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Given an objective function 𝐿 ∶ ℝ! → ℝ, 
minimize 𝐿(𝑥), 𝑥 ∈ ℝ!.

Problem Statement

We solve convex optimization problems

• Problem
• We are interested in solving convex optimization problems in a 

distributed, asynchronous way. 

• Applications
Machine Learning CommunicationsRobotics Networks

Given an objective function 𝐿 ∶ ℝ! → ℝ, 
minimize 𝐿(𝑥), 𝑥 ∈ ℝ!

across N agents while requiring 
(i) only one agent updates any entry of the decision variable x, and 
(ii) agents require only sporadic information sharing from others.

Problem Statement



A hybrid systems framework is necessary and advantageous

• Real-world problems require a hybrid approach.
• Robotics is one example where physical motion occurs in continuous 

time while communications occur at specific instants in time.
• To account for the sporadic nature of communications, 

communication events are modeled using discrete time.

• A hybrid systems framework provides advantages during 
analysis.
• The framework comes with many tools for showing stability and 

convergence.
• Hybrid systems also tend to provide robustness, which is especially 

beneficial in asynchronous or contested environments.
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Approach: Impose assumption on objective function

• We impose the following assumption on the objective function L.

• This is a common assumption in multiagent optimization that allows us to 
consider a large number of convex problems.

• For example, convex quadratic problems where 𝛽 and K are easily 
determined. 

The function L is
• twice continuously differentiable,
• β-strongly convex for some positive β,
• and K-smooth (∇𝐿 is K-Lipschitz).

Assumption 1



Approach: Distribute gradient descent across agents

• In the centralized case, we would use �̇� = −∇𝐿(𝑥).
• We make this multi-agent where agent i is responsible for updating the i-th

block of x, denoted by 𝑥! ∈ ℝ"". With constant communications, agent i
would then have the update ̇𝑥! = −∇!𝐿(𝑥), where ∇!≔

#
#$"

.

• To account for sporadic communications, agents store the most recently 
communicated values in a separate variable 𝜂 ∈ ℝ".

• We then implement a “sample and hold” methodology whose dynamics 
take the form ̇𝑥! = −∇!𝐿 𝜂 .

�̇� = −∇𝐿 𝑥 =

−∇!𝐿 𝜂
⋮

−∇"𝐿 𝜂
⋮

−∇#𝐿 𝜂

→

̇𝑥!
⋮
̇𝑥"
⋮
̇𝑥#
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⋮

⋮



Approach: Model communications with a shared timer

• Communications are modeled through a 
shared timer, 𝜏, that has the following 
dynamics:

where 𝜏%!" and 𝜏%&$ are some positive 
real numbers.
• When 𝜏 reaches zero, all agents update 
𝜂 ∈ ℝ" with their current state values, 𝑥!
(for agent i), and 𝜏 is reset to a value 
within the range [𝜏%!", 𝜏%&$].

• Agents then use 𝜂 in their continuous 
state updates. 

𝜏!"#

𝜏!$%

Comm. Comm. Comm.

𝑥"

𝜂"

𝜏

Continuous Time, t

𝑥 values are assigned to 𝜂 when 𝜏 = 0

“Sample and Hold” Communications

Continuous Time, t



Hybrid Framework: Define dynamics and communications

• Agent i has three variables on board, 𝑥!, 𝜂, 𝜏 , which we define as state 𝜉!.
• Between communication events, agent i updates both 𝑥! and 𝜏 while 𝜂 does 

not change. Thus, 𝜉!’s continuous-time dynamics may be written as

̇𝜉! =
̇𝑥!
�̇�
�̇�

=
−∇!𝐿(𝜂)

0
−1

, 𝜉! ∈ ℝ""×ℝ"× 0, 𝜏%&$ .

• Communication events are triggered when 𝜏 = 0: 𝑥! stays the same, 𝜂 is 
updated with values from all agents, and 𝜏 is reset. This is formally 
modeled as

𝜉!' =
𝑥!'

𝜂'

𝜏'
∈

𝑥!
𝑥

𝜏%!", 𝜏%&$
, 𝜉! ∈ ℝ""×ℝ"× 0 .



Hybrid Framework: Formal definition of a hybrid system

• Our subsystem definition meets the requirements of a hybrid system:

• However, we want to create a single, combined hybrid system that 
captures the states of all agents for analysis.

A hybrid system ℋ has data (C, f, D, G) that takes the general form
ℋ = ,�̇� = 𝑓 𝑥 ,

𝑥# ∈ 𝐺,
𝑥 ∈ 𝐶
𝑥 ∈ 𝐷

where the vector 𝑥 is the system’s state. 

f defines the flow map and continuous-time dynamics for which C is the flow set. G is the 
set-valued jump map which captures the system’s discrete behavior for the jump set D. 

Definition of a Hybrid System



Hybrid Framework: Combined hybrid system for analysis

• Towards a combined hybrid system, we 
define two new variables:

𝑧( = col(𝑥(, … , 𝑥)), 𝑧* = 𝜂.
• We then define the state of the combined 

hybrid system as
𝜉 = 𝑧(, 𝑧*, 𝜏 .

𝑥!
𝜂
𝜏

𝑥#
𝜂
𝜏

𝜉!

𝜉#

𝑥!
⋮
𝑥#
𝜂
𝜏

𝑧!
𝑧$
𝜏

𝜉

• This leads to the hybrid system ℋ = (C, f, D, G) given by

̇𝜉 =
̇𝑧!
̇𝑧$
�̇�

=
−∇𝐿(𝑧$)

0
−1

= 𝑓 𝜉 , 𝜉 ∈ 𝐶 ≔ ℝ%×ℝ%× 0, 𝜏&'(

𝜉) =
𝑧!)

𝑧$)

𝜏)
∈

𝑧!
𝑧!

𝜏&"%, 𝜏&'(
= 𝐺, 𝜉 ∈ 𝐷 ≔ ℝ%×ℝ%× 0



Stability Analysis: Defining solutions and their properties

• Solutions to ℋ are denoted by 𝜙 = 𝜙+$ , 𝜙+% , 𝜙, , 
which we parameterize by 𝑡, 𝑗 ∈ ℝ-.×ℕ where t
denotes the ordinary (continuous) time and j
denotes the jump (discrete) time. 

• Under Assumption 1* and an upper bound on 𝜏%&$, a nontrivial solution 
exists from every initial point in 𝐶 ∪ 𝐷. Additionally, every maximal 
solution 𝜙 to the hybrid system ℋ is complete and not Zeno. 
• Takeaway: there are no theoretical obstructions to running this algorithm for arbitrarily 

long periods of time.

• We say that 𝜙 has converged when it reaches the set 𝒜 defined as

𝒜 ≔ 𝜉 = 𝑧(, 𝑧*, 𝜏 ∈ 𝐶 ∶ ∇𝐿 𝑧* = 𝟎 ∈ ℝ", 𝑧* = 𝑧(, 𝜏 ∈ 0, 𝜏%&$
= 𝑥∗ × 𝑥∗ × 0, 𝜏%&$ ,

where 𝑥∗ is the unique fixed point of ∇𝐿 and thus, the unique minimizer of L.
• For some vector v, we define 𝑣 𝒜 as the distance between the vector v and 

the set 𝒜.
*L is twice continuously differential, 𝛽-strongly convex, and K-smooth.



Stability Analysis: Choosing a Lyapunov Function

• Central to our analysis is choosing a Lyapunov function that is bounded 
above and below by 𝐾1 comparison functions. 

• Both comparison functions are used as both 𝑉(𝜉) and −𝑉(𝜉) are upper 
bounded or may be written as a function of the distance from 𝒜. 

𝑉 𝜉 = 𝐿 𝑧& − 𝐿 𝑥∗ ( + 𝐿 𝑧( − 𝐿 𝑥∗ (

where 𝜉 = 𝑧&, 𝑧(, 𝜏 ∈ 𝒳, L is the objective function, and 𝑥∗ is the unique fixed point of ∇𝐿.  

Lyapunov Function

There exist 𝛼&, 𝛼( ∈ 𝐾) such that 𝛼&( 𝜉 𝒜) ≤ 𝑉 𝜉 ≤ 𝛼( ( 𝜉 𝒜) for all 𝜉 ∈ 𝐶 ∪ 𝐷 ∪ 𝐺(𝐷). 
In particular, for all 𝑠 ≥ 0, 𝛼& and 𝛼( are given by

𝛼& 𝑠 =
𝛽(

16
𝑠+ and 𝛼( 𝑠 =

𝐾(

2
𝑠+ ,

where β is the strong convexity constant of L and K is the Lipschitz constant of ∇𝐿.

Lemma 5: Comparison Functions
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Stability Analysis: Preliminary result under initialization condition

Let Assumption 1 hold and consider the hybrid system ℋ. Choose 𝜏,-! and 𝜏,./ such 
that 0 < 𝜏,-! ≤ 𝜏,./ <

0&

12'
, where β is the strong convexity constant of L and K is the 

Lipschitz constant of ∇𝐿. For each solution 𝜙 such that 𝜙3( 0,0 = 𝜙3& 0,0 , for all 𝑡, 𝑗 ∈
𝑑𝑜𝑚 𝜙, the following is satisfied

𝜙 𝑡, 𝑗 𝒜 ≤
𝐾
𝛽

) 8 exp −
𝛽𝐴𝐵
8𝐾(

𝑡 𝜙 0,0 𝒜

where 𝐴 = 𝛽( 1 − 2𝜏,./𝐾 − 𝜏,./𝐾1 > 0 and 𝐵 = 1 − 2𝜏,./𝐾 ∈ 0,1 .

Proposition 2: 

• 𝜙 𝑡, 𝑗 𝒜 ≤ constant ∗ exp − constant ∗ 𝑡 𝜙 0,0 𝒜 for all 𝑡, 𝑗 ∈ 𝑑𝑜𝑚 𝜙.
• When agents agree on their initialization value, i.e., when 𝜙+$ 0,0 =
𝜙+% 0,0 , exponential stability holds for all time (t, j). 

• While this initialization condition holds in some contexts, some situations 
preclude such agreement at initialization. 
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Stability Analysis: Global exponential stability

• 𝜙 𝑡, 𝑗 𝒜 ≤ constant ∗ exp − constant ∗ 𝑡 𝜙 0,0 𝒜 for all 𝑗 ≥ 1.
• Exponential stability holds for all solutions, regardless of initialization, 

after the first jump.

Let Assumption 1 hold and consider the hybrid system ℋ. Choose 𝜏,-! and 𝜏,./ such 
that 0 < 𝜏,-! ≤ 𝜏,./ <

0&

12', where β is the strong convexity constant of L and K is the 
Lipschitz constant of ∇𝐿. For each solution 𝜙 and for all 𝑡, 𝑗 ∈ 𝑑𝑜𝑚 𝜙 such that 𝑗 ≥ 1,     

the following is satisfied

𝜙 𝑡, 𝑗 𝒜 ≤
8
3

𝐾
𝛽

) 2 exp −
𝛽𝐴𝐵
8𝐾( 𝑡 𝜙 0,0 𝒜

where 𝐴 = 𝛽( 1 − 2𝜏,./𝐾 − 𝜏,./𝐾1 > 0 and 𝐵 = 1 − 2𝜏,./𝐾 ∈ 0,1 .

Theorem 1: Global Exponential Stability
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Stability Analysis: Simulations illustrate main results

• We first compared convergence for 
different initial values of 𝜙&! and 
𝜙&" when using five agents.

• When agents agree on initial conditions 
(Trial 1), there was a consistent decrease 
in the distance to the minimizer, even at 
jumps.

• When agents disagree on initial 
conditions (Trial 2), it’s possible that the 
distance from the minimizer will 
increase during the first jump. The 
system then behaves in an exponentially 
decreasing manner, with the difference 
between the two trial results decreasing 
over time.

minimize 𝐿 𝑥 = &
(
𝑥4𝑄𝑥 + 𝑏4𝑥

across N=n agents where Q is a n x n symmetric, positive definite 
matrix and b is in ℝ!.

Simulation
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Stability Analysis: Simulations illustrate main results

• We varied the network size from 5 
agents to 100, 500, 1,000, and 5,000 
agents.

• We chose to initialize 𝜙+$ and 𝜙+%
with the same values for all the trials.

• As shown in the figure, even 
drastically changing the network size 
did not significantly impact the 
convergence.

minimize 𝐿 𝑥 = &
(
𝑥4𝑄𝑥 + 𝑏4𝑥

across N=n agents where Q is a n x n symmetric, positive definite 
matrix and b is in ℝ!.

Simulation



Summary of presentation

• Summary
• We’re interested in solving convex optimization problems in a 

distributed way for which a hybrid systems framework is intuitive and 
beneficial.

• We distribute a gradient descent update law among agents with 
communications governed by a shared timer.

• We define the hybrid subsystems as well as a combined hybrid system 
for analysis.

• We use Lyapunov stability analysis to show global exponential stability 
for our hybrid system.

• Simulation results confirm our analysis and the scalability of our 
model.



Plans for future work

• Heterogeneous timers
• Each agent will use a separate timer for communication events.
• When an agent’s timer reaches zero, they will retrieve updates from all 

other agents.
• Thus, agents will then have a different versions of 𝜂 that they use in 

updates.

̇𝜉! =
̇𝑥!
�̇�
�̇�

=
−∇!𝐿(𝜂)

0
−1

→ ̇𝜁! =
̇𝑥!
̇𝜂!
̇𝜏!
=

−∇!𝐿(𝜂!)
0
−1

• Set constraints on x
• This adds the requirement that 𝑥 be in some set 𝑋 ∈ ℝ".
• This will lead to different dynamics and a need to exclude certain 

pathological hybrid phenomena. 
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