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Current Status

• Completion of new literature search for non-Keplerian disturbance 
terms and the applications in which they appear.

• Particularly interest in applications involving formation-flying 
satellites (e.g., Geodesy).

• Further development of the framework to implement new disturbance 
terms as loadable data files.

• Sources pulled directly from NASA-JPL’s NAIF and PO.DAAC 
databases to obtain Earth orientation and geopotential data.

• Introduced additional disturbance terms to bring the dynamics in line 
with the International Earth Rotation and Reference System Service 
(IERS) 2010 Conventions.



Review of Prior Discussion

The case of Keplerian dynamics uses Newton’s Law of Universal Gravitation 
to propagate the position and velocity of the 𝒾𝒾th satellite:

⁄𝑑𝑑𝑟𝑟𝒾𝒾 𝑑𝑑𝑡𝑡
⁄𝑑𝑑�⃗�𝑣𝒾𝒾 𝑑𝑑𝑡𝑡 =

�⃗�𝑣𝒾𝒾
−𝑟𝑟𝒾𝒾 ⁄𝜇𝜇 𝑟𝑟𝒾𝒾 3 .

Note that, in this case, future positions may be differentiated with respect to 
the initial orbital elements to obtain closed-form expressions for the gradient 
and hessian values used in optimization.

Non-Keplerian dynamics modify these equations to

⁄𝑑𝑑𝑟𝑟𝒾𝒾 𝑑𝑑𝑡𝑡
⁄𝑑𝑑�⃗�𝑣𝒾𝒾 𝑑𝑑𝑡𝑡 =

�⃗�𝑣𝒾𝒾
∇𝒰𝒰𝑡𝑡,𝒾𝒾 + �⃗�𝒶𝑡𝑡,𝒾𝒾 − 𝑟𝑟𝒾𝒾 ⁄𝜇𝜇 𝑟𝑟𝒾𝒾 3 ,

• 𝒰𝒰𝑡𝑡,𝒾𝒾 is the potential field arising from conservative, non-Keplerian forces.

• �⃗�𝒶𝑡𝑡,𝒾𝒾 is the net acceleration due to non-conservative, non-Keplerian forces.

Note that both 𝒰𝒰𝑡𝑡,𝒾𝒾 and �⃗�𝒶𝑡𝑡,𝒾𝒾 are evaluated at time 𝑡𝑡.



Review of Prior Discussion

If we, for now, assume that all forces acting on the satellite are 
conservative (i.e., �⃗�𝒶𝑡𝑡,𝒾𝒾 = 0), then we may use the dynamics

⁄𝑑𝑑𝑟𝑟𝒾𝒾 𝑑𝑑𝑡𝑡
⁄𝑑𝑑�⃗�𝑣𝒾𝒾 𝑑𝑑𝑡𝑡 =

�⃗�𝑣𝒾𝒾
∇𝒰𝒰𝑡𝑡,𝒾𝒾 − 𝑟𝑟𝒾𝒾 ⁄𝜇𝜇 𝑟𝑟𝒾𝒾 3 .

Let us further assume that 𝒰𝒰𝑡𝑡,𝒾𝒾 may be fully expressed as a function of the 
instantaneous values of the following orbital elements:
1. Semi-major axis 𝑎𝑎𝑡𝑡,𝒾𝒾;
2. eccentricity 𝑒𝑒𝑡𝑡,𝒾𝒾;
3. right ascension of the ascending node (RAAN) Ω𝑡𝑡,𝒾𝒾;
4. inclination 𝐼𝐼𝑡𝑡,𝒾𝒾;
5. argument of periapse 𝜔𝜔𝑡𝑡,𝒾𝒾;
6. mean anomaly 𝑀𝑀𝑡𝑡,𝒾𝒾;
and time 𝑡𝑡.



Review of Prior Discussion

Lagrange’s Planetary Equations thus yield

where 𝑛𝑛𝑡𝑡,𝒾𝒾 = ⁄𝜇𝜇 𝑎𝑎𝑡𝑡,𝒾𝒾
3 ⁄1 2

and 𝑓𝑓𝑡𝑡,𝒾𝒾 = 1 − 𝑒𝑒𝑡𝑡,𝒾𝒾
2 ⁄1 2

.

• Remark on singular cases:

• 𝐼𝐼𝑡𝑡,𝒾𝒾 = 0 ⟹ Ω𝑡𝑡,𝒾𝒾 = undefined

• 𝑒𝑒𝑡𝑡,𝒾𝒾 = 0 ⟹𝜔𝜔𝑡𝑡,𝒾𝒾 = undefined

• Different representations available for the singular cases.

𝑑𝑑𝑎𝑎𝑡𝑡,𝒾𝒾
𝑑𝑑𝑡𝑡

=
2

𝑛𝑛𝑡𝑡,𝒾𝒾𝑎𝑎𝑡𝑡,𝒾𝒾

𝜕𝜕𝒰𝒰𝑡𝑡,𝒾𝒾
𝜕𝜕𝑀𝑀𝑡𝑡,𝒾𝒾

𝑑𝑑𝐼𝐼𝑡𝑡,𝒾𝒾
𝑑𝑑𝑡𝑡

=
cot 𝐼𝐼𝑡𝑡,𝒾𝒾

𝑛𝑛𝑡𝑡,𝒾𝒾𝑎𝑎𝑡𝑡,𝒾𝒾
2 𝑓𝑓𝑡𝑡,𝒾𝒾

𝜕𝜕𝒰𝒰𝑡𝑡,𝒾𝒾
𝜕𝜕𝜔𝜔𝒾𝒾

−
𝑓𝑓𝑡𝑡,𝒾𝒾

𝑛𝑛𝑡𝑡,𝒾𝒾𝑎𝑎𝑡𝑡,𝒾𝒾
2 sin 𝐼𝐼𝑡𝑡,𝒾𝒾

𝜕𝜕𝒰𝒰𝑡𝑡,𝒾𝒾
𝜕𝜕Ω𝑡𝑡,𝒾𝒾

𝑑𝑑𝑒𝑒𝑡𝑡,𝒾𝒾
𝑑𝑑𝑡𝑡

=
𝑓𝑓𝑡𝑡,𝒾𝒾
2

𝑛𝑛𝑡𝑡,𝒾𝒾𝑎𝑎𝑡𝑡,𝒾𝒾
2 𝑒𝑒𝑡𝑡,𝒾𝒾

𝜕𝜕𝒰𝒰𝑡𝑡,𝒾𝒾
𝜕𝜕𝑀𝑀𝑡𝑡,𝒾𝒾

−
𝑓𝑓𝑡𝑡,𝒾𝒾

𝑛𝑛𝑡𝑡,𝒾𝒾𝑎𝑎𝑡𝑡,𝒾𝒾
2 𝑒𝑒𝑡𝑡,𝒾𝒾

𝜕𝜕𝒰𝒰𝑡𝑡,𝒾𝒾
𝜕𝜕𝜔𝜔𝑡𝑡,𝒾𝒾

𝑑𝑑𝜔𝜔𝑡𝑡,𝒾𝒾
𝑑𝑑𝑡𝑡

=
𝑓𝑓𝑡𝑡,𝒾𝒾

𝑛𝑛𝑡𝑡,𝒾𝒾𝑎𝑎𝑡𝑡,𝒾𝒾
2 𝑒𝑒𝑡𝑡,𝒾𝒾

𝜕𝜕𝒰𝒰𝑡𝑡,𝒾𝒾
𝜕𝜕𝑒𝑒𝑡𝑡,𝒾𝒾

−
cot 𝐼𝐼𝑡𝑡,𝒾𝒾

𝑛𝑛𝑡𝑡,𝒾𝒾𝑎𝑎𝑡𝑡,𝒾𝒾
2 𝑓𝑓𝑡𝑡,𝒾𝒾

𝜕𝜕𝒰𝒰𝑡𝑡,𝒾𝒾
𝜕𝜕𝐼𝐼𝑡𝑡,𝒾𝒾

𝑑𝑑Ω𝑡𝑡,𝒾𝒾
𝑑𝑑𝑡𝑡

=
1

𝑛𝑛𝒾𝒾𝑎𝑎𝒾𝒾2 sin 𝐼𝐼𝑡𝑡,𝒾𝒾 𝑓𝑓𝑡𝑡,𝒾𝒾

𝜕𝜕𝒰𝒰𝑡𝑡,𝒾𝒾
𝜕𝜕𝐼𝐼𝑡𝑡,𝒾𝒾

𝑑𝑑𝑀𝑀𝑡𝑡,𝒾𝒾
𝑑𝑑𝑡𝑡

= 𝑛𝑛𝑡𝑡,𝒾𝒾 −
2

𝑛𝑛𝑡𝑡,𝒾𝒾𝑎𝑎𝑡𝑡,𝒾𝒾

𝜕𝜕𝒰𝒰𝑡𝑡,𝒾𝒾
𝜕𝜕𝑎𝑎𝑡𝑡,𝒾𝒾

−
𝑓𝑓𝑡𝑡,𝒾𝒾
2

𝑛𝑛𝑡𝑡,𝒾𝒾𝑎𝑎𝑡𝑡,𝒾𝒾
2 𝑒𝑒𝑡𝑡,𝒾𝒾

𝜕𝜕𝒰𝒰𝑡𝑡,𝒾𝒾
𝜕𝜕𝑒𝑒𝑡𝑡,𝒾𝒾



Review of Prior Discussion

Nonconservative forces are introduced by setting

𝜕𝜕𝒰𝒰𝑡𝑡,𝒾𝒾

𝜕𝜕 ∗
=
𝜕𝜕𝑟𝑟𝒾𝒾
𝜕𝜕 ∗

� �⃗�𝒶𝑡𝑡,𝒾𝒾.

This enables inclusion of:

• Atmospheric drag;

• Solar radiation pressure;

• Thrust actuation;

Thrust actuation may also be used as a control term. Bounding this term is 
tantamount to bounding the level of control effort required to maintain 
swarm geometry.



Non-Keplerian Dynamics

Note that the bounds of some gravitational potentials can be determined:

Source 𝐦𝐦𝐦𝐦𝐦𝐦 𝓾𝓾𝓲𝓲
𝒌𝒌𝒌𝒌𝟐𝟐

𝒔𝒔𝟐𝟐
𝐦𝐦𝐦𝐦𝐦𝐦 𝓾𝓾𝓲𝓲

𝒌𝒌𝒌𝒌𝟐𝟐

𝒔𝒔𝟐𝟐
𝐦𝐦𝐦𝐦𝐦𝐦 𝛁𝛁𝓾𝓾𝓲𝓲

𝒌𝒌𝒌𝒌
𝒔𝒔𝟐𝟐

𝐦𝐦𝐦𝐦𝐦𝐦 𝛁𝛁𝓾𝓾𝓲𝓲
𝒌𝒌𝒌𝒌
𝒔𝒔𝟐𝟐

𝐽𝐽2 −3.02 × 10−2 +6.04 × 10−2 3.769 × 10−9 2.776 × 10−5

☉ −9.02 × 10+2 −8.72 × 10+2 5.736 × 10−6 6.125 × 10−6

☿ −2.68 × 10−4 −1.02 × 10−4 4.701 × 10−13 3.266 × 10−12

♀ −8.22 × 10−3 −1.25 × 10−3 4.820 × 10−12 2.078 × 10−10

☾ −1.63 × 10−2 −1.07 × 10−2 2.318 × 10−8 5.450 × 10−8

♂ −7.68 × 10−4 −1.07 × 10−4 2.681 × 10−13 1.377 × 10−11

♃ −2.14 × 10−1 −1.31 × 10−1 1.360 × 10−10 3.631 × 10−10

♄ −3.16 × 10−2 −2.30 × 10−2 1.393 × 10−11 2.630 × 10−11

♅ −2.24 × 10−3 −1.84 × 10−3 5.821 × 10−13 8.664 × 10−13

♆ −1.59 × 10−3 −1.46 × 10−3 3.115 × 10−13 3.680 × 10−13



Motivation to Adopt a New Model

Why account for disturbances beyond the largest few?
• Prior formation analyses limited to Low-N swarms.
• Per the swarm initialization procedure that we have introduced in prior 

discussions, satellite states are interconnected with one another. 
We believe High-N swarms have the potential to display chaotic 
behavior.

• It is an observable fact of nature that interconnected systems tend towards 
chaos as the system (and thus the number of connections) becomes larger.

• Chaotic systems are susceptible to variation in initial condition.
• Even if High-N swarms do not display chaotic behavior, the dynamics are 

sufficiently nonlinear that impact of individual terms is unknown –
particularly on the relative motion. Thus, we feel it necessary to test 
the impact of terms beyond the most common lower order terms.

• Besides the above, we do not see any compelling reason to deny the Air 
Force tools relevant swarm-based applications that require high-
fidelity dynamics models if it so chooses (a goal in keeping with our 
longstanding goal of mission variability and customization)



Motivation to Adopt a New Model

• Problem: Our swarm analysis requires a way to test high-N swarms for 
sensitivity to small changes in the dynamics function without the ability 
to conduct true, on-orbit experiments.

• Solution: Obtain as close to exact model knowledge as possible using the 
IERS 2010 Conventions as a blueprint to construct a thorough dynamics 
model.

• Benefits: A framework wherein the dynamics function can be modified 
with additional terms; wherein individual dynamics terms may be 
activated or deactivated separately of one another to determine the 
impact they have on the evolution of the swarm over time.



Building the Dynamics Model

• We redefine the non-Keplerian dynamics by the relation

𝒢𝒢
̇⃗𝑥𝑥𝒾𝒾 = 𝒩𝒩

̇⃗𝑥𝑥𝒾𝒾 − 𝒩𝒩
̇⃗𝑥𝑥𝒢𝒢 = 𝒩𝒩�⃗�𝑣𝒾𝒾 − 𝒩𝒩�⃗�𝑣𝒢𝒢

𝒩𝒩�⃗�𝑎𝒾𝒾 − 𝒩𝒩�⃗�𝑎𝒢𝒢
=

𝒢𝒢�⃗�𝑣𝒾𝒾
𝑓𝑓 𝑡𝑡, 𝒢𝒢�⃗�𝑥𝒾𝒾 − 𝒩𝒩�⃗�𝑎𝒢𝒢 𝑡𝑡

,

where 𝒢𝒢�⃗�𝑥𝒾𝒾𝑇𝑇 ≝ 𝒢𝒢𝑟𝑟𝒾𝒾𝑇𝑇 𝒢𝒢�⃗�𝑣𝒾𝒾𝑇𝑇 is the orbital state of the 𝒾𝒾th satellite given 
position 𝒢𝒢𝑟𝑟𝒾𝒾 and velocity 𝒢𝒢�⃗�𝑣𝒾𝒾 determined relative to the geocentric 
reference frame 𝒢𝒢; 𝒢𝒢 ̇⃗𝑥𝑥𝒾𝒾 is its derivative with 𝒢𝒢�⃗�𝑎𝒾𝒾 denoting acceleration.

• We define 𝒢𝒢 (commonly called “ECI”) to be the set of coordinate axes 
whose origin is coincident with Earth’s center of mass and whose axes are 
parallel to those of the J2000 inertial reference frame 𝒩𝒩.

• We define 𝒩𝒩 to be the set of coordinate axes whose origin is coincident 
with the solar system barycenter, neglecting proper motion of the 
sun over mission-relevant timescales.

• 𝒩𝒩�⃗�𝑥𝒢𝒢𝑇𝑇 ≝ 𝒩𝒩𝑟𝑟𝒢𝒢𝑇𝑇 𝒩𝒩�⃗�𝑣𝒢𝒢𝑇𝑇 is the orbital state of the Earth relative to 𝒩𝒩.

• In general, ℬ�⃗�𝑥𝒜𝒜𝑇𝑇 denotes the orbital state of point or non-rotating 
reference frame 𝒜𝒜 as seen by an observer in reference frame ℬ. 



Building the Dynamics Model

• 𝑓𝑓 𝑡𝑡, 𝒢𝒢�⃗�𝑥𝒾𝒾 contains higher-order dynamics terms.

• Models are available containing higher order terms which are dependent 
on Earth’s orientation at time 𝑡𝑡.
• Per the rules of transformation between rotating reference frames:

ℰ�⃗�𝑥𝒾𝒾 =
𝑟𝑟𝒾𝒾

ℰ�⃗�𝑣𝒾𝒾
=

𝑰𝑰 𝟎𝟎
− 𝓖𝓖𝝎𝝎𝓔𝓔 × 𝑰𝑰

𝑟𝑟𝒾𝒾
𝒢𝒢�⃗�𝑣𝒾𝒾

≝ 𝓔𝓔𝑻𝑻𝓖𝓖𝒢𝒢�⃗�𝑥𝒾𝒾

where 𝒢𝒢𝜔𝜔ℰ 𝑡𝑡 is the angular velocity of ℰ relative to 𝒢𝒢, and 𝓔𝓔𝑻𝑻𝓖𝓖 is the 
tensor which transforms a 𝒢𝒢-relative state into an ℰ-relative state. 𝑰𝑰 is 
the identity tensor.

• Let 𝒢𝒢�⃗�𝒶𝒾𝒾ℰ be the acceleration due to disturbances evaluated in frame ℰ.

𝒢𝒢�⃗�𝒶𝒾𝒾ℰ = 𝓖𝓖𝝎𝝎𝓔𝓔 × 𝓖𝓖𝝎𝝎𝓔𝓔 × + 𝓖𝓖𝜶𝜶𝓔𝓔 × 2 𝓖𝓖𝝎𝝎𝓔𝓔 × 𝑰𝑰
𝑟𝑟𝒾𝒾
ℰ�⃗�𝑣𝒾𝒾

ℰ𝑓𝑓 𝑡𝑡, ℰ�⃗�𝑥𝒾𝒾
⟹ 𝒢𝒢�⃗�𝒶𝒾𝒾ℰ ≝ 𝓖𝓖𝑨𝑨𝓔𝓔𝓔𝓔𝑻𝑻𝓖𝓖𝒢𝒢�⃗�𝑥𝒾𝒾 + ℰ𝑓𝑓 𝑡𝑡, 𝓔𝓔𝑻𝑻𝓖𝓖𝒢𝒢�⃗�𝑥𝒾𝒾



Building the Dynamics Model

• We may similarly apply nonspherical Lunar gravity, which is defined in the 
Moon-centered, Moon-fixed frame ℳ.

• We will also denote Lunacentric coordinates ℒ to be parallel to 𝒩𝒩 with 
origin fixed to the Moon’s center of mass.
It follows that

ℒ�⃗�𝑥𝒾𝒾 = 𝒢𝒢�⃗�𝑥𝒾𝒾 − 𝒢𝒢�⃗�𝑥ℒ ⟹ ℳ�⃗�𝑥𝒾𝒾 = 𝓜𝓜𝑻𝑻𝓛𝓛 𝒢𝒢�⃗�𝑥𝒾𝒾 − 𝒢𝒢�⃗�𝑥ℒ .
⟹ ℒ�⃗�𝒶𝒾𝒾ℳ = 𝓛𝓛𝑨𝑨𝓜𝓜𝓜𝓜𝑻𝑻𝓛𝓛 𝒢𝒢�⃗�𝑥𝒾𝒾 − 𝒢𝒢�⃗�𝑥ℒ + ℳ𝑓𝑓 𝑡𝑡, 𝓜𝓜𝑻𝑻𝓛𝓛 𝒢𝒢�⃗�𝑥𝒾𝒾 − 𝒢𝒢�⃗�𝑥ℒ .

• In a final step, we must account for the acceleration of ℒ relative to 𝒢𝒢.

𝒢𝒢�⃗�𝒶𝒾𝒾ℳ = 𝓛𝓛𝑨𝑨𝓜𝓜𝓜𝓜𝑻𝑻𝓛𝓛 𝒢𝒢�⃗�𝑥𝒾𝒾 − 𝒢𝒢�⃗�𝑥ℒ + ℳ𝑓𝑓 𝑡𝑡, 𝓜𝓜𝑻𝑻𝓛𝓛 𝒢𝒢�⃗�𝑥𝒾𝒾 − 𝒢𝒢�⃗�𝑥ℒ + 𝒢𝒢�⃗�𝑎ℒ .

• It follows that 𝓛𝓛𝑨𝑨𝓜𝓜𝓜𝓜𝑻𝑻𝓛𝓛 ≡ 𝓖𝓖𝑨𝑨𝓜𝓜𝓜𝓜𝑻𝑻𝓖𝓖. Thus, we may write that

𝒢𝒢�⃗�𝒶𝒾𝒾ℳ = 𝓖𝓖𝑨𝑨𝓜𝓜𝓜𝓜𝑻𝑻𝓖𝓖𝒢𝒢�⃗�𝑥𝒾𝒾 + ℳ𝑓𝑓 𝑡𝑡, 𝓜𝓜𝑻𝑻𝓖𝓖 𝒢𝒢�⃗�𝑥𝒾𝒾 − 𝒢𝒢�⃗�𝑥ℒ − ℒ�⃗�𝑎𝒢𝒢 − 𝓛𝓛𝑨𝑨𝓜𝓜𝓜𝓜𝑻𝑻𝓛𝓛ℒ�⃗�𝑥𝒢𝒢 .

⟹ 𝒢𝒢�⃗�𝒶𝒾𝒾ℳ = 𝓖𝓖𝑨𝑨𝓜𝓜𝓜𝓜𝑻𝑻𝓖𝓖𝒢𝒢�⃗�𝑥𝒾𝒾 + ℳ𝑓𝑓 𝑡𝑡, 𝓜𝓜𝑻𝑻𝓖𝓖 𝒢𝒢�⃗�𝑥𝒾𝒾 − 𝒢𝒢�⃗�𝑥ℒ − ℳ�⃗�𝑎𝒢𝒢 .



Building the Dynamics Model

• A quick note from the previous slide concerning the expression

𝒢𝒢�⃗�𝒶𝒾𝒾ℰ = 𝓖𝓖𝑨𝑨𝓔𝓔𝓔𝓔𝑻𝑻𝓖𝓖𝒢𝒢�⃗�𝑥𝒾𝒾 + ℰ𝑓𝑓 𝑡𝑡, 𝓔𝓔𝑻𝑻𝓖𝓖𝒢𝒢�⃗�𝑥𝒾𝒾 ,
and

𝒢𝒢�⃗�𝒶𝒾𝒾ℳ = 𝓖𝓖𝑨𝑨𝓜𝓜𝓜𝓜𝑻𝑻𝓖𝓖𝒢𝒢�⃗�𝑥𝒾𝒾 + ℳ𝑓𝑓 𝑡𝑡, 𝓜𝓜𝑻𝑻𝓖𝓖 𝒢𝒢�⃗�𝑥𝒾𝒾 − 𝒢𝒢�⃗�𝑥ℒ .
If we define

𝓖𝓖𝑨𝑨𝓖𝓖 ≝ 𝓖𝓖𝑨𝑨𝓔𝓔𝓔𝓔𝑻𝑻𝓖𝓖 + 𝓖𝓖𝑨𝑨𝓜𝓜𝓜𝓜𝑻𝑻𝓖𝓖,
then the non-Keplerian dynamics encountered so far may be expressed as

𝒢𝒢
̇⃗𝑥𝑥𝒾𝒾 =

𝒢𝒢�⃗�𝑣𝑖𝑖

ℰ𝑓𝑓 𝑡𝑡, 𝓔𝓔𝑻𝑻𝓖𝓖𝒢𝒢�⃗�𝑥𝒾𝒾 + ℳ𝑓𝑓 𝑡𝑡, 𝓜𝓜𝑻𝑻𝓖𝓖 𝒢𝒢�⃗�𝑥𝒾𝒾 − 𝒢𝒢�⃗�𝑥ℒ + 𝒢𝒢𝑓𝑓 𝑡𝑡, 𝒢𝒢�⃗�𝑥𝒾𝒾 + 𝓖𝓖𝑨𝑨𝓖𝓖𝒢𝒢�⃗�𝑥𝒾𝒾 − ℳ�⃗�𝑎𝒢𝒢 − 𝒩𝒩�⃗�𝑎𝒢𝒢
.



Building the Dynamics Model

• Earth’s angular velocity 𝒢𝒢𝜔𝜔ℰ 𝑡𝑡 , angular acceleration 𝒢𝒢�⃗�𝛼ℰ 𝑡𝑡 , and linear 
acceleration 𝒩𝒩�⃗�𝛼𝒢𝒢 𝑡𝑡 are, for our purposes, determined from empirical data 
collected by NASA and made available through JPL’s CSPICE software at 
https://naif.jpl.nasa.gov/naif/index.html.

• For Earth’s gravity calculation, SGG-UGM-2 (http://icgem.gfz-potsdam.de/), 
published to degree 2190 but truncated to degree 96.

• Lunar gravitational acceleration implemented using 
sphericalRFM_MOON_2519 (http://icgem.gfz-potsdam.de/), published to 
degree 2519 but truncated to degree 60.

• Set up but not implemented:
• Gravitational pull by the sun and other planets.
• A program to acquire the published monthly GRACE-FO data with a curve fit 

to obtain non-tidal influences on Earth’s gravitational potential.
• Earth Ocean Tides 2011a to implement the gravitational potential caused by 

Earth’s ocean tides.
• Atmosphere and Ocean De-Aliasing Level-1B to implement the gravitational 

potential of Earth’s atmosphere.
• International Earth Rotation and Reference System Service (IERS) guidelines 

on the following:
• Gravitational potential caused by solid Earth tides.
• Gravitational potential caused by solid earth and oceanic polar tides.
• General relativistic corrections to dynamics (Schwarzschild-Lens-Thinning term).

https://naif.jpl.nasa.gov/naif/index.html
http://icgem.gfz-potsdam.de/
http://icgem.gfz-potsdam.de/


Next Steps

• Implement the remaining IERS 2010 dynamics terms.

• Apply Tschauner-Hempel equations.

• Include terms for satellite-applied controls (e.g., thrust).

• Determine bounds of control effort required to maintain geometry.

• Satellite networked architecture.
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