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Problem Formulation

* Framework Reward Functions R Markov Decision Processes (MDPs) M
# Linear Temporal Logic (LTL) Specifications ¢ Zero-Sum Stochastic Games (SGs) § -

Environment
F ] ] &

Reinforcement Learning .]
{ Strategy ]
|

|

(Mixed Finite-Memory) Controller Strategies u

* Problem
Given an unknown ( and a specification ¢,
learn a strategy in argmax, min,, P1,,(G = ¢)
where 1 and v are controller and adversary strategies.
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Stochastic Games and Linear Temporal Logic

* Labeled Turn-Based Zero-Sum Stochastic Games
G=(5/(S.,S,) 50,4, P AP, L)

« §=5,US, isafinite set of states; s is an initial state

1 1‘2?

. Sw S, are the controller and the adversary states

* A is afinite set of actions {a}
* P isthe transition probability function (unknown) S0
AP is a set of labels/atomic propositions s
e L:S — 2" isalabeling function 09 fcr )
\. 1 [36
* LTL Grammar

p=truelal—@le; A@y | Op |9 Up, a€AP : Controller State
* Y1V, =-(1p1 N@y); : Adversary State
P17 P2 =91V @ <{> :Actions

e Op =truelog
+ O ==(0-9)
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* Key Idea: Reduction { Task (@) ] { Environment (G) ]
* From the LTL objective U
argmax, min, Pr,,(G &= @) r. N\
* To a return objective ( [ Automaton(,) ] |
argmax, min, E, |G ] | |
w | U N -
argmax, min, E,, z Yo | Product Game with Parity Objective (G*, ¢*) |
=0 I \ J I
| Z -
| : . . X X I
« Reduction Steps: v L Product Game with Return Objective (§*, G, ) |
 LTL->Automaton SN——_— - -
* Product Game Construction f
* Reduction from Parity to Return L Reinforcement Learning
* Model-free Learning

[ Strategy ]




Duke

PRATT SCHOOL of
ENGINEERING

Product Game Construction

* LTL to Deterministic Parity Automata (DPA) Translation (1{b} (5) A
* The set of traces satisfying ¢ is an w-regular language (abl{ab.c) (4) P (eyltaciib.el
* ADPA A, recognizing the language can be automatically constructed [{a,b,c} (4)
* Example: ¢ = (00a A O0b) v 00c
{c}{b,c} (5) Q
* Product Game
! Ulfa}ltbi{ab} (5) )

* Simultaneous execution of the SG § and the DPA A,
e Does not have to be constructed explicitly
* Winning Condition: Parity Objective

@”* = max{Color(s™) | s* € Inf ()}

L OL(E)0> G
1 52§>

\{a}, S0q1

Db (¥

{9

Ssq Saq
—w—tl ”»‘—“ (‘4)0 &
1 $291 Sz%_,‘

5
& 1 S190|/
(4)
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Reduction I: Distinct Discount Factors - Biichi Conditions

e Biichi Conditions
e Two colors: Color 1 and Color 2
» Suffices for MDPs (with some additional structured nondeterminism)
* (*: Repeatedly visit states colored with 2

« Example: Pr((s§,up) E ¢*) = 0.9 and Pr((s§,down) E ¢*) =1

Winning Component

* Reduction to Return Objectives
if Col ) =2
* Reward Function: R, (s*) = K 1 olor(s”)
0 ifColor(s*) =1
1-r1, ifColor(s*) =2
1—r1; ifColor(s*) =1

1

* Discount Function: I',(s™) := {

* Example: g(s*,up) = 0.9 and q(s*, down) =

* Theorem[1,2]:
 For a Bichi condition ¢ and any strategy pair (1,v),

Pr ., (G™ E @™) = r<,1)i—r>%+ By [Z(i)io(ng'ﬂ Fw(sé)))ch(S(xi))]

[1] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. “Control Synthesis from Linear Temporal Logic Specifications using Model-Free Reinforcement Learning”. ICRA, 2020.
[2] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. “Model-Free Reinforcement Learning for Stochastic Games with Linear Temporal Logic Objectives”. ICRA, 2021, accepted.
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Reduction I: Distinct Discount Factors - Generalization

Winning Component

* Parity Conditions with k > 2
« Example: Pr((s§,up) E ¢*) = 0.9 and Pr((sg,down) & ¢*) =0

e Adistinct power for each color

k=Color(s™)  if Color(s™) is even

* Reward Function: R,,(s™) =1 ¢
0 if Color(s*) is odd
* Discount Function: T, (s*) == 1 — rqﬁ‘-COlOT(sx)
« Example: g(s*,up) = 0.9 and q(s*, down) = 11_r2(p
1+
"o

e Distinct powers of rewards and discount factors captures the order
* Not Scalable

* An approximation is provided in [2]

[2] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. “Model-Free Reinforcement Learning for Stochastic Games with Linear Temporal Logic Objectives”. ICRA, 2021, accepted
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Case Study: Avoiding an Adversary

 Grid World
* The agent and the adversary can take four actions:
North, South, East, West 0 1 2 3 4 0 1 2 3 4
* The probability of moving in the intended direction: 0.8 0: ' L 5_; [ 0: | f | | f I
* The probability of moving in a direction orthogonal to .bd @d c,d b.d . bd i&d €idl b.d
the intended direction: 0.2 1 v €2 1 n t
* Objective . ¢ v £ ¢ v
 Repeatedly visita » and a ¢ cell S CH— ;. > @ » + «
* Reach a safe region labeled with d or e and do not leave &€ Call [ o
* Avoid the adversary (a) at all costs. iy Sl b@ Y Uil b.e
@ = 00 AO0c A(00d v 00e) A O=a (a) Adversary is at (0,0) and =1 (b) Adversary is at (3, 1) and i=2

The darker blue, the higher estimated satisfaction probability
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Reduction II: Priority Reward Machines

* Objective:
* Design a reduction where the discount factors, rewards, transition probabilities do not
depend on the number of colors

* Priority Reward Machines (PRMs)

* The Moore machines consisting of priority modes g; & .
g, Iifp > 0andpiseven 1-¢

+ Output: R(s%,0) =] ¢ "¢ ° J
0, otherwise 1-Ve

* A priority mode g; is overruled by g; when Color j is consumed @ﬂ Ve

* PRMsreset to g1 w.p. &,

* PRMs move from g, to g1 w.p. \/e(p

* Theorem Il [3]:
 For a parity condition ¢ and any strategy pair (u,v),

Pr,,(G* E @) = hm LEuy [Z(l eq,) R} (S(l),Q(l))]

[3] A. K. Bozkurt, Y. Wang, and M. Pajic. “Learning Optimal Strategies for Temporal Tasks in Stochastic Games”. 2021, submitted.
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Case Study: Surveillance

 Grid World
* The agent can take four actions: North, South, East, West
* The adversary can disrupt the movement so that the agent might

move in a perpendicular direction O@b b O D cli

* Objective
e Eventually perform one of the following surveillance tasks:
» Repeatedly visit a without leaving the region b
* Repeatedly visit ¢ without leaving the region d
* Repeatedly visit e and [ without leaving the region g

¢ = (00 A9B) ¥ (D0 AGD) ¥ (D0 A DO 100 Il e el
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Case Study: Nursery Scenario

* Objective
e Startat (0,0)
* Enter the region labeled with e and stay there
* Inform the adult a exactly once
* Repeatedly visit the baby b and the charger station ¢
* Avoid the danger zone d
@ = 00eA0aAO(a > O0-a)ADO0 ADO-d

Before a After a
The cells visited under the optimal strategies are highlighted in purple.
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Quality of Control Optimization under LTL Specifications

* Multiple Objectives with Lexicographic Order:

* Priority 1: Safet A
. SZfety LTL IIoIIbmuIa { Task (¥, ¢, Rgoc) ] \ Environment (M) ]
* Ensuring the safety is usually of utmost importance _-———J|——————— |——— —
* Priority 2: LTL @ / A h
* Important system specifications as an LTL formula { Automata (d‘lw» "qrp) \
other than safety QoC Rewards (Rqoc) |
* Priority 3: QoC R,

4 ~

Product MDP with Safety, Blichi and Return
Objectives (M ™, ¥, ¢*, Géoc)

—_——

e External Rewards

* LTL cannot specify objectives including cost, yield
or quality optimization

* Example: Minimization of Energy Consumption

S EE— E—— E— — — — —

I
I
I
I
I
I
I
I
/

*  Problem: Lexicographic .]
* Foragiven MDP M learn a strategy u € le) p “ where \ Iinforcement ﬂing y
Xy = argmax, Pr,(M &) SNS——————— e —
Sy = argmaxyes, Pr,(M & @) { Strategy ]

C
ZQ = argmaxyes,, , ’2 % r(?)o ]
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e Algorithm I: QoC Optimization Under Safety and LTL Specifications
* Learning Actions Sets
o Vy(s™) « maxyxQy(s™, a*)
o AY —{a | Vy(s7) = Qy(s™,aX) STy }
o Vy(s¥) « MaXgxezs Q.o (s™,a%)
. A;,j,q,(sx) «{a*€ A5 (™) | Vip o (s7) = Qup(s*,aX) < Ty )

o AY « argmax Q9%°°(s*, a%)
¢'<p x X w;(p
a eAw,(p(sX)

e Action Selection
*  Choose arandom action w.p. e (during exploration)
*  Choose a random action from /if/j,q, (s™) w.p. v (for LTL)

*  Choose an action in Ai,j’f(p

* Q-Value Updates
*  Use Q-learning to update Qy, and Qy

«  Use SARSA to update ng’;

* Theorem Il [4]:
e Algorithm | learns a lexicographically near-optimal strategy u € pr

QoC—v

rewards provided in Reduction I.

[4] A. K. Bozkurt, Y. Wang, and M. Pajic. “Model-Free Learning of Safe yet Effective Controllers”. 2021, submitted.

for sufficiently small Ty T > 0, for the
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 Grid World
* The agent can take four actions: North, South, East, West
* The agent moves in the intended direction w.p. 0.8
* The agent moves in a direction orthogonal to the intended direction w.p. 0.2

* QoC Optimization Example 0 1 9 3 1 5
« Safety: ' IR '
o . 0- v € € <« 3 &
* Avoid visiting a danger state d consecutively _ d C C
* P =0 A0 AR Q t 1t
e LTL: C &
« Occasionally visit a checkpoint b - v € Q@ d bf
° QY = Qob C , C
. : N e s T T
QoC: _ c c
« Stay at the top-right corner as long as possible . A ¢ O@ 5> 4
+ R¥C((05) =1 NN/
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