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Motivation

Challenge: Autonomous generation of complex distributed cooperative
behaviors requires reasoning over very large combinatorial structures.

For example, in networks where comms are constrained by distance,
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Challenge: Autonomous generation of complex distributed cooperative
behaviors requires reasoning over very large combinatorial structures.

[they live happily ever after]

I Here, “very large combinatorial structure”=the space of all spanning trees
over a varying set of agents.



Motivation

Emerging requirements:

I A rich formal “substrate” for symbolic representations of task domains

 Do not treat tasks on a case-by-case basis

 Logic is not easily made mindful of geometry/topology

I Mitigate explosive complexities through combinatorial/topological analysis
of the underlying space of discrete structures

- Example: understandings about binary trees [AGK17] enabling efficient reactive

collision-free navigation [AGK16] using a covering obtained by hierarchical clustering

of configurations.

I More generally, underlying discrete structures must be mindful of
local-to-global interactions between task and constraints.

- Example: Erdmann [Erd10] constructs computable homotopy-theoretic invariants for

guaranteed arrival in finite probabilistic/non-deterministic transition systems.

 We strongly suspect that these are functorial, and generalize broadly
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Proposed Program

We seek a framework combining:

I differential inclusions (continuous dynamics)

I jump/reset relations (discontinuous/switched dynamics)

I sequential and parallel composition (concatenation/coupling)

I maps between hybrid systems (HS)

I trajectories as such maps



Proposed Program

We seek a framework combining:

I differential inclusions (continuous dynamics)

I jump/reset relations (discontinuous/switched dynamics)

I sequential and parallel composition (concatenation/coupling)

I maps between hybrid systems (HS)

I trajectories as such maps

These accentuate the need in a categorical framework, to enable
programming of behaviors using type-theoretic tools.



Proposed Program

“No Abstract Nonsense” Pledge. The proposed framework must enable the
operationalization of the following:

I refinement/coarsening arguments to identify behaviors/tasks

 Template–Anchor pairs [FK99, CGKS19]

 Other hierarchical compositions [RK18, Rev19b, Rev19a]

I stability arguments for formal guarantees of robustness

 The hybrid differential inclusions framework [GST09] is an example

I Computable invariants of task achievability

 Homological invariants à-la Erdmann?

I temporal tameness analysis (noZeno / goodZeno / badZeno & worse. . . )

 Generalized hybrid time domains / hybrid arcs

 Weaker topology on the space of hybrid arcs, à-la Conley
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with the categorical formulations of Culbertson et. al. [CGKS19] and
Lerman–Schmidt [LS20].
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Initial Goal: Fuse the Hybrid Differential Inclusions (HDI) framework [GST09]
with the categorical formulations of Culbertson et. al. [CGKS19] and
Lerman–Schmidt [LS20].

The Need: While comprehensive enough to provide general guarantees, HDI
does not provide a systematic toolkit for leveraging the topology/combinatorics
of large structured sets of continuous modes.

 A categorical viewpoint to further empower HDI in applications

Next Steps: Develop an instance dedicated specifically to distributed control
of mobile agent networks, using categorical descriptions for:

I Kruskal graph structure (edge exchages) on the space of spanning trees

I Other computationally accessible classes of graphs, e.g., chordal
graphs [CGS17]

I Parallel composition operations representing interactions among agent
coalitions.



Existing Categorical Frameworks

General mantra: “Hybrid System=Graph of Dynamical Systems”

I Ames [Ame06]:

- general “hybridization” construction for any category;
- applies to smooth dynamical systems (no composition).

I Haghverdi–Tabuada–Pappas [HTP05]:

- an open system version (both discrete and continuous control).
- weakened notion of equivalence: bisimulation.

I Lerman, Lerman–Schmidt [Ler18, LS20]:

- open systems as hybrid submersions;
- interconnections via hybrid submersions between products.

I Culbertson–Gustafson–Koditschek–Stiller [CGKS19]:

- hybrid semiconjugacies to construct template-anchor pairs;
- Sequential composition using weakened notion of trajectory.



Informal Tidbits: Compositions

Sequential composition may be thought of as a concatenation operator on
the trajectories of a pair of systems:

CGKS [CGKS19]: discuss difficulties with sequential composition of piecewise
smooth (hybrid) trajectories, establishing the need for coarse notions of (1)
hybrid trajectory and/or (2) hybrid time domains.



Informal Tidbits: Compositions

Parallel compositions.

I The simplest example is a decoupled Cartesian product of systems.

I In mobile agent networks, interconnection may be intermittent.

[While far apart, the two agent coalitions do not interact]

Ames [Ame06] and Lerman–Schmidt [LS20]: enable interconnections, but need
to be reconciled with HDI and sequential compositions.
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Informal Tidbits: Refinement/Coarsening

Refinement: Splitting and recombining continuous modes is useful:

I Time as a hybrid system, trajectories as maps of time into a state space.

 A central principle in all approaches

I Need generalized trajectories to support ill-behaved time sudivisions

 b/c mode-transitions are only allowed at jump times!



Informal Tidbits: Refinement/Coarsening

Coarsening: When is “projection” of a HS to the underlying discontinuous
structure more informative?

A B

A B C H

C

D E

F G

H

E

D

G

F

I Methods for bringing topology and hybrid structure into sync?

 This is precisely what happened to us in [AGK16]!



Informal Tidbits: Refinement/Coarsening

I Moving away from graphs as discrete models of hybrid structure? (a
“Conley decomposition”?)

Fixed points are two-dimensional simplices?

I Probabilistic aspects of hybrid structure? (Entropy??)

A

B C

Probability of arrival in B given A or given C?



Informal Tidbits: It’s About Time

I Generalized Hybrid Time Domains (HDT)?

A smooth “Cantor-themed” curve between two domains. . .

I Reformulate HDTs to facilitate trajectories of this form?

 MORE admissible solutions!

I Then we need to replace graphs-of-modes with covers-by-modes!

 Another vote in favor of replacing graphs with complexes?

 An opening into measure-theoretic machinery?



Thank You!
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