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O Review of the problem

O Proposed control strategies

O Progress on the D3 CubeSat mission

O Proposed approach to address next challenges
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-‘%"\w/, Problem Review

dSpace situational awareness

U Drag-based targeted point re-entry
U D3 CubeSat mission, scheduled for launch in late 2021

dSpacecraft control using environmental forces/torques

U Drag-based relative orbit maneuvering for formation flying
U Aerodynamic and gravity gradient-based Attitude control
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ag Maneuvering Device DMD

The drag maneuvering device enables the
CubeSat with modulation of these forces
and torques. However, computing their
exact value is difficult:

* DMD modifies CoM location R;.

* DMD modifies inertia matrix J.

* Density pis very difficult to accurately
predict.

* Drag/lift coeff. Cp,C; are difficult to
compute accurately.




d;\w/} Relative Maneuvering

URelative maneuvering scenario

[ One target and multiple chasers

TAXT 0 1 0 O0][Ax]
Ay| _|b 0 0 af|dy Relative motion between the
| AX 0 0 0 1]||4x target and a chaser
Ayl 10 —a 0 0ll4y]
—— . ——
X A X

i: it chaser
t: target
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\/, Relative Maneuvering

AWe designed an adaptive controller to perform drag-based
relative maneuvers

uy =Y0O 0O € R contains p, Cp for target and chaser, could contain m; as well
_— E)Sr

Y8 £ pi(1)ChIV i)~ p OV P

7= Si <—— Cross-sectional area of the chaser
m; <—— Mass of the chaser
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® = proj (2FYTBTPTX> «— Updates the Estimate of uncertain parameters

Asymptotic stability guaranteed by Lyapunov analysis, proof in:
C. Riano-Rios, R. Bevilacqua, W. E. Dixon, “Differential Drag-Based Multiple Spacecraft Maneuvering and On-Line
Parameter Estimation Using Integral Concurrent Learning”, Vol. 174, pp. 189-203, Acta Astronautica, 2020
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Relative Maneuvering

O Modified adaptive update law to incorporate on-line parameter identification through
Integral Concurrent Learning (ICL)
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\/’, Attitude Control

ke

All altered by moving the drag surfaces

Q GOAL: Vary “Ls” such that the spacecraft orientation follows a desired trajectory w.r.t the inertial frame.

O Auxiliary state:
r=w+ae,
a

X
@ € R3 angular e, € R3 is the vector
velocity relative to the portion of error
desired attitude guaternion

trajectory

P 3
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Attitude Control
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This term contains only uncertain
guantities and measurable states
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-d%"\wj, Attitude Control

3G My
| Rc||?

x ‘X = . .
— W m& I J'm(f‘-/ Rwd — ']771Rwd = Jmﬁev

f = TD T TL 1 R JmR me

f=YO— 0c¢€ R®> contains uncertain parameters (CoM, p,Cp,Cy)

> Y € R3%%> js measurable and contains the boom lengths L's,
Which are the actual control inputs

O We designed an adaptive controller to track the desired attitude trajectory

This is the torgue we can generate

This is the torgue we design
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-d%"\wj, Attitude Control

X L5 — s cR3 - Want to make this as small as possible by
d changing s

Hard to solve for L's analytically, then:

rrLl,in llx|l subject to {O <Lj<37m, j=1234
S

Any numerical algorithm has residual error, then assume:
x|l < ¢, ¢; € Ry is a known constant

L MATLAB’s fmincon was used in simulation to solve for L's every 30 seconds

O Globally Uniformly Ultimately Bounded (GUUB) result is guaranteed by Lyapunov analysis,
proof in:

C. Riano-Rios, R. Sun, R. Bevilacqua, W. E. Dixon, “Aerodynamic and Gravity Gradient based Attitude Control for CubeSats
in the presence of Environmental and Spacecraft Uncertainties,” Vol. 180, pp. 439-450, Acta Astronautica, 2021
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-d%"\wj, Attitude Control

Under some additional assumptions, such as:
e Accurate models for CoM location and inertia matrix J
* Compensation for average of the product: pCp

ICL could also be implemented in the attitude control problem

' x107"
© = proj| T Y7 + TicLkict — Estimated parameter
' 1.2 —— NRLMSISEO0 model (Mean)
— 1 |
% 0.8 |
Collect input — output data 3
gg 06 |
04 |
Having redundant ICL-derived information about 0.2 Hmw
p and Cp may be possible using different 0
portions of the spacecraft dynamics! 0 2 4 6 8 10
Time [h]
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Assumes that the spacecraft are
attitude stabilized

Provides the required total cross-
sectional area

and DMD lengths .

Relative maneuvering control law:

* |tis afunction of the S/C attitude
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Roto-translational control

Attitude control law:

Does not care about the resulting
orbital trajectory

“ Provides the required torques.

Coupled

* Depending on how these torques
are generated with the DMD, the
total cross-sectional area gets

modified.
TEXAS &%)




Jg.\w/ , Roto-translational control

Proposed approach
* Incorporate additional constraint to the numerical algorithm that solves for Ls

' uU—1u 2
o, min  Waeelltt — gl + Wory (S — Sa)”}

subject to {0 <Lj<37m j=1,234

Sy: cross-sectional area, function of attitude states and L's
u: applied torque, function of attitude/orbit states and L’s
Subscript “d” indicates the desired values, provided by the corresponding control laws

W, and W, are user-defined weights used to prioritize between attitude and orbit
controllers.
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Jg.\w/' , Roto-translational control

Simulation:

* Proposed maneuver: spacecraft are deployed simultaneously; the chaser is tasked
to perform an along-orbit formation with 4km separation w.r.t. the target.

* Both spacecraft are tasked to achieve a desired constant orientation w.r.t. the
orbital frame.
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Jg.\w/' , Roto-translational control

i+ 1000 Sims.
v —8deg 80%
?L'f —25 deg 70%
|_ —
b,
0 60
Time [h]
Due to the use of aerodynamic forces,
and the location of the center of
§ pressure, attitude can be effectively
e T controlled inside a cone.
O =
=
S

Frequent comment: Influence on the
flexible appendages?
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Time [h]
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\/’, D3 CubeSat

D3: Drag De-orbit Device, now called Drag Maneuvering Device (DMD)

Main mission:
* proof of concept for the deployable surfaces
* Validate a drag-based targeted point re-entry algorithm by modulating the device

Passive attitude stabilization: keep
roll, pitch and yaw bounded (+/- 20
deg) with drag and gravity gradient
torque.

Test deployer design and
performance.
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Self-locking push on retainer for
axial movement urethane roller

Flywheel to encoder
securing method

Locknuts for axial
movement watermelon
roller

42mm steel spacers
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\/ , D3 CubeSat

Surfaces are 3.7 m long.

Surfaces manually bent to add stiffness Natural frequencies and
damping ratios are difficult
to accurately compute due
to the manual process,
potential effects of the

launch, etc.

How can we evaluate
the effect of the applied
torques on these flexible

appendages?
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\/ Flexible Body
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O Current approach: Compare FFT VS Vibration modes obtained with SolidWorks

X 10 Mode 1 Mode2  Mode 3 Mode 4 Mode 5
0.1396 Hz 0.1624 Hz 0.2310Hz 0.4040 Hz 0.6597 Hz

—131 Component
——by Component
by Component
0 LI",K '
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L Can we do better? Incorporate influence of flexible bodies into the attitude dynamics.

for a standard spacecraft:
1n: modal coordinates

Jo +61h = —w* (Jw + 5T7'7) +u  §: coupling matrix (constant)
C: Damping matrix (constant)
K: Stiffness matrix (constant)
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‘”\jJ Flexible Body
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1: modal coordinates

Jo + 6T,'-7- _ X (Jw + (5T,,-?) +u 6: coupling matrix (constant)
C: Damping matrix (diagonal, constant)

n+Cn+Kn=—ow, K: Stiffness matrix (diagonal, constant)

( Control objective: Attitude tracking (i.e. ||ey ]|, |[|w]] = 0 as t — o)
O Since C and K are difficult to compute, can we estimate their real values using ICL?

O Proposed approach: Design an ICL-based adaptive controller for attitude tracking and
online estimation of C and K:

Error quaternion e
and relative
angular velocity @

desired attitude:

qq and wy

O Auxiliary state: 7 20+ e,
d Open-loop error system:

T : W (Jw + 0T +u = Ty (Réovy — " Rwg — aé, )

o



,g\/’, Flexible Body

Q Define: YO =41 (Cn+ Kn)
Q Design:  w = J,, (Réa — @ Rwa — aé, ) +w* (Jw +71) - YO - K7 — e,

and

. M e
é £ pl"Oj (PYTT + FKIOL ny (Jm (T’(t) — T"(t — At)) —Z/{i — y@@))

1=1

UAL ) 2 /t N (o) ~w(0) (Juw(o) +677(0)) +

— Jm (E(U)djd(a) — &% (0)R(0)wqlo) — aév(a)) }do
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-‘%"\w/ , Flexible Body

O Assumption: Finite excitation condition is satisfied after t =T, 1 is positive user-
defined constant. M
mzn{

ZJ&TJ&} >\

1=1

O Stability result (preliminary): GUUB.

QFort<T,y=[r" el]’

Aolly(0)[]7+&2 §2 — &1
||y||2§( N )exp(—)\—zt) "

Q Aftert =T, z=[rT el @T]T

||zH2S )\5||Z(0)H2—|—£Qexp (ET> exp (—ﬁt) n 54 — 63
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Next:

* Incorporate of flexible
appendages into the DMD-
equipped CubeSat dynamics.

* Evaluate performance of the
designed controller.

* Try to relax the requirement
of  and its time derivative
being measurable.
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'_%,\w/ ’ Conclusion

d We have demonstrated in simulation the performance of a roto-translational
adaptive controller using environmental forces and torques for DMD-equipped
CubeSats.

1 The D3 CubeSat will validate the design of the retractable deployers and the
performance of the “dart” configuration for passive attitude stabilization and
modulation of the drag acceleration.

O Preliminary design of an adaptive attitude controller that estimates the
damping and stiffness parameters associated with the spacecraft modes has
shown potential for its future improvement and implementation into the
DMD-equipped CubeSat problem
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