Secure Planning Against Stealthy Attacks via Model-Free Reinforcement Learning

Miroslav Pajic

CPSL@Duke Department of Electrical and Computer Engineering Duke University

PRATT SCHOOL of ENGINEERING

Adding Resiliency

[ICRA21a, ICRA21b, ICRA20, ICRA19, CAV'19a, THMS19]

[Automatica21*, TII21, TASE21*, CDC19a, CDC19b, IoTDI19]

[ICML21*, TCPS20, ACC20, AUT21b*, AUT21, AUT18, TECS17, RTSS17, TCNS17a, TCNS17b, CSM17, CDC17, CDC18,...]

Our Goal: Add resiliency to controls across different/all levels of the autonomy stack

- Controller
 - aims to perform a given task in an unknown stochastic environment
 - has a perfect knowledge of the current state
 - has an intrusion-detection system (IDS) that monitors anomalies
 - can detect attacks only when the IDS raises an alarm

- Attacker
 - aims to prevent the controller from performing the given task
 - has a perfect knowledge of the current state, the controller strategy and the IDS mechanism
 - can attack on actuators unless detected
 - tends to stay stealthy

Secure Planning Objective

•

• For a given task and the IDS mechanism, learn an optimal controller strategy resilient to stealthy attacks on actuators

- Three-Step Solution [1]:
 - Model the problem as a zero-sum SG G with an LTL winning condition φ capturing
 - the controller task
 - the IDS mechanism
 - the behavior of stealthy attackers
 - Reduce the LTL objective $\operatorname{argmax}_{\mu} \min_{\nu} \operatorname{Pr}_{\mu,\nu}(\mathcal{G} \vDash \varphi)$ to a return objective:

$$argmax_{\mu} \min_{\nu} \mathbb{E}_{\mu,\nu} [G_{\varphi}^{\times}]$$
$$argmax_{\mu} \min_{\nu} \mathbb{E}_{\mu,\nu} \left[\sum_{i=0}^{\infty} \gamma^{i} r_{(i)} \right]$$

LTL Winning Condition

• φ_{TASK} :

- LTL specification of the given task
- Surveillance Example:

 $\varphi_{\text{TASK}} = \Box \Diamond \operatorname{region}_1 \land \Box \Diamond \operatorname{region}_2$

• φ_{IDS} :

- LTL specification of the intrusion detection system
- A reachability specification satisfied when an attack is detected
- Attacks can be detected only after reaching the high-alert mode triggered by the anomalies
- Counting-Based IDS Example:

 $\varphi_{\text{IDS}} = \Diamond \left(\text{anomaly} \land \bigcirc (\text{anomaly} \land \bigcirc \Diamond^{\leq T} \text{attack}) \right)$

- Two consecutive anomalies triggers the high-alert mode
- The attacks can be detected during the high-alert mode
- Winning Condition: $\boldsymbol{\varphi} = \boldsymbol{\varphi}_{\text{IDS}} \lor \boldsymbol{\varphi}_{\text{TASK}}$:
 - $\neg \varphi = \neg \varphi_{IDS} \land \neg \varphi_{TASK}$ reflects the behavior of stealthy attackers
 - Being detected results in losing the game; thus, the attacker always stays hidden
 - The only way for the attacker to win to prevent the controller performing the task

- Satisfaction of φ_{TASK} :
 - The task needs to be performed even after the attacker is eliminated
 - An attack could prevent performing the task even if it is detected
 - Safety Example:

 $\varphi_{\text{TASK}} = \Box \neg \text{unsafe}$

- Recovering from an unsafe state is not possible; although being eliminated the attacker should win the game
- Allowing for a single attack:
 - φ_{IDS} can be easily modified to capture such cases
 - An attack after a detected attack satisfies $arphi_{
 m IDS}$
 - Counting-Based IDS Example:

 $\varphi_{\text{IDS}} = \Diamond \left(\text{anomaly} \land \bigcirc \left(\text{anomaly} \land \bigcirc \Diamond^{\leq T} (\text{attack} \land \bigcirc \Diamond \text{attack}) \right) \right)$

• Being eliminated is equivalent to not attacking after a detected attack

RL Framework for LTL

- Reduction Steps:
 - LTL -> Automaton
 - Product Game Construction
 - Reduction from Parity to Return
 - Model-free Learning
- Parity to Return I (Multiple Rewards Discount Factors) [2]:
 - $Pr_{\mu,\nu}(\mathcal{G}^{\times} \vDash \varphi^{\times}) = \lim_{r_{\varphi} \to 0^{+}} \mathbb{E}_{\mu,\nu} \left[\sum_{i=0}^{\infty} \left(\prod_{j=1}^{i} \Gamma_{\varphi}(s_{(j)}^{\times}) \right) R_{\varphi}(s_{(i)}^{\times}) \right]$

•
$$R_{\varphi}(s^{\times}) \coloneqq r_{\varphi}^{k-Color(s^{\times})} \mathbf{1}_{\{Color(s^{\times}) \text{ is even}\}}$$

- $\Gamma_{\varphi}(s^{\times}) \coloneqq 1 r_{\varphi}^{k-Color(s^{\times})}$
- Parity to Return Objectives II (Priority Reward Machines) [3]:

•
$$Pr_{\mu,\nu}(\mathcal{G}^{\times} \vDash \varphi^{\times}) = \lim_{\varepsilon_{\varphi} \to 0^{+}} \mathbb{E}_{\mu,\nu} \left[\sum_{i=0}^{\infty} (1 - \varepsilon_{\varphi})^{i} R_{\varphi}^{\star}(s_{(i)}^{\times}, \varrho_{(i)}) \right]$$

- ε_{φ} : PRM transition probability
- $\varrho_{(i)}$: PRM state
- R_{φ}^{\star} : PRM reward

PRATT SCHOOL of

- Grid World
 - The agent (i.e., the controller) can take four actions: *North, South, East, West*
 - The agent moves in the intended direction w.p. 0.8 and sideways w.p. 0.2
 - The attacker can override the controller action
 - A movement is called an anomaly if it is not in the intended direction

- IDS:
 - Two consecutive anomalies triggers the high-alert mode for the next two time steps

$$\varphi_{\text{IDS}} = \Diamond \left(\text{anomaly } \land \bigcirc \left(\text{anomaly } \land \bigcirc \Diamond^{\leq 1} (\text{attack } \land \bigcirc \Diamond \text{attack}) \right) \right)$$

• Task:

- Repeatedly visit a *b* and a *c* cell
- Eventually reach a safe region labeled with *d* and do not leave

 $\varphi_{\mathrm{TASK}} = \Box \Diamond b \land \Box \Diamond c \land \Diamond \Box d$

	0	1	2	3	4	5	6	7	8	
0-	+	\overrightarrow{d}	\overrightarrow{d}	\overrightarrow{d}	→ d	→ d	\overrightarrow{d}	\overrightarrow{d}	d	
1.	•	\overrightarrow{d}	\overrightarrow{d}	\overrightarrow{d}	↑ d	$\frac{\uparrow}{d}$	\overrightarrow{d}	\overrightarrow{d}	$\frac{\downarrow}{d}$	
2.	•	\overrightarrow{d}	\overrightarrow{d}	$ \begin{array}{c} \uparrow \\ b, d \end{array} $	$\frac{\uparrow}{d}$	↑ d	\overrightarrow{d}	\overrightarrow{d}	$\frac{\downarrow}{d}$	
3-	•	\overrightarrow{d}	\overrightarrow{d}	$\overset{\downarrow}{\overset{}{d}}$	★ d	1	\overrightarrow{d}	\overrightarrow{d}	$\frac{1}{d}$	
4 -	+	\overrightarrow{d}	\overrightarrow{d}	c,d	★ d	↓ d	$\frac{1}{d}$	$\overset{\downarrow}{_{d}}$	↓ d	
5-	+	\overrightarrow{d}	\overrightarrow{d}	\uparrow	★ d	$\frac{1}{d}$	$\overset{\downarrow}{\overset{}{d}}$	$\overset{\downarrow}{\overset{}{d}}$	$\frac{\downarrow}{d}$	
6-	+	\overrightarrow{d}	\overrightarrow{d}	\uparrow	← d	$\frac{\mathbf{d}}{\mathbf{d}}$	← d	$\frac{d}{d}$	$\frac{4}{d}$	

(a) The controller strategy from *b* to *c* and the labels of the cells

(c) The controller and the attacker strategies from *b* to *c* after one anomaly

• Task:

- Repeatedly visit a *b* and a *c* cell
- Eventually reach a safe region labeled with *d* and do not leave

$$\varphi_{\text{TASK}} = \Diamond \left(b \land \Diamond (c \land \Diamond (d \land \Diamond e)) \right) \land \Box \neg a$$

(a) The controller strategy from *d* to *e* and the labels of the cells

(c) The controller and the attacker strategies from *d* to *e* right after an alarm is raised

UAV Model

$$\begin{array}{c|c} & \begin{array}{c} pl = uav \\ fly \end{array} & \begin{array}{c} fly \end{array} & \begin{array}{c} pl = uav \\ fly! \\ d \in A_{uav} \end{array} & \begin{array}{c} x_{\mathcal{B}} \coloneqq x_{\mathcal{B}} + \Delta x(d) \\ d_{\mathcal{B}} \coloneqq d \\ pl \coloneqq adv \end{array}$$

Adversary Model

 $\mathcal{M}_{adv} \xrightarrow{\text{attack}} \begin{array}{l} pl = adv \\ x_{\mathcal{T}} \coloneqq x_{\mathcal{T}} + \Delta x(f(z)) \\ pl \coloneqq as \end{array}$

Information inside this box is oftentimes unknown, i.e., hidden

Off-the-shelf model checkers do NOT support hidden variables Strategies CANNOT be synthesized based on hidden information

Security-Aware Mission Planning

7

[1] M. Elfar, Y. Wang, and M. Pajic, "Security-Aware Synthesis using Delayed Action Games", 31st CAV, 2019.

Lidar Attacks – Visualizations in Camera Frame

7

PRATT SCHOOL of

Attacks on Camera-Lidar Fusion Frustum Pointnet Vulnerability Example

- Injection of just 65 points (bracketed red) can fool frustum pointnet 3D object detection, even against a valid object (bracketed yellow) of 492 points
- An adversary capitalizes on physics-based assumptions that few LiDAR points penetrate physical objects.

Fusion of camera + LiDAR is still vulnerable to attacks with knowledge of the approximate frustum

Tracking Case Study – Incoming Vehicle

PRATT SCHOOL of ENGINEERING

- Move false detections into false target tracking.
- Initial injection is in red box, white line is track history, and white box is ground truth target location.
- False moving target created with a time-to-impact with the host vehicle of just under 1.2 seconds

Tracking Case Study: Vehicle Following

PRATT SCHOOL of ENGINEERING

Attack goal: create a false vehicle trajectory moving away from the host vehicle

resulting in unsafe behavior of the host vehicle.

Thank you

