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How can we design online algorithms with high probability guarantees for varying tasks?

lynda.com NASA



Online Learning with Implicit Exploration for Varying Tasks

Ghasemi, Hashemi, Vikalo, Topcu 4

Play an action

Reward 
estimator 

Online mirror 
descent (OMD)

Policy update

Limited, time-
varying feedback

Estimated 
reward

Occupancy measureNew policy

NASA

Feng et al., 2020



Online Learning with Implicit Exploration for Varying Tasks

Ghasemi, Hashemi, Vikalo, Topcu 4

Contributions:

• A novel optimistically-biased reward estimator for implicit exploration

• Policy search using online mirror descent (OMD)

• Minimax optimal regret bound with high probability
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Loop-free episodic A-MDP:
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• Transition only exists from one layer to the next
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Looking for a time-varying stochastic policy

Occupancy measure: the probability induced over state-action pairs by executing a policy

Stochastic stationary policy given an occupancy measure
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task t
episode t

(state, action)

(loss)

Unknown and time-varying loss 
function (A-MDP)

Bandit feedback

Learn a policy with sublinear regret:

Question: Can we obtain low regret with high probability?

best fixed policy 
in hindsight
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Estimating the loss of all state-action pairsBandit feedback

Goal: Obtain a low-variance loss estimator

A novel optimistically biased estimator for the loss function:

exploration parameter

history at current episode 

Implicit exploration
Optimistically biased
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Goal: Compute a new policy from the estimated loss function

Two-step procedureConstrained optimization

policy changeloss

An OMD algorithm utilizing the proposed loss estimator:
learning rate unnormalized KL divergence
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Result: Establishing sublinear regret bounds both on expectation and with high-probability

Theorem: (high-probability regret bound)

Let                . If

with probability at least         , 

episode length
number of episodes number of states number of actions

Minimax optimal regret (up to logarithmic terms)
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Theorem: (high-probability regret bound for uniformly ergodic A-MDP)

Let                . With probability at least         , 

mixing timetime horizon number of states number of actions

Uniform ergodicity: For every policy over the MDP, the convergence rate of state 
distributions to a unique stationary distribution is exponentially fast.
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• Studied the problem of learning unknown and varying tasks in adversarial environments

• Proposed an online learning framework that achieves a minimax optimal regret bound 
with high probability

• Extended our framework to the class of general A-MDPs

Future Directions

• Structure-aware and game-theoretic online learning 

• Parameter-free and anytime algorithms

• Unknown, time-varying dynamics and large-scale state spaces
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