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Motivation

* By only completing a single task, the objective of an agent is clear to an observer.

* By completing multiple tasks, an observer must attempt to infer the true objective of the agent.
* Uncertainty in which task the agent cares about completing, observer cannot optimally allocate resources
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High-Level Problem Formulation

The agent and the observer each know a set of specifications, ® = {¢, ..., P }-
*  Only the agent knows the ground-truth specification , ¢* € .
* The observer seeks to infer ¢* from the set of candidate specifications ®.,,, @, the specifications
completed with a probability above some common-knowledge threshold.

* Goal: Synthesize the agent’s policy such that it completes ¢* with a desired probability
while also leading an observer to believe that each ¢; € &, is equally likely to be ¢*.

& = {deliver to blue, deliver to green}

The truck never
delivers supplies to the
green base...

The truck always visits
both bases...

P.qan = {deliver to blue} ®..n = {deliver to blue, deliver to green}



Agent Model

* The agent operates in a stochastic environment
modelled as a Markov decision process (MDP),
given by M = {S, sg, A, P, AP, L}

* Sis afinite set of states

°  Spis aunique initial state

* A is a finite set of actions

« Pisatransition function, P: SXA — A(S")
* AP is a set of atomic propositions

«  Lis a labelling function, £: S — 247

a,l
b, 0.5

* A policy for an agent is a sequence T = (d4,d>, ...) w :l{z {a I;f/ue}
where each d;: S = A(A). Denote the set of all S = (s, ,51}

policies by I[1(M).

A() is a probability
mass function



Agent Specifications

* Use temporal logic to express agent specifications.
* Relate occurrence of an event, causality between events, and ordering of successive events

* Focus on syntactically co-safe parametric linear temporal logic, includes parameterized
temporal operators:
* Parameterized Always: O[q 1P

* Parameterized Eventually: ¢[q p) D Will focus on these

* Can nest together: Oy ) ©[c,a] P four structures

°la,b] Uc,alP

0[3’5] blue

Eventually, between the third and fifth time steps,
visit the blue base



Observer Inference Model

* lgnores specifications satisfied with low probability when inferring which is ¢*

* Uses a simple averaging rule to assign inference probabilities:

Probability of satisfying ¢ ,

v ignore if ¢ & B4
A

Prir(so E )I{p € Pean}

T
§ FTM (SO F ¢l21\1{¢ € (pcan}J
PpED Y Y
T T Indicator function taking value 1
if € D4, and 0 otherwise.

Pr(¢p = ¢*|p € Dpyp) =

Probability of satisfying ¢ in
MDP M under policy

* Uncertainty of the observer measured using the entropy of its inference probabilities.

H (@ean) == ) Pr(§ = §'1$ € Prgn) 10g(Pr() = §°1 € Prqn))

PEDcan



Problem: Synthesis of Minimum Information Leakage Policy
* Synthesize a policy T € II(M) for the agent solving:

T
n gﬁ%{) H" (D.qn)

Agent must satisfy ¢*
l with probability above

subject to: Pry (sg E¢*) =T

¢™: given ground- T

truth specification ¢ E ¢Ca'n @ Pr]\Tf[ (SO — ¢) 2 ﬁ

Agent must satisfy ¢; with
probability above this threshold
for observer to consider it a
candidate specification

M : given MDP




Solution — Product MDP

* For each specification ¢;, construct its corresponding deterministic finite automaton (DFA), A;.

* To determine the satisfaction probabilities, form the product MDP M @QA; foreachi =1 ... N.

Accepting State

a,l X

b, 0.5
Unique initial
state

Transitions governed by current
state and atomic propositions

X oo




Solution — “Exact Approximation” of the Objective

Hﬂ(cpcan) = S“ PI‘(¢ - ¢*|¢ € Dean) log(Pr(qb - ¢*|¢ € Dean)) Bilinear
DED g v g constraint!
| . = Z% where v(i) = Pri;(sy E ¢)I{p € D1}

Replace this bilinear constraint by a McCormick Envelope (affine in Pry;:(so & ¢;), I{¢p; € Pron}):

-------------------------------------------------- | © V() = {¢; € Pegn}
Affine over-
approximators

© v(i) = Pry(so E ¢;)

Original <
bilinear term

c v(i)=0
v(i) can now lie anywhere
between under/over «— |

approximations

Affine under-
approximators

© v(i) = I{¢; € Pean} + Pryp(so F @) — 1

1

The relaxation is exact, v(i) = Pry;(sq E ¢;) if 1{¢p; € P4} = 1 and 0 otherwise.



Solution — Optimization Problem

¢ Mixed-integer program z V(i) (L) ) Entropy of observer’s likelihood
(MIP) with quasi-concave M)A Z]E[N V(]) e vU) probabilities
objective function subject to:
, Flow constraint: If you visit a
Vs € S,\B, z As,a—zzpr A(s’,a) = a(s «—
p\ aEA (s,a) ' asH(s’,a) (%) state, must also leave that state
s'esy, a€A
. Probability of satisfying the
vi€N] K = Z z Als,a) < th specifi:/:ation (j)-y :
* Solve using bisection SeSp:s[i+2]€F; aed T
method together with MIP 41 =T . Must satisfy ¢* with probability I
solvers B (Assume ¢ = ¢,
Vi € [N|, i) = px(i
V] u@D) = px(@® Only consider satisfaction probability
Vi € [N], v(D) = p(Dx() < if §; € Pragn- Use McCormick
Vi € [N] x(i) € {0,1} Envelope for middle constraint.
* State space is the product
of the MDP with all VseS,VaeA,  As,a)=0 < Expected residence is non-negative
specification DFAs
(s, a) = A(s,a) ) Afterwards, obtain policy
' Yacar(s, a) from flow variables



Approximate Solution Method: Probabilities at Each Time Step

* Predict whether a specification holds from whether its atomic propositions hold at each time step.
* Use the Fréchet inequalities to relate the probabilities of satisfying each ¢; at an individual time
step to the probability of satisfying ¢; over the entire time interval

° ¢; = O, k,|Pi: pi should hold at every time step over [k, k,].

kZ k2
Fréchet inequality for conjunction: Pr(/\ pi(t)> = max{0, Z n;(t) — (ky — ki)}

t=k1 t=k1

\ J

Y

PTJGF(SO E¢= D[kl,kz]pi)

° @i =9, k] Pi: bi should hold at least once over [k, k;].

t=k1

\ J

k2
Fréchet inequality for disjunction: Pr (\/ pi(t)> > max{n(k,),...,n(k,)}

Y
PT}VT[(SO E® =0, k] Pi)



Approximate Solution — Optimization Problem

PRkt
A(sa)x(l) Z]e[N]V(]) Zje[N]v(j)

subject to:
* Remains a MIP with a quasi- Vs € 5,\B, Z AA(S, ) — Z Z Py o A(s", @) = a(s)
concave objective function. ae s'ES, aEA
. _ For each specification,
vieN], Z Z As, a) = n;(£) |, determine the probability that it
sesle+il  aeA holds at each time step over
* The program uses the state space s[21=t.pieL(s) interval of interest
of an expanded MDP (but not the
product of many automata). vi€ [N], Hi = Z z As,a) ﬂ
SESp:s[i+2]€F; a€A
For each specification, replace
u@) =T right-hand side with lower
Vi € [N], u(@ = Bx(i) .bounds.d.erived from Fréchet
inequalities
Vi € [N], v(D) = p(Dx()
Vi € [N], x(i) € {0,1}
Vs € 5,,Va € A, A(s,a) =0
(s.a) A(s,a)
n(s,a) =
Zaecﬂ A(S' a)



Example — Delivering Supplies to Bases

* Agent must resupply a specific base at a
specific time over the timespan of interest

* Consider two different sets of
specifications — require the agent to visit
different numbers of bases

Num. Vars. - Sol. T o
Specifications ¢ (Continuous, Time, H™(can), H™($can),
: exact approx
binary) approx. é
Exact: 4870 con.
*=0 blue 1 bin.
Resupply-1 ¢ = Do10] 9.25s  6.75s 1.000 bits 0.999 bits
¢2 = Op93017€d Approx: 3079 con.
1 bin.
o Exact: 6980 con.
¢ = D[g’lo]blue 3 bin
=0 ll '
Resupply-2 iz = D[16,18]Zie;‘:’ 53.71s  25.11s 1.999 bits 1.999 bits ['=0.95, 8 = 0.80
3 = O[23,25] 95, .80.

Approx: 3125 con.

¢4 = Op93017ed 3 bin.

For both sets of specifications, each method maximizes the uncertainty of the adversary.




Example — Patrolling a Perimeter

* One outpost is assumed to store critical information.
Based on patrolling of agent, observer seeks to infer

the outpost using agent’s probability of visiting

* Agent must repeatedly visit each outpost over
time span, attempt to do so with equal probability
for each

‘\%/

Specifications ¢ Num. Vars. Sol. Time, | Sol. Time, | H™ (¢can), | H™ (Pcan),
- (Continuous, binary) Exact approx. exact approx

= O[1,10] °[0,5] UPDPer left Exact: 22209 con. )y >
¢2 = O[1,10] °[0,5] UPPET Tight 1 bin.
Surveillance =0 o lower left 148.37 s 26.59s 1.999 bits 1.999 bits
& [1,10] "[0,5] ! Approx: 617 con.

by = O[1,10] °[0,5] lower right 239 bin.

Even with a large number of binary variables (needed to utilize off-the-shelf solvers), the approximate
solution method is quicker and performs as well as the exact solution method.



Summary

* Considered the problem of minimizing the ability of an observer to predict the
specification that an agent actually cares about completing
* Developed two algorithms, an exact and an approximate solution method to

synthesize a policy for the agent
* Exact solution method gives exact satisfaction probabilities but can be cumbersome
* Approximate solution is quicker but may underreport the set of candidate specifications

Are they delivering
supplies to the blue o
the green base?

0[3,5] blue

Eventually, between the third and fifth time
steps, visit the blue base




