Preserving Privacy in Human-Machine and Agent Interaction

Kevin Butler

- Topics:
 - Privacy-preserving eye-tracking (IEEE TVCG/VR'21)
 - Privacy for ROS (early work in progress)
- Collaborators (UF unless otherwise noted):
 - Brendan David-John, Diane Hofstedt (Mozilla), Eakta Jain, Washington Garcia, Aaditya Prakash

- Current state of deployed UASs currently involve significant human interaction (<=L3 autonomy)
- Autonomous systems will potentially learn from simulation data informed by human interaction
- Augmented reality (AR) systems can assist near-term operations while virtual reality (VR) simulators are standard for training
- What risks to privacy are incurred in these systems?

Eye Tracking Overview

- Establish a framework for streaming eye-tracking data to support mixed reality applications while mitigating risks given a threat model.
- Scenario 1: Applications that require aggregate/event-level data
 - Threat: Sample-level data
 - Solution: Gatekeeper API
- Scenario 2: Applications that require sample-level data
 - Threat: Biometric Identification by Colluding Apps
 - Solution: Privacy Mechanisms

uke

- Consider privacy mechanism data as a time series, tuple comprises gaze positions (x,y) and event label for *G* gaze position $e: X = \{(x_1, y_1, t_1, e_1), ...(x_G, y_G, t_G, e_G)\}$
- Additive Gaussian noise: independently sample from Gaussian distribution for horizontal and vertical gaze position $X' = \{(x_1+N(0,\sigma), y_1+N(0,\sigma), t_1, e_1), ..., (x_G+N(0,\sigma), y_G+N(0,\sigma), t_G, e_G)\}$
 - Temporal downsampling: reduce temporal resolution of eyetracking data stream by reducing sampling rate by scaling parameter k: $X' = \{(x_{(K \cdot p)+1}, y_{(K \cdot p)+1}, t_{(K \cdot p)+1}, e_{(K \cdot p)+1}), ...\}$
 - Spatial downsampling: divide scene into equirectangular domain and parameterize into steps s.t. gaze positions compute as $(\lfloor \frac{x}{\delta_x} \rfloor \cdot \delta_x, \lfloor \frac{y}{\delta_y} \rfloor \cdot \delta_y, t)$

New Dataset

Datasets:

- ET-DK2 (360° Images)
 - 19 Individuals, 50 Stimuli
- VR-Saliency (360° Images)
 - 130 Individuals, 8 Stimuli
- VR-EyeTracking (360° Images)
 - 43 Individuals, 148 Stimuli
- 360_em (360° Images)
 - 13 Individuals, 14 Stimuli
- DGaze (3D Rendered Scenes)
 - 43 Individuals, 2 Stimuli

Mechanisms:

- Additive Gaussian Noise
- Temporal Downsample
- Spatial Downsample

Metric:

Identification Rate

Stimuli Correctly Predicted
Total # of Stimuli in Test Set

- Radial Basis Function networks for classifying fixation and saccade events
 - Analogous to neural network with input layer representing feature vector $\vec{x} \in \mathbb{R}^p$ with p fixations/saccade features, activation function $\phi_i(\vec{x})$ and real-valued activation weights $w_{i,c}$, where $i \in [1, 2, ..., m]$ and $j \in [1, 2, ..., C]$
 - Class similarity score $Score_c(\vec{x}) = \sum_{i=1}^m w_{i,c} \cdot \phi_i(\vec{x})$
 - Hidden node activation function $\phi_i(\vec{x}) = e^{-\beta_i ||\vec{x} \vec{\mu}_i||^2}$
 - K-means clustering on training set to determine representative feature vectors
 - Activation weights trained by using Moore-Penrose inverse when setting up network as linear system (gradient descent also possible)

Results

Duke

- A Gatekeeper model can be used to protect biometric features in gaze data streams for many applications.
- Standalone privacy mechanisms can be applied for applications when sample-level data is needed.
- **Takeaway:** Privacy-preserving frameworks are necessary to address threats to privacy from behavioral data in mixed reality.

Summary

- How to ensure that data communicated by autonomous agents stays secure and private?
- Communication privacy:
 - TLS
 - Differential privacy
 - Private Information Retrieval
 - ORAM
- Computation privacy:
 - TĒEs
 - FHE
 - SMC
 - Two-party (garbled circuits)
 - >2 parties (shared secrets)

- Allow joint computation of a function without revealing input from either party
- Cryptographically secured through the use of *garbled* Boolean circuits and *oblivious transfer* of data from circuit generator to evaluator

- Generator sends evaluator the input wire keys
- 1-of-2 oblivious transfer for each input wire $k_0 = (v x_0)^d \mod N, k_1 = (v x_1)^d \mod N$
- Evaluator decrypts output gates $E_{k_{r,*}}(E_{k_{l,*}}(k_{v_{bit_l},bit_r}))$
 - $k_{l,*}$ and $k_{r,*}$ are keys the evaluator has
 - $k_{v_{bit_l,bit_r}}$ is the garbled truth table entry selected by the point and permute bits bit_l and bit_r

- Validated garbled circuit compiler, along with the Battleship semi-honest interpreter environment
- Used standard compiler practices
 - Validation testing
 - Proper data structures, e.g., AST
 - Created a formal description of how operations should function
 Input
 Analysis and Transformation
 Output

- Little in the way of existing solutions for privacypreserving computing on ROS
- Privaros (Beck et al., CCS'20)
 - Privacy-preserving policy enforcement for drones
 - Relies on system security mechanisms: mandatory access controls on OS for inter-app communication and TrustZone TEE for attesting the SW stack
 SW stack
 - Computation of data not performed in oblivious fashion

ROS publish/subscribe model (Beck et al.)

(1) Every application on ROS links against the library. The dotted lines show the process boundary. An application registers its topics via the ROS library; (2) A decentralized protocol discovers and identifies applications with matching topics; (3) ROS sets up socket communication via the underlying OS for the applications.

UF FLORID

Approach: SMC on ROS

- Use Frigate compiler to generate circuits and Battleship interpreter (currently considering the semi-honest adversary model)
- Developed Pythonbased ROS agent for converting GC data into pub/sub data model suitable for ROS messages
- Early feasibility results currently underway

- Security analysis of oblivious transfer in ROS
- Increase complexity of garbled circuit evaluation (e.g., privacy-preserving direction finding)
- Update efficiency of GC mechanisms and consider nparty sharing
- Dive into FHE (incoming student)
- ROS Fuzzing
 - Examine new techniques from the fuzzing community and whether they provide a new assessment of ROS2 security

