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Introduction

• Existing literature only obtains UUB stability for slowly-
varying parametric uncertainty

• Difficult to achieve asymptotic tracking because the time-
derivative of parameter acts like an unknown exogenous 
disturbance in the parameter estimation dynamics

• Proposed method utilizes a RISE-like update law which 
compensates for potentially destabilizing terms arising due to 
time-varying nature of parameters

• Asymptotic tracking result is achieved via a Lyapunov-based 
design/analysis methods



Dynamic Model

• Consider a control-affine system

• Function             can be linearly parameterized as

• Treating 𝑑 𝑡 as a parameter, the system can be re-
parameterized as

where                                and  



Control Objective

• Tracking error                             , where   

• Assumption 1

• Assumption 2

• Define filtered tracking error 

which yields



Control Design

• Control input is designed as

which yields 

Taking time derivative yields



Adaptation Law

• The update law is designed as

where 

where    is a continuously differentiable convex 
function



Adaptation Law

• The continuous auxiliary term     acts as a stabilizing 
term to cancel the side-effects of projection, and is 
designed as a solution to

where

The closed loop dynamics for both cases



Stability Analysis

• Theorem 1. The designed controller and adaptation 
law ensure that the tracking error                      as

, provided that the gain condition

is satisfied.

• Proof :  Consider the candidate Lyapunov function

where 



Stability Analysis

where 𝑃(𝑡) is a generalized solution to

For the closed-loop error system, the Lyapunov derivative

Using LaSalle-Yoshizawa Theorem for non-smooth 
systems (RT1) yields semi-global asymptotic stability.  

Future work: 
Improve parameter estimation 
extension to NN and system identification
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Barrier Function Questions

• Use model-based RL (Actor-Critic (AC) or AC-Identifier) to develop 
approximate solution to HJB equation (approximate optimal control)

• Advances in Bellman Error (BE) extrapolation for simulation of 
experience to achieve Exploration AND Exploitation for very fast 
learning

• Sparse learning allows for mixed density of basis functions and 
eliminates relearning of entire set of weights

• Barrier functions are known to provide state constraints for “safety”

• How is BE extrapolation performed? How are off-trajectory points 
selected? Which states need to be transformed? Are points defined pre-
or post- barrier state transform? Can sparse Bellman error extrapolation 
be used? Switching extrapolation stacks?

• Open problems

• Since the barrier function makes the dynamics more complex, is the rate 
of learning affected? How does sparsity affect the computational power 
required? Zeroing Barrier Functions?



Barrier Functions

Barrier Function• Logarithmic Barrier Function

• Cost After Barrier Function• Cost Before Barrier Function



Theorem

Theorem Given x ȁt t=0 ∈ a, A , using the class of dynamics ሶs = F s +
G s u, and provided a sufficient number of BE extrapolation points are 
chosen and gains are selected according to sufficient conditions, then the 

system state s(t), weight estimation errors ෩Wc t and ෩Wa t , and policy u(t)
are uniformly ultimately bounded. 

• From x = f−1 a, A, s , x converges to a neighborhood of the origin, and 

hence, the optimal policy is approximated.
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Simulation Video

Simulation Video
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Dynamic Model

Mode 1, 
Unaltered Model

Mode 2, Altered 
Model

Mode 3, Altered 
Model

Switched System ADP16

• F-16 longitudinal dynamics 

• [Stevens, Lewis, Johnson, 2016]

• x1 is Angle of Attack
• x2 is Pitch
• x3 is Pitch Rate
• u is the change in thrust around the linearized point 

• The control objective is to get to level flight (x2=0)



Switched System ADP17

• Switched System ADP
• Preliminary Simulation Results

• Switch between multiple 
dynamical systems
• Arbitrary switching sequence

• Satisfies minimum dwell-time 
condition

• Switching Sequence
• {1,2,3,1,3,2}



Switched System ADP

Switched ADP
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Switched System ADP

Switched ADP
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