

compromised

Objective: identify the bad agent

Hypothesis θ = ⟨θ(0), θ(1), θ(2), θ(3), θ(4)⟩

θ(i) ∈ {0 (bad), 1 (good)}
True hypothesis θ* = ⟨1,1,1,0,1⟩

Agent 3 is bad, ( ).θ(3) = 0

Five agents — four good agents, one bad agent


Noisy sensors

• When an agent is in range, its position 

is sensed from a distribution across the 
viewable positions



Case Study: Results
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ADHTSDHT

• Both SDHT and ADHT converge to the true hypothesis

• ADHT converges faster

Bad agentBad agent

θ* = ⟨1,1,1,0,1⟩

Good agents Good agents

• ADHT uses shared beliefs more frequently 
than SDHT

ADHT

SDHT



Case Study: Simulation
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Minimum Rule vs Averaging Rule
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Minimum rule converges faster with a low noise sensor

AveragingMinimum

Bad agent

Good agents

Averaging rule converges faster with a high noise sensor

AveragingMinimum

Bad agent

Good agents



Summary

• How to plan the motion for each agent 
to guarantee convergence?

• Convergence rate analysis
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What is next?

• New distributed learning algorithms that 
are resilient to Byzantine adversaries

• Convergence is guaranteed without 
global connectivity constraints

• Minimum and average rules for different 
levels of sensing noises

 almost surely as ba
i,t(θ*) → 1 t → ∞

Bad agent

Bad agent

Good agents

Bad agent


