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Motivation

They are delivering 
supplies to the blue 

base!

Are they delivering 
supplies to the blue or 

the green base?
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• By only completing a single task, the objective of an agent is clear to an observer.
• By completing multiple tasks, an observer must attempt to infer the true objective of the agent.

• Uncertainty in which task the agent cares about completing, observer cannot optimally allocate resources



High-Level Problem Formulation
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The truck always visits 
both bases…

𝛷!"# = {𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑡𝑜 𝑏𝑙𝑢𝑒, 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑡𝑜 𝑔𝑟𝑒𝑒𝑛}

𝛷 = {𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑡𝑜 𝑏𝑙𝑢𝑒, 𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑡𝑜 𝑔𝑟𝑒𝑒𝑛}

The truck never 
delivers supplies to the 

green base…

𝛷!"# = {𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑡𝑜 𝑏𝑙𝑢𝑒}

• The agent and the observer each know a set of specifications, 𝛷 = {𝜙!, … , 𝜙"}.
• Only the agent knows the ground-truth specification , 𝜙∗ ∈ 𝛷.
• The observer seeks to infer 𝜙∗ from the set of candidate specifications 𝛷"#$ ⊆ 𝛷, the specifications 

completed with a probability above some common-knowledge threshold.

• Goal: Synthesize the agent’s policy such that it completes 𝜙∗ with a desired probability 
while also leading an observer to believe that each 𝜙$ ∈ 𝛷%&' is equally likely to be 𝜙∗.



Agent Model
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Δ ⋅ is a probability 
mass function

𝒜𝒫 = {Green, blue}
𝒜 = {𝑎, 𝑏}
𝑆 = {𝑠$, 𝑠%}

𝑎, 0.9

𝑠$ 𝑠%
𝑏, 1

𝑏, 0.5

𝑎, 0.1

𝑎, 1
𝑏, 0.5

• The agent operates in a stochastic environment 
modelled as a Markov decision process (MDP), 
given by ℳ = {𝑆, 𝑠(, 𝒜, 𝒫,𝒜𝒫, ℒ}
• 𝑆 is a finite set of states

• 𝒫 is a transition function, 𝒫: 𝑆×𝒜 → Δ(𝑆′)
• 𝒜 is a finite set of actions

• 𝒜𝒫 is a set of atomic propositions
• ℒ is a labelling function, ℒ: 𝑆 → 2𝒜𝒫

• 𝑠' is a unique initial state

• A policy for an agent is a sequence 𝜋 = (𝑑!, 𝑑), … )
where each 𝑑*: 𝑆 → Δ(𝒜). Denote the set of all 
policies by Π(ℳ).



Agent Specifications

Will focus on these 
four structures

⋄[',)] 𝑏𝑙𝑢𝑒

Eventually, between the third and fifth time steps, 
visit the blue base
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• Focus on syntactically co-safe parametric linear temporal logic, includes parameterized 
temporal operators:
• Parameterized Always: □[#,*]𝑝
• Parameterized Eventually: ⋄[#,*] 𝑝
• Can nest together: □[",+] ⋄[!,,] 𝑝

⋄[",+] □[!,,]𝑝

• Use temporal logic to express agent specifications.
• Relate occurrence of an event, causality between events, and ordering of successive events



Observer Inference Model
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Pr 𝜙 = 𝜙∗ 𝜙 ∈ 𝛷789 ≔
𝑃𝑟ℳ; 𝑠< ⊨ 𝜙 𝕀{𝜙 ∈ 𝛷789}

/
=∈>

𝑃𝑟ℳ; 𝑠< ⊨ 𝜙? 𝕀{𝜙 ∈ 𝛷789}

Indicator function taking value 1
if 𝜙 ∈ 𝛷!"# and 0 otherwise.

Probability of satisfying 𝜙 in 
MDP ℳ under policy 𝜋

Probability of satisfying 𝜙 , 
ignore if 𝜙 ∉ 𝛷!"#

• Ignores specifications satisfied with low probability when inferring which is 𝜙∗

• Uses a simple averaging rule to assign inference probabilities:

𝐻; 𝛷789 ≔ − /
=∈@-./

Pr 𝜙 = 𝜙∗ 𝜙 ∈ 𝛷789 log Pr 𝜙 = 𝜙∗ 𝜙 ∈ 𝛷789

• Uncertainty of the observer measured using the entropy of its inference probabilities.



Problem: Synthesis of Minimum Information Leakage Policy
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max
!∈#(ℳ)

𝐻!(𝛷'())

𝜙 ∈ 𝛷'() ⇔ 𝑃𝑟ℳ! 𝑠* ⊨ 𝜙 ≥ 𝛽

subject to: 𝑃𝑟ℳ! 𝑠* ⊨ 𝜙∗ ≥ Γ

Agent must satisfy 𝜙∗
with probability above 
this threshold 

Agent must satisfy 𝜙% with 
probability above this threshold 
for observer to consider it a 
candidate specification

ℳ: given MDP

𝜙∗: given ground-
truth specification

• Synthesize a policy 𝜋 ∈ Π(ℳ) for the agent solving:



Solution – Product MDP
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× ×⋯
𝑎, 0.9

𝑠$ 𝑠%
𝑏, 1

𝑏, 0.5

𝑎, 0.1

𝑎, 1
𝑏, 0.5

ℳ
𝑞$

𝑞'

𝑞01𝑞2𝑞%
¬𝑏𝑙𝑢𝑒 ¬𝑏𝑙𝑢𝑒 1

1

1

𝑏𝑙𝑢𝑒

𝑏𝑙𝑢𝑒 𝜙0 = □32¬𝑏𝑙𝑢𝑒

𝐴?
Accepting State

Transitions governed by current 
state and atomic propositions

Unique initial 
state

• For each specification 𝜙$, construct its corresponding deterministic finite automaton (DFA), 𝐴$.

• To determine the satisfaction probabilities, form the product MDP ℳ⊗𝐴$ for each 𝑖 = 1…𝑁.



Solution – “Exact Approximation” of the Objective

• Replace this bilinear constraint by a McCormick Envelope (affine in 𝑃𝑟ℳ, 𝑠( ⊨ 𝜙$ , 𝕀{𝜙$ ∈ 𝛷%&'}):
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• 𝜈 𝑖 ≤ 𝕀{𝜙$ ∈ 𝛷%&'}

• 𝜈 𝑖 ≤ 𝑃𝑟ℳ, 𝑠( ⊨ 𝜙$

• 𝜈 𝑖 ≥ 0

• 𝜈 𝑖 ≥ 𝕀{𝜙$ ∈ 𝛷%&'} + 𝑃𝑟ℳ, 𝑠( ⊨ 𝜙$ − 1

Affine over-
approximators

Affine under-
approximators

1

1

Original 
bilinear term

𝜈 𝑖 can now lie anywhere 
between under/over 
approximations

• The relaxation is exact, 𝜈 𝑖 = 𝑃𝑟ℳ, 𝑠( ⊨ 𝜙$ if  𝕀{𝜙$ ∈ 𝛷%&'} = 1 and 0 otherwise.

𝐻4 𝛷!"# ≔ − C
5∈7!"#

Pr 𝜙 = 𝜙∗ 𝜙 ∈ 𝛷!"# log Pr 𝜙 = 𝜙∗ 𝜙 ∈ 𝛷!"#

= 9 0
∑9 0

where 𝜈 𝑖 = 𝑃𝑟ℳ4 𝑠$ ⊨ 𝜙 𝕀{𝜙 ∈ 𝛷!"#}

Bilinear 
constraint!



Solution – Optimization Problem
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max
& '," ,)(%)

− 7
%∈[.]

𝜈(𝑖)
∑0∈[.] 𝜈(𝑗)

log
𝜈(𝑖)

∑0∈[.] 𝜈(𝑗)

subject to:
∀𝑠 ∈ 𝑆1\B, 7

"∈𝒜
𝜆 𝑠, 𝑎 − 7

'!∈3"

7
"∈𝒜

ℙ'! ,",'𝜆 𝑠4, 𝑎 = 𝛼(𝑠)

∀𝑖 ∈ 𝑁 , 𝜇% = 7
'∈3":' %67 ∈ℱ#

7
"∈𝒜

𝜆 𝑠, 𝑎

𝜇 1 ≥ Γ

∀𝑖 ∈ 𝑁 , 𝜇 𝑖 ≥ 𝛽𝑥(𝑖)

∀𝑖 ∈ 𝑁 , 𝜈 𝑖 = 𝜇 𝑖 𝑥(𝑖)

∀𝑠 ∈ 𝑆1, ∀𝑎 ∈ 𝒜, 𝜆 𝑠, 𝑎 ≥ 0

∀𝑖 ∈ 𝑁 , 𝑥 𝑖 ∈ {0,1}

Entropy of observer’s likelihood 
probabilities

Flow constraint: If you visit a 
state, must also leave that state

Probability of satisfying the 
𝑖9: specification, 𝜙%

Must satisfy 𝜙∗ with probability Γ
(Assume 𝜙∗ = 𝜙;

Only consider satisfaction probability 
if 𝜙% ∈ 𝜙!"#. Use McCormick 
Envelope for middle constraint.

Expected residence is non-negative

𝜋 𝑠, 𝑎 =
𝜆(𝑠, 𝑎)

∑"∈𝒜 𝜆(𝑠, 𝑎)
Afterwards, obtain policy 
from flow variables

• Mixed-integer program 
(MIP) with quasi-concave 
objective function

• Solve using bisection 
method together with MIP 
solvers

• State space is the product 
of the MDP with all 
specification DFAs



Approximate Solution Method: Probabilities at Each Time Step
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• Predict whether a specification holds from whether its atomic propositions hold at each time step.
• Use the Fréchet inequalities to relate the probabilities of satisfying each 𝜙$ at an individual time 

step to the probability of satisfying 𝜙$ over the entire time interval 

Pr N
1<=$

=%

𝑝0(𝑡) ≥ max{0, C
1<=$

=%

𝜂0(𝑡) − (𝑘2 − 𝑘%)}

𝑃𝑟ℳ= 𝑠> ⊨ 𝜙 = □ ?$ ,?% 𝑝%

Fréchet inequality for conjunction:

Pr X
1<=$

=%

𝑝0(𝑡) ≥ max{𝜂 𝑘% , … , 𝜂(𝑘2)}

𝑃𝑟ℳ= 𝑠> ⊨ 𝜙 =⋄ ?$ ,?% 𝑝%

Fréchet inequality for disjunction:

• 𝜙$ = □ -.,-/ 𝑝$: 𝑝$ should hold at every time step over 𝑘!, 𝑘) .

• 𝜙$ =⋄ -.,-/ 𝑝$: 𝑝$ should hold at least once over 𝑘!, 𝑘) .



Approximate Solution – Optimization Problem
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max
& '," ,)(%)

− 7
%∈[.]

𝜈(𝑖)
∑0∈[.] 𝜈(𝑗)

log
𝜈(𝑖)

∑0∈[.] 𝜈(𝑗)

subject to:

∀𝑠 ∈ 𝑆1\B, 7
"∈𝒜

𝜆 𝑠, 𝑎 − 7
'!∈3"

7
"∈𝒜

ℙ'! ,",'𝜆 𝑠4, 𝑎 = 𝛼(𝑠)

𝜇 1 ≥ Γ

∀𝑖 ∈ 𝑁 , 𝜇 𝑖 ≥ 𝛽𝑥(𝑖)

∀𝑖 ∈ 𝑁 , 𝜈 𝑖 = 𝜇 𝑖 𝑥(𝑖)

∀𝑠 ∈ 𝑆1, ∀𝑎 ∈ 𝒜, 𝜆 𝑠, 𝑎 ≥ 0

∀𝑖 ∈ 𝑁 , 𝑥 𝑖 ∈ {0,1}

𝜋 𝑠, 𝑎 =
𝜆(𝑠, 𝑎)

∑"∈𝒜 𝜆(𝑠, 𝑎)

∀𝑖 ∈ 𝑁 , 𝜇% = 7
'∈3":' %67 ∈ℱ#

7
"∈𝒜

𝜆 𝑠, 𝑎

For each specification, replace 
right-hand side with lower 
bounds derived from Fréchet 
inequalities 

• Remains a MIP with a quasi-
concave objective function. 

∀𝑖 ∈ 𝑁 , 7
'∈3 &'$

' 7 @9,1#∈ℒ(')

7
"∈𝒜

𝜆 𝑠, 𝑎 = 𝜂%(𝑡)
For each specification, 
determine the probability that it 
holds at each time step over 
interval of interest• The program uses the state space 

of an expanded MDP (but not the 
product of many automata).



Example – Delivering Supplies to Bases
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Example Specifications 𝝓
Num. Vars. 

(Continuous, 
binary)

Sol. 
Time,
Exact

Sol. 
Time, 

approx.

𝑯𝝅 𝝓𝒄𝒂𝒏 ,
exact

𝑯𝝅 𝝓𝒄𝒂𝒏 ,
approx

Resupply-1
𝜙∗ = □ &,() 𝑏𝑙𝑢𝑒
𝜙* = □ *&,+) 𝑟𝑒𝑑

Exact:    4870 con.
1 bin. 

9.25 s 6.75 s 1.000 bits 0.999 bits
Approx: 3079 con. 

1 bin.

Resupply-2

𝜙∗ = □ &,() 𝑏𝑙𝑢𝑒
𝜙* = □ (,,(- 𝑦𝑒𝑙𝑙𝑜𝑤
𝜙+ = □ *+,*. 𝑔𝑟𝑒𝑒𝑛
𝜙/ = □ *&,+) 𝑟𝑒𝑑

Exact:    6980 con.
3 bin.

53.71 s 25.11 s 1.999 bits 1.999 bits
Approx: 3125 con. 

3 bin.

For both sets of specifications, each method maximizes the uncertainty of the adversary. 

Γ = 0.95, 𝛽 = 0.80.

• Agent must resupply a specific base at a 
specific time over the timespan of interest

• Consider two different sets of 
specifications – require the agent to visit 
different numbers of bases



Example – Patrolling a Perimeter
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Example Specifications 𝝓 Num. Vars. 
(Continuous, binary)

Sol. Time,
Exact

Sol. Time, 
approx.

𝑯𝝅 𝝓𝒄𝒂𝒏 ,
exact

𝑯𝝅 𝝓𝒄𝒂𝒏 ,
approx

Surveillance

𝜙∗ = □ (,() ⋄ ),. 𝑢𝑝𝑝𝑒𝑟 𝑙𝑒𝑓𝑡
𝜙* = □ (,() ⋄ ),. 𝑢𝑝𝑝𝑒𝑟 𝑟𝑖𝑔ℎ𝑡
𝜙+ = □ (,() ⋄ ),. 𝑙𝑜𝑤𝑒𝑟 𝑙𝑒𝑓𝑡
𝜙/ = □ (,() ⋄ ),. 𝑙𝑜𝑤𝑒𝑟 𝑟𝑖𝑔ℎ𝑡

Exact: 22209 con.
1 bin.

148.37 s 26.59 s 1.999 bits 1.999 bits
Approx:   617 con.

239 bin.

Even with a large number of binary variables (needed to utilize off-the-shelf solvers), the approximate 
solution method is quicker and performs as well as the exact solution method.

• One outpost is assumed to store critical information. 
Based on patrolling of agent, observer seeks to infer 
the outpost using agent’s probability of visiting

• Agent must repeatedly visit each outpost over 
time span, attempt to do so with equal probability 
for each



Summary
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Are they delivering 
supplies to the blue or 

the green base?

⋄[',)] 𝑏𝑙𝑢𝑒

Eventually, between the third and fifth time
steps, visit the blue base

• Considered the problem of minimizing the ability of an observer to predict the 
specification that an agent actually cares about completing

• Developed two algorithms, an exact and an approximate solution method to 
synthesize a policy for the agent
• Exact solution method gives exact satisfaction probabilities but can be cumbersome
• Approximate solution is quicker but may underreport the set of candidate specifications 


