

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

Online Policy Learning for Unknown and Varying Tasks in Adversarial Environments

Mahsa Ghasemi, Abolfazl Hashemi, Haris Vikalo, Ufuk Topcu

CoE Review

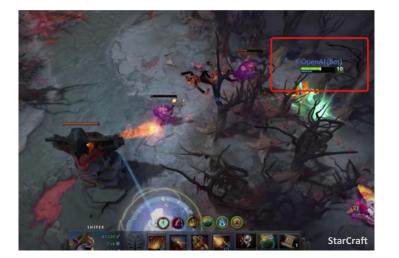
April 30th, 2021

Sequential Interaction with the environment

Depend (b) Depend

Sequential Interaction with the environment

Learning from a fixed reward



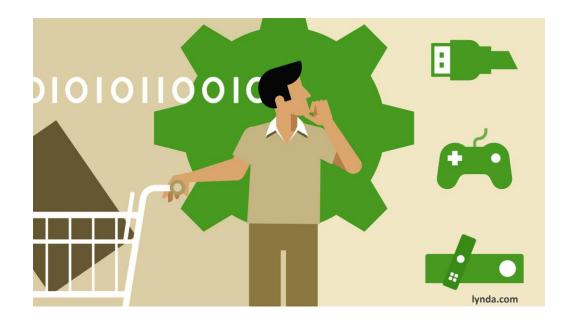
KUKA

KUKA

Sequential Interaction with the environment

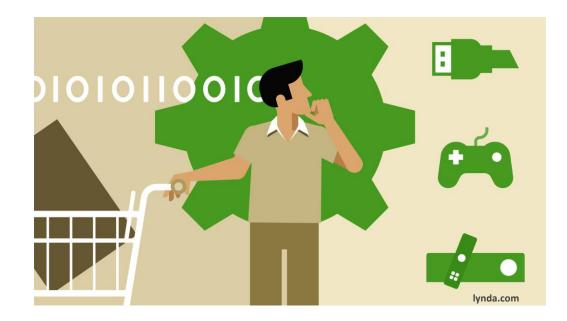
Learning from a fixed reward

000



Evolving environment and task

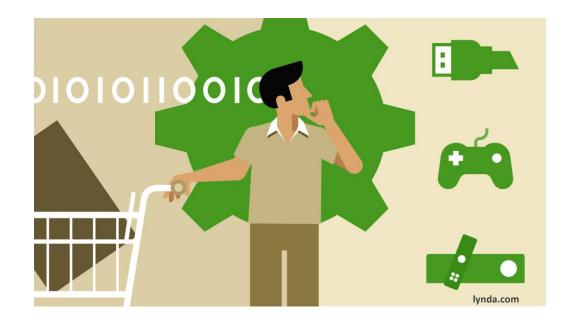
Ghasemi, Hashemi, Vikalo, Topcu





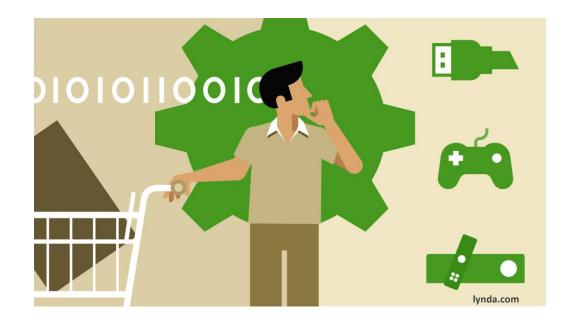
Evolving environment and task Safety-critical operation

Ghasemi, Hashemi, Vikalo, Topcu



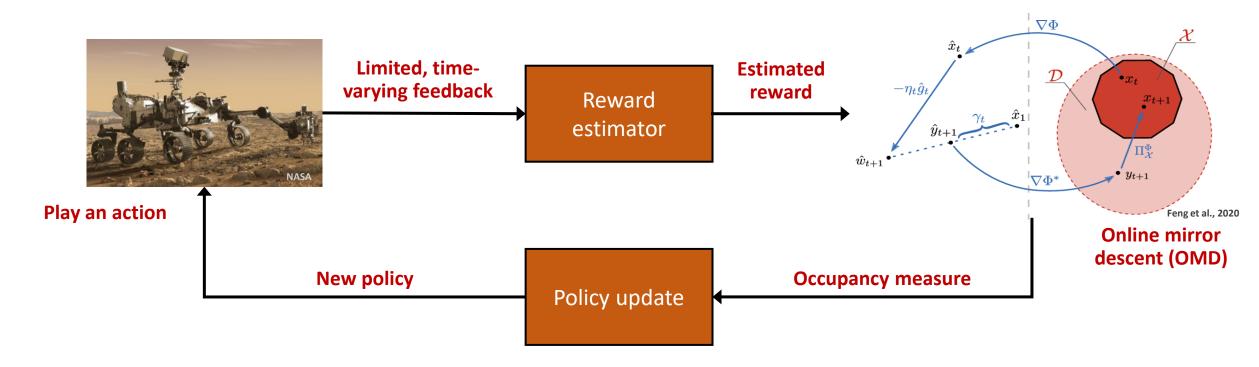
Safety-critical operation

Limited feedback from the environment

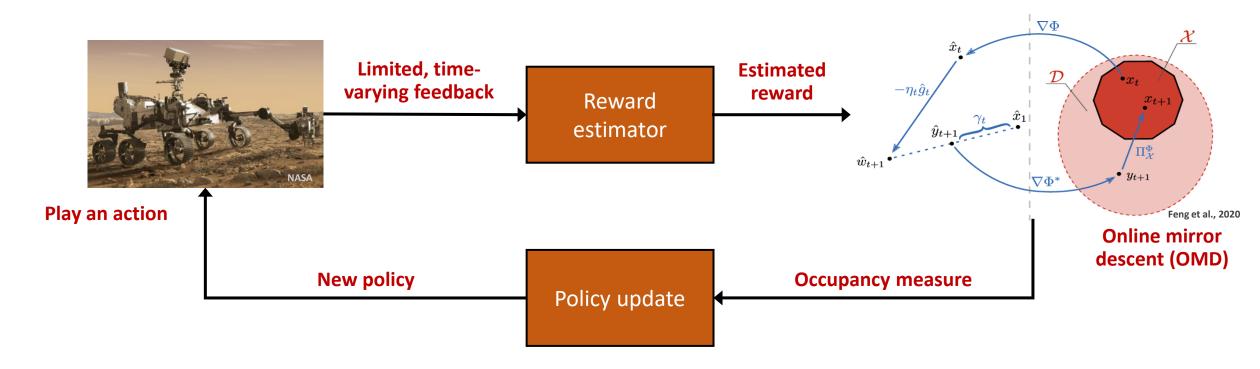


How can we design online algorithms with high probability guarantees for varying tasks?

Online Learning with Implicit Exploration for Varying Tasks

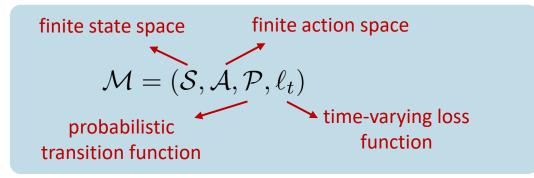


Online Learning with Implicit Exploration for Varying Tasks

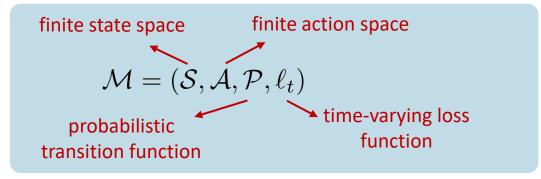


Contributions:	 A novel optimistically-biased reward estimator for implicit exploration
	 Policy search using online mirror descent (OMD)
	 Minimax optimal regret bound with high probability

Adversarial Markov Decision Process (A-MDP)

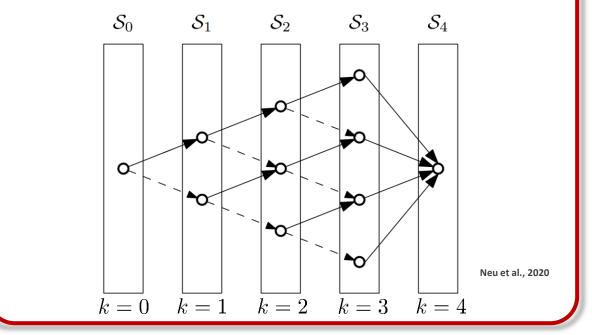


Adversarial Markov Decision Process (A-MDP)

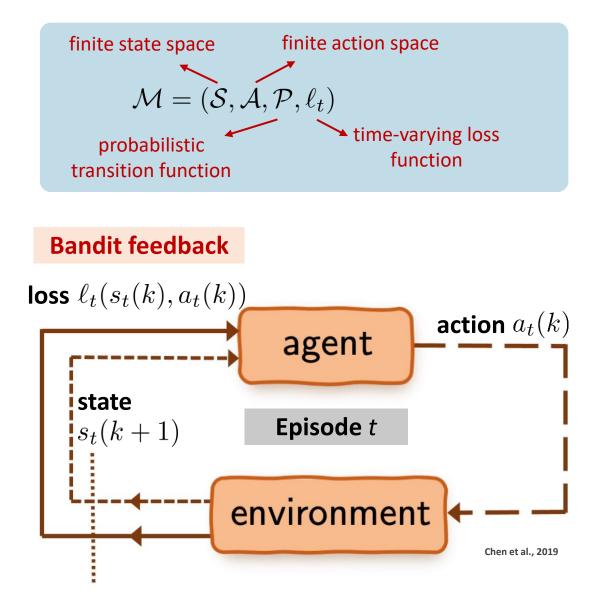


Loop-free episodic A-MDP:

- States are partitioned into layers
- Transition only exists from one layer to the next

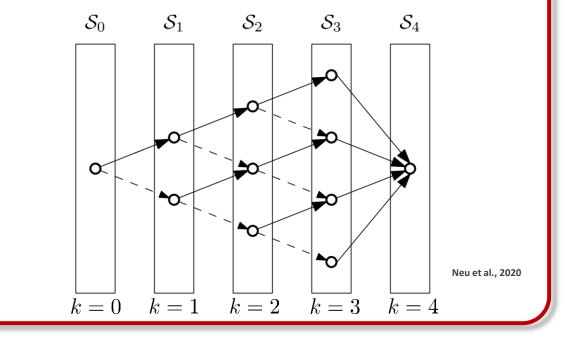


Adversarial Markov Decision Process (A-MDP)



Loop-free episodic A-MDP:

- States are partitioned into layers
- Transition only exists from one layer to the next



Agent's Policy Representation via Occupancy Measure

Looking for a time-varying stochastic policy $\pi_t : S \times A \rightarrow [0, 1]$

Agent's Policy Representation via Occupancy Measure

Looking for a time-varying stochastic policy $\pi_t : S \times A \rightarrow [0, 1]$

Occupancy measure: the probability induced over state-action pairs by executing a policy

$$\rho^{\pi}(s,a) = \Pr(\mathbf{s}_{k(s)} = s, \mathbf{a}_{k(s)} = a | \pi)$$

Agent's Policy Representation via Occupancy Measure

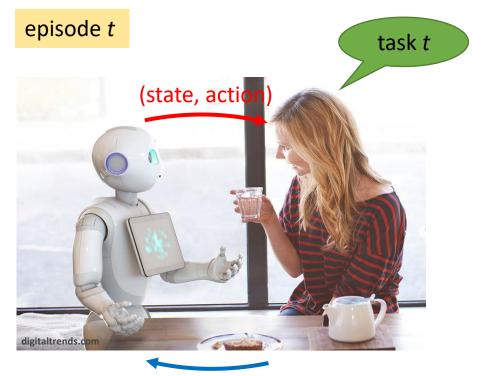
Looking for a time-varying stochastic policy $\pi_t : S \times A \rightarrow [0, 1]$

Occupancy measure: the probability induced over state-action pairs by executing a policy

$$\rho^{\pi}(s,a) = \Pr(\mathbf{s}_{k(s)} = s, \mathbf{a}_{k(s)} = a|\pi)$$

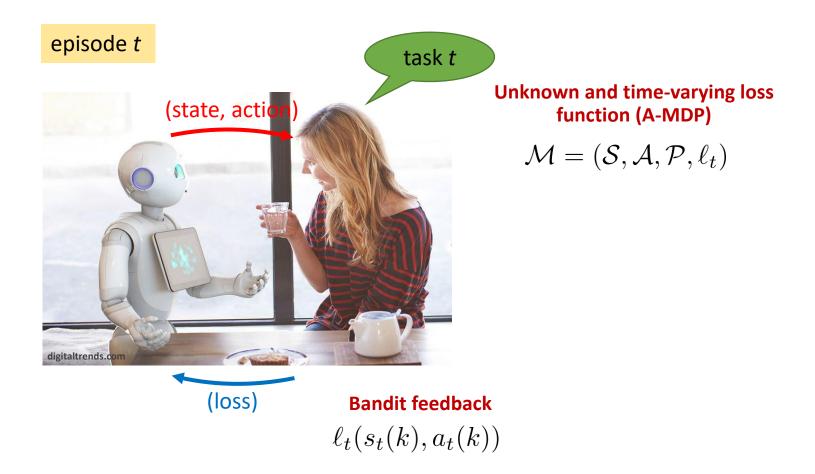
Stochastic stationary policy given an occupancy measure

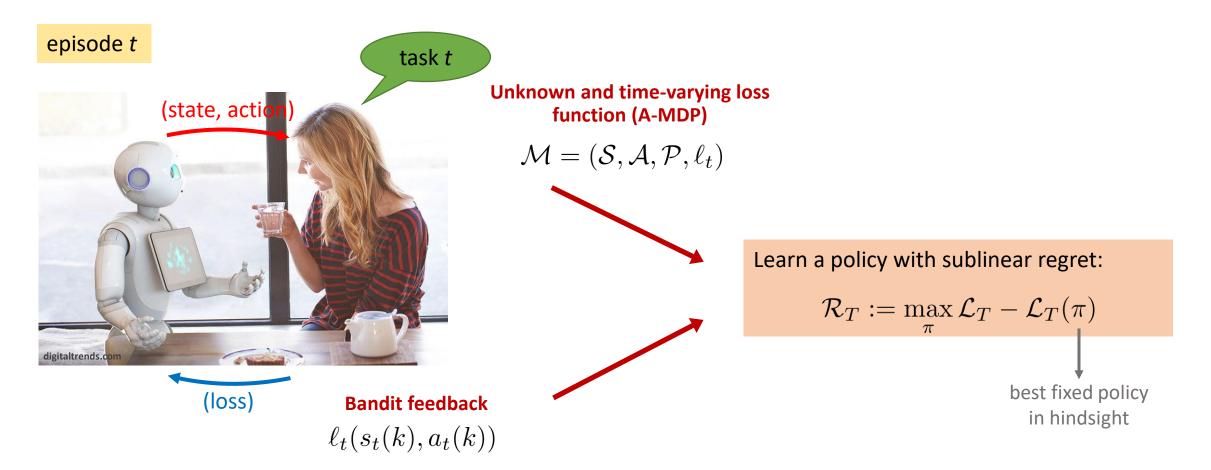
$$\pi^{\rho}(a|s) = \frac{\rho(s,a)}{\sum_{a' \in \mathcal{A}} \rho(s,a')} , \quad \forall (s,a) \in \mathcal{S} \times \mathcal{A}$$



(loss)

Ghasemi, Hashemi, Vikalo, Topcu







Question: Can we obtain low regret with high probability?

Bandit feedback — Estimating the loss of all state-action pairs

Bandit feedback — Estimating the loss of all state-action pairs

Goal: Obtain a low-variance loss estimator

Bandit feedback — Estimating the loss of all state-action pairs

Goal: Obtain a low-variance loss estimator

A novel **optimistically biased estimator** for the loss function:

$$\hat{\boldsymbol{\ell}}_t(s,a) = \frac{\ell_t(s,a)}{\boldsymbol{\rho}_t(s,a) + \gamma} \mathbb{I}\{(s,a) \in \mathbf{h}(t)\}$$
 history at current episode exploration parameter

Bandit feedback — Estimating the loss of all state-action pairs

Goal: Obtain a low-variance loss estimator

A novel **optimistically biased estimator** for the loss function:

$$\hat{\boldsymbol{\ell}}_t(s,a) = \frac{\ell_t(s,a)}{\boldsymbol{\rho}_t(s,a) + \gamma} \mathbb{I}\{(s,a) \in \mathbf{h}(t)\}$$
 history at current episode exploration parameter

Optimistically biased

$$\mathbb{E}\left[\hat{\boldsymbol{\ell}}_t(s,a)|\mathbf{h}(t-1)\right] \le \ell_t(s,a)$$

Implicit exploration

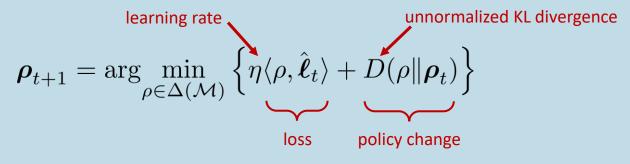
Policy Optimization via Online Mirror Descent

Goal: Compute a new policy from the estimated loss function

Policy Optimization via Online Mirror Descent

Goal: Compute a new policy from the estimated loss function

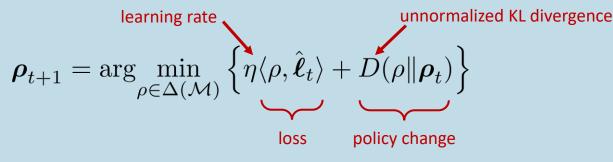
An OMD algorithm utilizing the proposed loss estimator:

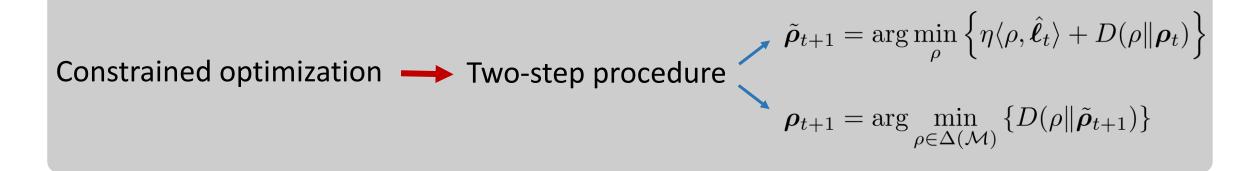


Policy Optimization via Online Mirror Descent

Goal: Compute a new policy from the estimated loss function

An OMD algorithm utilizing the proposed loss estimator:



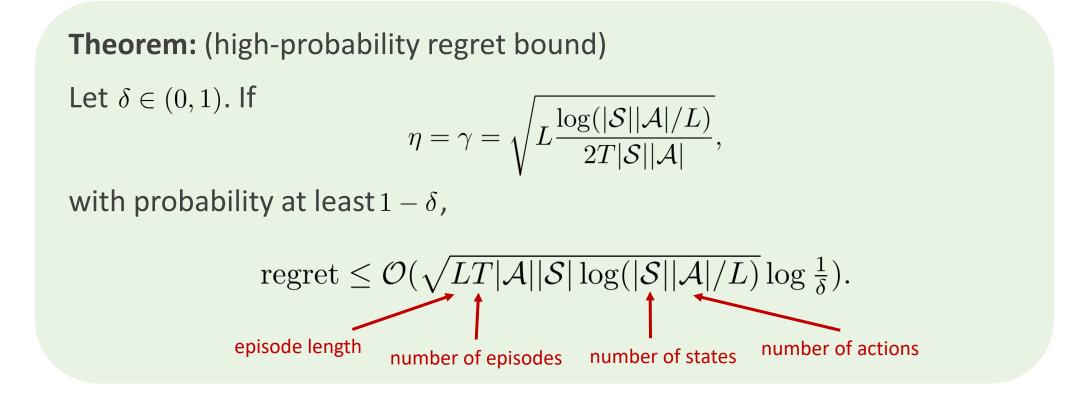


No-Regret Learning with High-Probability

Result: Establishing sublinear regret bounds both on expectation and with high-probability

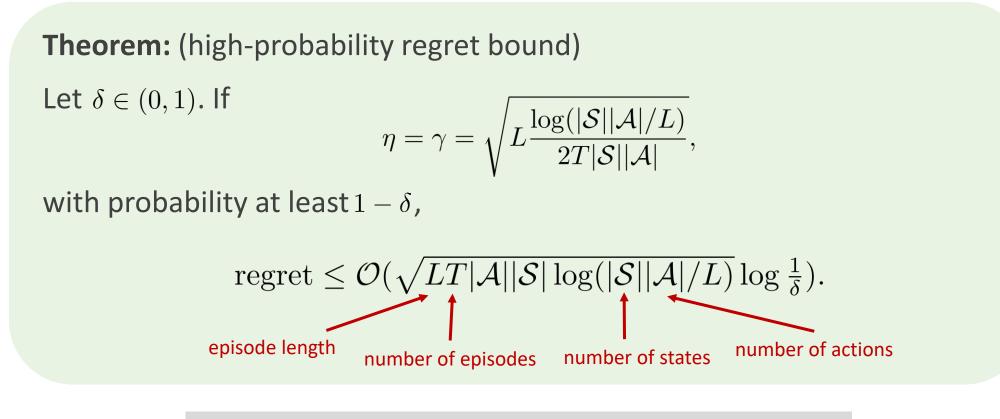
No-Regret Learning with High-Probability

Result: Establishing sublinear regret bounds both on expectation and with high-probability



No-Regret Learning with High-Probability

Result: Establishing sublinear regret bounds both on expectation and with high-probability



Minimax optimal regret (up to logarithmic terms)

No-Regret Learning for Uniformly Ergodic MDPs

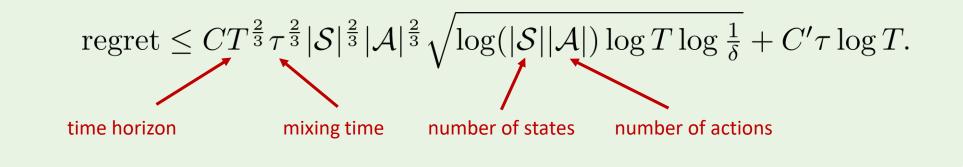
No-Regret Learning for Uniformly Ergodic MDPs

Uniform ergodicity: For every policy over the MDP, the convergence rate of state distributions to a unique stationary distribution is exponentially fast.

No-Regret Learning for Uniformly Ergodic MDPs

Uniform ergodicity: For every policy over the MDP, the **convergence rate** of state distributions to a unique stationary distribution is **exponentially fast**.

Theorem: (high-probability regret bound for uniformly ergodic A-MDP) Let $\delta \in (0, 1)$. With probability at least $1 - \delta$,



Conclusion and Future Work

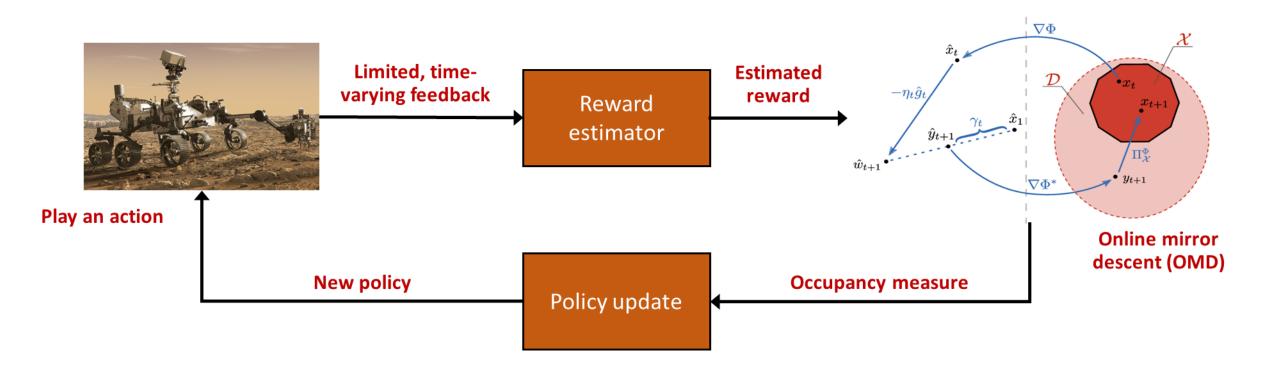
- Studied the problem of learning unknown and varying tasks in adversarial environments
- Proposed an online learning framework that achieves a minimax optimal regret bound with high probability
- Extended our framework to the class of general A-MDPs

Conclusion and Future Work

- Studied the problem of learning unknown and varying tasks in adversarial environments
- Proposed an online learning framework that achieves a minimax optimal regret bound with high probability
- Extended our framework to the class of general A-MDPs

Future Directions

- Structure-aware and game-theoretic online learning
- Parameter-free and anytime algorithms
- Unknown, time-varying dynamics and large-scale state spaces



Online Policy Learning for Unknown and Varying Tasks in Adversarial Environments

Mahsa Ghasemi, Abolfazl Hashemi, Haris Vikalo, Ufuk Topcu

supported in part by NSF ECCS grant 1809327, DARPA grant D19AP00004, and AFRL grant FA9550-19-1-0169