Learning Optimal Strategies for Temporal Tasks in Stochastic Games

Miroslav Pajic

Department of Electrical and Computer Engineering Duke University April 30, 2021

PRATT SCHOOL of ENGINEERING

Problem Formulation

• Problem

Given an unknown G and a specification φ , learn a strategy in $\operatorname{argmax}_{\mu} \min_{\nu} \operatorname{Pr}_{\mu,\nu}(G \models \varphi)$ where μ and ν are controller and adversary strategies.

Stochastic Games and Linear Temporal Logic

Labeled Turn-Based Zero-Sum Stochastic Games •

 $\mathcal{G} = (S, (S_{\mu}, S_{\nu}), s_0, A, P, AP, L)$

- $S = S_{\mu} \cup S_{\nu}$ is a finite set of states; s_0 is an initial state
- S_{μ} , S_{ν} are the controller and the adversary states
- A is a finite set of actions •
- *P* is the transition probability function (unknown) •
- *AP* is a set of labels/atomic propositions
- $L: S \rightarrow 2^{AP}$ is a labeling function
- LTL Grammar

 $\varphi \coloneqq \text{true} \mid a \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \sqcup \varphi_2, \ a \in AP$

- $\varphi_1 \vee \varphi_2 \coloneqq \neg (\neg \varphi_1 \wedge \neg \varphi_2);$
- $\varphi_1 \rightarrow \varphi_2 \coloneqq \neg \varphi_1 \lor \varphi_2$
- $\Diamond \varphi \coloneqq \text{true U } \varphi$
- $\Box \varphi \coloneqq \neg (\Diamond \neg \varphi)$

PRATT SCHOOL 07 ENGINEE

RING

: Adversary State

RL Framework for LTL

- Key Idea: Reduction
 - From the LTL objective

$$\operatorname{argmax}_{\mu} \operatorname{min}_{\nu} \operatorname{Pr}_{\mu,\nu}(\mathcal{G} \vDash \varphi)$$

• To a return objective

$$argmax_{\mu} \min_{\nu} \mathbb{E}_{\mu,\nu} [G_{\varphi}^{\times}]$$
$$argmax_{\mu} \min_{\nu} \mathbb{E}_{\mu,\nu} \left[\sum_{i=0}^{\infty} \gamma^{i} r_{(i)} \right]$$

- Reduction Steps:
 - LTL -> Automaton
 - Product Game Construction
 - Reduction from Parity to Return
 - Model-free Learning

Product Game Construction

- LTL to Deterministic Parity Automata (DPA) Translation
 - The set of traces satisfying φ is an ω -regular language
 - A DPA \mathcal{A}_{φ} recognizing the language can be automatically constructed
 - Example: $\varphi = (\Diamond \Box a \land \Box \Diamond b) \lor \Diamond \Box c$
- Product Game
 - Simultaneous execution of the SG \mathcal{G} and the DPA \mathcal{A}_{φ}
 - Does not have to be constructed explicitly
 - Winning Condition: Parity Objective

 $\varphi^{\times} \coloneqq max\{Color(s^{\times}) \mid s^{\times} \in Inf(\pi^{\times})\}$

Reduction I: Distinct Discount Factors - Büchi Conditions

- Büchi Conditions
 - Two colors: Color 1 and Color 2
 - Suffices for MDPs (with some additional structured nondeterminism)
 - φ^{\times} : Repeatedly visit states colored with 2
 - Example: $Pr((s_0^{\times}, up) \models \varphi^{\times}) = 0.9$ and $Pr((s_0^{\times}, down) \models \varphi^{\times}) = 1$
- Reduction to Return Objectives

• Reward Function:
$$R_{\varphi}(s^{\times}) \coloneqq \begin{cases} r_{\varphi} & \text{if } Color(s^{\times}) = 2\\ 0 & \text{if } Color(s^{\times}) = 1 \end{cases}$$

1

• Discount Function:
$$\Gamma_{\varphi}(s^{\times}) \coloneqq \begin{cases} 1 - r_{\varphi} & \text{if } Color(s^{\times}) = 2\\ 1 - r_{\varphi}^2 & \text{if } Color(s^{\times}) = 1 \end{cases}$$

- Example: $q(s^{\times}, up) = 0.9$ and $q(s^{\times}, down) = \frac{1}{1 + r_{\varphi}(1 r_{\varphi})}$
- Theorem I [1,2]:
 - For a Büchi condition φ^{\times} and any strategy pair (μ, ν) ,

$$Pr_{\mu,\nu}(\mathcal{G}^{\times} \vDash \varphi^{\times}) = \lim_{r_{\varphi} \to 0^{+}} \mathbb{E}_{\mu,\nu} \left[\sum_{i=0}^{\infty} \left(\prod_{j=1}^{i} \Gamma_{\varphi}(s_{(j)}^{\times}) \right) R_{\varphi}(s_{(i)}^{\times}) \right]$$

[1] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. "Control Synthesis from Linear Temporal Logic Specifications using Model-Free Reinforcement Learning". ICRA, 2020.
[2] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. "Model-Free Reinforcement Learning for Stochastic Games with Linear Temporal Logic Objectives". ICRA, 2021, accepted.

PRATT SCHOOL of ENGINEERING

Reduction I: Distinct Discount Factors - Generalization

Duke PRATT SCHOOL of ENGINEERING

- Example: $Pr((s_0^{\times}, up) \vDash \varphi^{\times}) = 0.9$ and $Pr((s_0^{\times}, down) \vDash \varphi^{\times}) = 0$
- A distinct power for each color
 - Reward Function: $R_{\varphi}(s^{\times}) \coloneqq \begin{cases} r_{\varphi}^{k-Color(s^{\times})} & \text{if } Color(s^{\times}) \text{ is } even \\ 0 & \text{if } Color(s^{\times}) \text{ is } odd \end{cases}$
 - Discount Function: $\Gamma_{\varphi}(s^{\times}) \coloneqq 1 r_{\varphi}^{k-Color(s^{\times})}$
 - Example: $q(s^{\times}, up) = 0.9$ and $q(s^{\times}, down) = \frac{1}{1 + \frac{1 r_{\varphi}^2}{r_{\varphi}}}$
 - Distinct powers of rewards and discount factors captures the order
 - Not Scalable
- An approximation is provided in [2]

c, d

b, d

b.e

- Grid World
 - The agent and the adversary can take four actions: North, South, East, West
 - The probability of moving in the intended direction: 0.8
 - The probability of moving in a direction orthogonal to the intended direction: 0.2
- Objective
 - Repeatedly visit a *b* and a *c* cell
 - Reach a safe region labeled with *d* or *e* and do not leave
 - Avoid the adversary (*a*) at all costs.

 $\varphi = \Box \Diamond b \land \Box \Diamond c \land (\Diamond \Box d \lor \Diamond \Box e) \land \Box \neg a$

c, d

a

The darker blue, the higher estimated satisfaction probability

Reduction II: Priority Reward Machines

- Objective:
 - Design a reduction where the discount factors, rewards, transition probabilities do not depend on the number of colors
- Priority Reward Machines (PRMs)
 - The Moore machines consisting of priority modes ϱ_i
 - Output: $R_{\varphi}^{\star}(s^{\times}, \varrho) \coloneqq \begin{cases} \varepsilon_{\varphi} & \text{if } \varrho > 0 \text{ and } \varrho \text{ is } even \\ 0, & otherwise \end{cases}$
 - A priority mode ϱ_i is overruled by ϱ_j when Color *j* is consumed
 - PRMs reset to ϱ_1 w.p. ε_{φ}
 - PRMs move from ϱ_0 to ϱ_1 w.p. $\sqrt{\varepsilon_{\varphi}}$
- Theorem II [3]:
 - For a parity condition φ^{\times} and any strategy pair (μ, ν) ,

$$Pr_{\mu,\nu}(\mathcal{G}^{\times} \vDash \varphi^{\times}) = \lim_{\varepsilon_{\varphi} \to 0^{+}} \mathbb{E}_{\mu,\nu} \left[\sum_{i=0}^{\infty} (1 - \varepsilon_{\varphi})^{i} R_{\varphi}^{\star}(s_{(i)}^{\times}, \varrho_{(i)}) \right]$$

Grid World

- The agent can take four actions: *North, South, East, West*
- The adversary can disrupt the movement so that the agent might move in a perpendicular direction

Objective

- Eventually perform one of the following surveillance tasks:
 - Repeatedly visit *a* without leaving the region *b*
 - Repeatedly visit *c* without leaving the region *d*
 - Repeatedly visit *e* and *f* without leaving the region *g*

 $\varphi = (\Box \Diamond a \land \Diamond \Box b) \lor (\Box \Diamond c \land \Diamond \Box d) \lor (\Box \Diamond e \land \Box \Diamond f \land \Diamond \Box g)$

The cells visited under the optimal strategies are highlighted in purple.

- Objective
 - Start at (0,0)٠
 - Enter the region labeled with *e* and stay there ٠
 - Inform the adult *a* exactly once ٠
 - Repeatedly visit the baby b and the charger station c ٠
 - Avoid the danger zone *d* ٠

 $\varphi = \Diamond \Box e \land \Diamond a \land \Box (a \to \bigcirc \Box \neg a) \land \Box \Diamond b \land \Box \neg d$

Before *a*

The cells visited under the optimal strategies are highlighted in purple.

Quality of Control Optimization under LTL Specifications

PRATT SCHOOL of ENGINEERING

- Multiple Objectives with Lexicographic Order:
 - Priority 1: Safety ψ
 - Safety LTL formula
 - Ensuring the safety is usually of utmost importance
 - Priority 2: LTL φ
 - Important system specifications as an LTL formula other than safety
 - Priority 3: QoC R_{QoC}
 - External Rewards
 - LTL cannot specify objectives including cost, yield or quality optimization
 - Example: Minimization of Energy Consumption
- Problem:
 - For a given MDP \mathcal{M} learn a strategy $\mu \in \Sigma_{\psi,\varphi}^{QoC}$ where

$$\Sigma_{\psi} \coloneqq \operatorname{argmax}_{\mu} \operatorname{Pr}_{\mu}(\mathcal{M} \vDash \psi)$$
$$\Sigma_{\psi,\varphi} \coloneqq \operatorname{argmax}_{\mu \in \Sigma_{\psi}} \operatorname{Pr}_{\mu}(\mathcal{M} \vDash \varphi)$$
$$\Sigma_{\psi,\varphi}^{\operatorname{QoC}} \coloneqq \operatorname{argmax}_{\mu \in \Sigma_{\psi,\varphi}} \mathbb{E}_{\mu} \left[\sum_{i=0}^{\infty} \gamma^{i} r_{(i)}^{\operatorname{QoC}} \right]$$

QoC Optimization via Lexicographic RL

- Algorithm I: QoC Optimization Under Safety and LTL Specifications
 - Learning Actions Sets
 - $V_{\psi}(s^{\times}) \leftarrow max_{a^{\times}}Q_{\psi}(s^{\times}, a^{\times})$
 - $\hat{A}_{\psi}^{\times} \leftarrow \left\{ a^{\times} \mid V_{\psi}(s^{\times}) Q_{\psi}(s^{\times}, a^{\times}) \le \tau_{\psi} \right\}$
 - $V_{\psi}(s^{\times}) \leftarrow max_{a^{\times} \in \hat{A}_{\psi}^{\times}} Q_{\psi,\varphi}(s^{\times}, a^{\times})$
 - $\hat{A}_{\psi,\varphi}^{\times}(s^{\times}) \leftarrow \left\{ a^{\times} \in A_{\psi}^{\times}(s^{\times}) \mid V_{\psi,\varphi}(s^{\times}) Q_{\psi,\varphi}(s^{\times},a^{\times}) \le \tau_{\varphi} \right\}$
 - $\hat{A}_{\psi,\varphi}^{\times*} \leftarrow \underset{a^{\times} \in \hat{A}_{\psi,\varphi}^{\times}(s^{\times})}{\operatorname{argmax}} Q_{\psi,\varphi}^{QoC}(s^{\times}, a^{\times})$
 - Action Selection
 - Choose a random action w.p. *e* (during exploration)
 - Choose a random action from $\hat{A}^{\times}_{\psi,\varphi}(s^{\times})$ w.p. v (for LTL)
 - Choose an action in $\hat{A}_{\psi,\varphi}^{\times *}$
 - Q-Value Updates
 - Use Q-learning to update $Q_{ar{\psi}}$ and $Q_{\psi, arphi}$
 - Use SARSA to update $Q_{\psi,\varphi}^{QoC}$
- Theorem III [4]:
 - Algorithm I learns a lexicographically near-optimal strategy $\mu \in \Sigma_{\psi,\varphi}^{QoC-\nu}$ for sufficiently small $\tau_{\psi}, \tau_{\varphi} > 0$, for the rewards provided in Reduction I.

[4] A. K. Bozkurt, Y. Wang, and M. Pajic. "Model-Free Learning of Safe yet Effective Controllers". 2021, submitted.

Case Study: QoC Optimization

- **Grid World** ٠
 - The agent can take four actions: *North, South, East, West* ٠
 - The agent moves in the intended direction w.p. 0.8 ٠
 - The agent moves in a direction orthogonal to the intended direction w.p. 0.2
- **QoC Optimization Example** ٠
 - Safety: ٠
 - Avoid visiting a danger state d consecutively ٠
 - $\psi = \Box \neg (d \land \bigcirc d)$ •
 - LTL: ٠
 - Occasionally visit a checkpoint *b* ٠
 - $\varphi = \Box \Diamond b$ ٠
 - QoC: ٠
 - Stay at the top-right corner as long as possible •
 - $R^{\text{QoC}}(\langle 0,5\rangle) = 1$ ٠

PRATT SCHOOL of ENGINEE

RING

Thank you

