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Motivation and Approach

Common features in AFOSR applications:

I Variables changing continuously (e.g., physical quantities) and
discretely (e.g., logic variables, resetting timers).

I Abrupt changes in the dynamics (changes in the environment,

control decisions, communication events, or failures).

Driving Question:

How can we systematically design such systems featuring switching
and intermittency of information with provable robustness to

uncertainties arising in real-world environments?

Approach:
I Model continuous and discrete behavior using dynamical models

that are hybrid.
I Develop systematic control theoretical tools for stability,

invariance, safety, and temporal logic, with robustness.
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Hybrid Models Emerging in CoE Research

Switched Systems

ẋ = f�(t)(x)

�(t) 2 {1, 2, . . . }

Impulsive Systems

ẋ(t) = f(x(t))

x(t+) = g(x(t)) t 2 {t1, t2, . . . }

Di↵erential-Algebraic
Equations

ẋ = f(x,w)

0 = ⌘(x,w)

Hybrid Automata

ẋ = f1(x) ẋ = f2(x)

ẋ = f3(x)
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Hybrid Equations

A hybrid system H with state x 2 Rn, input u 2 Rm:

H

(
ẋ = FP (x, u) (x, u) 2 CP

x+ = GP (x, u) (x, u) 2 DP

I CP is the flow set

I FP is the flow map

I DP is the jump set

I GP is the jump map

Solution pairs parametrized by (t, j):

I t 2 [0,1), time elapsed during flows
I j 2 {0, 1, . . . }, number of jumps that have occurred

Domain of a solution pair (t, j) 7! (x(t, j), u(t, j)) of the form

([0, t1]⇥ {0}) [ ([t1, t2]⇥ {1}) [ . . . ,

where t1  t2  . . . are the jump times.
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Hybrid Equations

A hybrid system H with state x 2 Rn, input u 2 Rm:

H

(
ẋ 2 FP (x, u)

(x, u) 2 CP

x+ 2 GP (x, u)

(x, u) 2 DP

I CP is the flow set

I FP is the flow map

I DP is the jump set

I GP is the jump map

Solution pairs parametrized by (t, j):

I t 2 [0,1), time elapsed during

flows

I j 2 {0, 1, . . . }, number of jumps that have occurred

Domain of a solution pair (t, j) 7! (x(t, j), u(t, j)) of the form

([0, t1]⇥ {0}) [ ([t1, t2]⇥ {1}) [ . . . ,

where t1  t2  . . . are the jump times.
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x(t, j)
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t2t1 t3 = t4
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Synchronization Over a Network

Let the dynamics of each node of the network be

żi = Azi +Bui

Goal

Design a feedback controller assigning ui to drive the solutions to
synchronization using information received only at communication
event times. Namely, ensure

I lim
t!1

|zi(t)� zk(t)| = 0 for each i, k 2 V

I and Lyapunov stability of the set of points z such that

zi = zk 8i, k 2 V

Proposed Controller: Controller with state ⌘i assigns ui = ⌘i
8
><

>:

⌘̇i(t) = 0 when t /2 {t`}1`=1

⌘+i =
Ki

dini

X

k2Ji

(zi(t)� zk(t)) when t 2 {t`}1`=1

where Ji = {k : (i, k) 2 E} collects i-agent neighbors and dini is its in-degree.

Globally exponentially stabilize the set, denoted Async,
collecting all points such that

zi = zk

that is, render the “diagonal in z” set GES
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żi = Azi +Bui

Goal

Design a feedback controller assigning ui to drive the solutions to
synchronization using information received only at communication
event times. Namely, ensure

I lim
t!1

|zi(t)� zk(t)| = 0 for each i, k 2 V

I and Lyapunov stability of the set of points z such that

zi = zk 8i, k 2 V

Proposed Controller: Controller with state ⌘i assigns ui = ⌘i
8
><

>:

⌘̇i(t) = 0 when t /2 {t`}1`=1

⌘+i =
Ki

dini

X

k2Ji

(zi(t)� zk(t)) when t 2 {t`}1`=1

where Ji = {k : (i, k) 2 E} collects i-agent neighbors and dini is its in-degree.

Globally exponentially stabilize the set, denoted Async,
collecting all points such that

zi = zk

that is, render the “diagonal in z” set GES



Hybrid Control for Network Synchronization

Results with Sean Phillips

Now at AFRL/RV

synchronization4.mov
Media File (video/quicktime)



Outline of Recent Results

1. Optimization
I High Performance Optimization via Uniting Control

ACC19, MTNS20 (submitted), + CoE collab. (M. Hale)

I Model Predictive Control for Hybrid Systems
ACC 19, CDC 19, CDC 19 Workshop, ACC 20, CDC 20 (submitted),

IFAC WC 20 Workshop + Collab. AFRL/RV (Phillips & Petersen)

2. Tools to Satisfy High-level Specifications
I Solution-independent Conditions for Invariance and

Finite-time Attractivity Automatica 19, TAC 19, NAHS 20,

HSCC 20, CDC 20 (submitted) + Collab. NASA (Mavridou)

I (Necessary and Su�cient) Safety Certificates
HSCC 19, ACC 19, ACC 20, HSCC 20 + CoE collab. (Dixon)

3. Hybrid Control
I Global Robust Stabilization on Manifolds

Automatica 19, TAC 19, ACC 19

I Synchronization over Networks w/ Intermittent
Information Automatica 19, ACC 19, and ACC 20

4. Switched systems (and applications to ES)

Results developed with my PhD students M. Guarro, S. Phillips, Y. Li at UCSC, with Postdocs F. Ferrante

(now at Grenoble Alpes) and B. Altin, and R. Goebel (LUC)



What is Model Predictive Control
(MPC)?
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Background
“Hybrid”, in the context of MPC:

I Mixed logical dynamical systems

I Continuous- and discrete-valued states

I Discontinuities in the plant dynamics

I Switching or sampled-data implementation

[El-Farra ea 05], [Mayne 14], [Camacho ea 10], [Borrelli ea 17], [Sanfelice 19]

P
C2

C1

S

q

v

l

ıl

d

rc

vc

I MPC for switching systems [Müller et al., 2012]

I MPC for linear impulsive systems [Sopasakis et al., 2015]

I Measure-driven for impulsive systems [Pereira et al., 2015]



Contributions

Su�cient conditions for

I recursive feasibility,

I asymptotic stability of closed sets,

that allow for consecutive jumps and Zeno solutions, without

I discretizing the continuous-time dynamics,

I partitioning the state into continuous/discrete-valued
components.

An MPC scheme applicable to various hybrid modeling paradigms,
theoretical foundations of a general hybrid MPC framework.
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Outline

I Modeling Hybrid Systems

I Outline of Model Predictive Control

I Hybrid MPC: The General Case
I Hybrid Optimal Control

I The Prediction Horizon

I Basic Assumptions and Results

I Hybrid MPC: Persistent Flows or Jumps

I Numerical Solutions
I Hybrid System Simulators

I Hybrid Optimal Control via Discretization

I Conclusion



The Cost Functional

Given an initial condition x0, find (x, u) minimizing

J (x, u) :=

Cost-to-flowz }| {
JX

j=0

Z tj+1

tj

Lc(x(t, j), u(t, j)) dt

+
J�1X

j=0

Ld(x(tj+1, j), u(tj+1, j))

| {z }
Cost-to-jump

+ V (x(T, J))| {z }
Terminal cost

subject to

I (T, J) 2 T , given the prediction horizon T ,

I x(T, J) 2 X, given the terminal constraint set X.
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Hybrid Optimal Control Problem

Problem (?)

Given an initial condition x0,

minimize
(x,u)2SHP

(x0)
J (x, u)

subject to (T, J) 2 T

x(T, J) 2 X,

where (T, J) is the terminal time of (x, u).

I The feasible set X , set of all x0 with
feasible (x, u) 2 SHP (x0).

I The value function J
⇤ : X ! R�0, defined as

J
⇤(x0) := inf

(x,u)2SHP
(x0)

(T,J)2T
x(T,J)2X

J (x, u) 8x0 2 X .
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Main Elements of Hybrid MPC

Given

1. hybrid system HP with data (CP , FP , DP , GP )

2. closed set A ⇢ Rn to stabilize

find

1. flow cost Lc (positive definite)

2. jump cost Ld (positive definite)

3. terminal cost V (CLF)

4. terminal constraint set X (forward invariant)

5. prediction horizon T (“reverse” hybrid time domain)
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Main Elements of Hybrid MPC

Given

1. hybrid system HP with data (CP , FP , DP , GP )

2. closed set A ⇢ Rn to stabilize

find

1. flow cost Lc (positive definite)

2. jump cost Ld (positive definite)

3. terminal cost V (CLF)

4. terminal constraint set X (forward invariant)

5. prediction horizon T (“reverse” hybrid time domain)
...and ensure 9 a locally stabilizing feedback controllers c and d
relating 1.-4.



Roadmap

Closed-Loop Asymptotic Stability

To certify asymptotic stability of A, use the value function

J
⇤(x0) := inf

(x,u)2SHP
(x0)

(T,J)2T
x(T,J)2X

J (x, u) 8x0 2 X ,

as a Lyapunov function on the feasible set X .

Need to verify

I recursive feasibility (start in the feasible set X , stay in X )

I positive definiteness (↵1(|x0|A)  J
⇤(x0)  ↵2(|x0|A))

I descent along optimal solution pairs

(J ⇤(x(s, i)) < J
⇤(x(t, j)) if s > t or i > j)
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Example: MPC for the Bouncing Ball

(
(ẋ1, ẋ2) = (x2,��) x1 � 0

(x+1 , x
+
2 ) = (0,��x2 + u) x1 = 0 and x2  0, u � 0

x1

ẋ2 = ��

x+2 = ��x2 + u

Control Objective

Reach height h after each impact, i.e., stabilize

A = {x : x1 � 0,W (x) = �h},

where W (x) = �x1 +
x2
2
2 is the total energy function.

(Cost functions derived from the energy W (x).)
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Selecting the Prediction Horizon T

(
(ẋ1, ẋ2) = (x2,��) x1 � 0

(x+1 , x
+
2 ) = (0,��x2 + u) x1 = 0 and x2  0, u � 0

x1

ẋ2 = ��

x+2 = ��x2 + u

Suppose T = {(T, J)}, stabilize the ball to rest (the origin):

1. Flows not possible from the origin =) T = 0.

2. If T = 0 and J > 0, trajectories that only jump are predicted.

3. From initial conditions x1 > 0 or x2 > 0, only flows are
possible.

4. This leads to (T, J) = (0, 0), which means no prediction!
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Free End-Time Optimal Control

t
0

1
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3

4

j

Assumption 1 (prediction horizon)

There exist t0 � t1 � . . . tJ+1 = 0 s.t.

T :=
J[

j=0

([tj+1, tj ]⇥ {j}) ,

where t1 > 0 and J � 1.



Example Implementation

I “Predict for 4 seconds and/or 4 jumps.”

T = {(T, J) : max{T, J} = 4}.

I “Apply optimal control for 2 seconds and/or 2 jumps.”

bT = {(T, J) : max{T, J} = 2}.

Predict for 4 seconds Apply for 2 jumps

Predict for 4 seconds Apply for 2 seconds
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Example Implementation

Predict for 4 seconds
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Sample-and-Hold MPC in the Hybrid Setting

Embed a ZOH state ⌘, updated by the input u:
8
>>>>>>><

>>>>>>>:

2

4
ż
⌧̇s
⌘̇

3

5 =

2

4
Az +B⌘

�1
0

3

5 if ⌧s 2 [0, Ts]

2

4
z+

⌧+s
⌘+

3

5 =

2

4
z
Ts

u

3

5 if ⌧s = 0

Minimize

J (x, u) :=
JX

j=0

Z tj+1

tj

⇣
x>(t, j)Qcx(t, j) + u>(t, j)Rcu(t, j)

⌘
dt

+
J�1X

j=0

x>(tj+1, j)Qdx(tj+1, j) + u>(tj+1, j)Rduj+1(t, j)

+ x>(T, J)Px(T, J).

Qc = Rc = 0 recovers discrete-time MPC!
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Basic Conditions for Hybrid MPC

Assumption 2 (basic conditions)

Given the closed set A ⇢ X,

I there exist class-K1 functions ↵c and ↵d s.t.

Lc(x, u) � ↵c(|x|A) 8(x, u) 2 CP ,

Ld(x, u) � ↵d(|x|A) 8(x, u) 2 DP ,

I there exists class-K1 functions ↵1, ↵2 s.t.

↵1(|x|A)  V (x)  ↵2(|x|A) 8x 2 X,
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Positive definiteness properties mirroring those in
continuous/discrete-time MPC.
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Projx is the projection onto x component; Projx(x, u) = x.
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Basic Conditions for Hybrid MPC

Assumption 2 (basic conditions)

I there exists � > 0 and a continuous � s.t.

|FP (x, u)|  � (|x|
A
) 8(x, u) 2 CP : |x|

A
 �.

Holds with FP continuous, A compact, and CP = C 0
⇥ Uc for

compact Uc (typical continuous-time MPC assumption).



Stabilizing Ingredients for Hybrid MPC

HP

(
ẋ = FP (x, u) (x, u) 2 CP

x+ = GP (x, u) (x, u) 2 DP

Assumption 3 (CLF)

There exists a feedback  = (c,d) s.t.

V̇ (x)
z }| {
hrV (x), FP (x,c(x))i  �Lc(x,c(x)) 8x 2 X \ C,

V (GP (x,d(x)))� V (x)| {z }
�V (x)

 �Ld(x,d(x)) 8x 2 X \D,

and the terminal constraint set X is forward invariant for H.

(C, set of x s.t. (x,c(x)) 2 CP ; D...)
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1. Control Lyapunov functions at 1:00 by R.G. Sanfelice; [Sanfelice,

TAC 2013]

2. Notions of forward invariance at 1:30 by M. Maghenem; [Chai

and Sanfelice, TAC 2019]

3. Barrier functions at 1:30 by M. Maghenem; [Maghenem and

Sanfelice, ACC 2019]

(see also Goebel, Sanfelice, and Teel, PUP 2012)
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Proposition (Feasibility)

The feasible set X is forward invariant under hybrid MPC, provided

the prediction horizon and CLF assumptions hold. Moreover, the

terminal constraint set X is contained in X ; i.e. X ⇢ X .

DC

X



The Value Function J
⇤

Proposition (Lyapunov Function Candidate)

Under the main assumptions, J
⇤
satisfies the following:

I (Continuity) There exists a class-K1 function ↵2 s.t.

J
⇤(x)  V (x)  ↵2(|x|A) 8x 2 X ⇢ X .

I (Positive Definiteness) There exists a continuous positive

definite function � s.t. lim infr!1 �(r) > 0 and

J
⇤(x) � �(|x|

A
) 8x 2 X .

I J
⇤(x)  V (x) via the CLF inequalities.

I Positive definiteness from |FP (x, u)|  � (|x|
A
).
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J
⇤ as a Stability Certificate

Proposition (Lyapunov Descent)

Under the main assumptions, for any optimal (x, u),

J
⇤(x(t, j))  J

⇤(x(0, 0))

�

 
jX

i=0

Z si+1

si

↵c(|x(s, i)|A) ds+
j�1X

i=0

↵d(|x(si+1, i)|A)

!
,

where s1, . . . , sj are the jump times and sj+1 = t.



Asymptotic Stability

Asymptotic stability of A is certified by the value function J
⇤,

which is a Lyapunov function for the hybrid closed-loop system

Theorem (Asymptotic Stability Induced by Hybrid MPC)

Under the main assumptions, the following hold:

I (Existence) There exists µ > 0 s.t. closed-loop solution pairs can

be generated from every x0 2 Projx(CP [DP ) with |x0|A  µ.
I (Stability) For all " > 0, there exists � > 0 s.t. for every

closed-loop solution pair (x, u),

|x(0, 0)|
A
 � =) |x(t, j)|

A
 " 8(t, j) 2 domx.

I (Attractivity) Every maximal closed-loop solution pair (x, u)
satisfies

lim
t+j!1

|x(t, j)|
A
= 0.
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Summary:
I Overview of Recent Results

I Introduction to hybrid MPC

I Optimal Control Problem

I Outline of Su�cient Conditions

Next steps:

I Estimation

I Reachability

I Approximations

I Robustness

References at hybrid.soe.ucsc.edu

Acknowledgments: Partially supported by NSF, AFOSR,

AFRL and by CITRIS and the Banatao Institute at the

University of California

IEEE 2009 Princeton U. Press

2012

Princeton U. Press
2020


	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	1.38: 
	1.39: 
	anm1: 


