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Our Goal: Add resiliency to controls across different/all levels of the autonomy stack

Adding Resiliency
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[ICRA21a, ICRA21b, ICRA20, 
ICRA19, CAV’19a, THMS19]



Problem Setting

• Controller
• aims to perform a given task in an unknown stochastic environment
• has a perfect knowledge of the current state
• has an intrusion-detection system (IDS) that monitors anomalies
• can detect attacks only when the IDS raises an alarm

• Attacker
• aims to prevent the controller from performing the given task
• has a perfect knowledge of the current state, the controller strategy and the IDS mechanism
• can attack on actuators unless detected
• tends to stay stealthy
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Secure Planning Objective

Reinforcement Learning

Strategy

Winning Condition (𝜑) Environment (𝒢)

Product Game with Return Objective (𝒢×, 𝐺"×)

• Problem:
• For a given task and the IDS mechanism,  learn an optimal
controller strategy resilient to stealthy attacks on actuators

• Three-Step Solution [1]:
• Model the problem as a zero-sum SG 𝒢 with 
an LTL winning condition 𝜑 capturing 

• the controller task
• the IDS mechanism
• the behavior of stealthy attackers

• Reduce the LTL objective 𝑎𝑟𝑔𝑚𝑎𝑥# 𝑚𝑖𝑛$ 𝑃𝑟#,$ 𝒢 ⊨ 𝜑
to a return objective:

𝑎𝑟𝑔𝑚𝑎𝑥# 𝑚𝑖𝑛$ 𝔼#,$ 𝐺"×

𝑎𝑟𝑔𝑚𝑎𝑥# 𝑚𝑖𝑛$ 𝔼#,$ 1
&'(

)

𝛾&𝑟(&)

• Learn an optimal controller strategy using a model-free RL

[1] A.  K. Bozkurt, Y. Wang, and M. Pajic.  “Secure Planning Against Stealthy Attacks via Model-Free Reinforcement Learning”.  ICRA, 2021, accepted.



LTL Winning Condition

• 𝝋𝐓𝐀𝐒𝐊:

• LTL specification of the given task
• Surveillance Example:

𝜑0123=▢◊ region4 ∧▢◊ region5
• 𝝋𝐈𝐃𝐒:

• LTL specification of the intrusion detection system
• A reachability specification satisfied when an attack is detected
• Attacks can be detected only after reaching the high-alert mode triggered by the anomalies
• Counting-Based IDS Example:

𝜑892 = ◊ anomaly ∧◯ anomaly ∧◯◊:;aPack
• Two consecutive anomalies triggers the high-alert mode
• The attacks can be detected during the high-alert mode

• Winning Condition: 𝝋 = 𝝋𝐈𝐃𝐒 ∨ 𝝋𝐓𝐀𝐒𝐊:

• ¬𝜑 = ¬𝜑<=> ∧ ¬𝜑;?>@ reflects the behavior of stealthy attackers
• Being detected results in losing the game; thus, the attacker always stays hidden
• The only way for the attacker to win to prevent the controller performing the task



Performing Tasks After Attack Detection

• Satisfaction of 𝝋𝐓𝐀𝐒𝐊:

• The task needs to be performed even after the attacker is eliminated
• An attack could prevent performing the task even if it is detected
• Safety Example: 

𝜑0123=▢¬unsafe

• Recovering from an unsafe state is not possible; although being 
eliminated the attacker should win the game

• Allowing for a single attack:

• 𝜑892 can be easily modified to capture such cases
• An attack after a detected attack satisfies 𝜑892
• Counting-Based IDS Example:

𝜑892 =◊ anomaly ∧◯ anomaly ∧◯◊:; aPack ∧◯◊aPack

• Being eliminated is equivalent to not attacking after a detected attack



RL Framework for LTL

Task (𝜑) Environment (𝒢)

Reinforcement Learning

Strategy

Automaton(𝒜")

Product Game with Parity Objective (𝒢×, 𝜑×)

Product Game with Return Objective (𝒢×, 𝐺"×)

• Reduction Steps: 
• LTL -> Automaton
• Product Game Construction
• Reduction from Parity to Return
• Model-free Learning

• Parity to Return I (Multiple Rewards Discount Factors) [2]:
• 𝑃𝑟#,$ 𝒢× ⊨ 𝜑× = lim

A!→("
𝔼#,$ ∑&'() ∏C'4

& Γ" 𝑠(C)× 𝑅"(𝑠(&)× )

• 𝑅"(𝑠×) ≔ 𝑟"
DEFGHGA I× 𝟏 FGHGA I× JK LMLN

• Γ" 𝑠× ≔ 1 − 𝑟"
DEFGHGA I×

• Parity to Return Objectives II (Priority Reward Machines) [3]:

• 𝑃𝑟#,$ 𝒢× ⊨ 𝜑× = lim
O!→("

𝔼#,$ ∑&'() 1 − 𝜀"
&𝑅"⋆ (𝑠(&)× , 𝜚(J))

• 𝜀": PRM transition probability
• 𝜚(J): PRM state
• 𝑅"⋆ : PRM reward

[2] A.  K. Bozkurt, Y. Wang, M.  M. Zavlanos, and M. Pajic.  “Model-Free Reinforcement Learning for Stochastic Games with Linear Temporal Logic Objectives”.  ICRA, 2021, accepted.
[3] A. K. Bozkurt, Y. Wang, and M. Pajic. “Learning Optimal Strategies for Temporal Tasks in Stochastic Games”. 2021, submitted.



• Grid World
• The agent (i.e., the controller) can take four actions: North, South, East, West
• The agent moves in the intended direction w.p. 0.8 and sideways w.p. 0.2
• The attacker can override the controller action
• A movement is called an anomaly if it is not in the intended direction

• IDS:
• Two consecutive anomalies triggers the high-alert mode for the next two time steps

𝜑892 =◊ anomaly ∧◯ anomaly ∧◯◊:4 aPack ∧◯◊aPack

Case Studies: Grid Worlds



• Task:
• Repeatedly visit a 𝑏 and a 𝑐 cell
• Eventually reach a safe region labeled with 𝑑 and do not leave

𝜑0123=▢◊𝑏 ∧▢◊𝑐 ∧ ◊▢𝑑

Case Study I: Surveillance



• Task:
• Repeatedly visit a 𝑏 and a 𝑐 cell
• Eventually reach a safe region labeled with 𝑑 and do not leave

𝜑0123=◊ 𝑏 ∧ ◊ 𝑐 ∧ ◊ 𝑑 ∧ ◊𝑒 ∧▢¬𝑎

Case Study II: Sequencing



Attacks on Sensors

Target

UAV

Operator

GPS 
Signal

Adversary

UAV Model

Adversary Model

Information inside this box is oftentimes unknown, i.e., hidden

Off-the-shelf model checkers do NOT support hidden variables
Strategies CANNOT be synthesized based on hidden information
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Security-Aware Mission Planning

UAV Model

Adversary Model

Advisory System Model

Model Refinement

Primary 
Components
ℳ"	,ℳ"",ℳ			⃝

Auxiliary 
Components
ℳ&'(,ℳ&)'

*+,,

*-
DAG Construction

(Algorithm 1)

Strategy Synthesis
(Model Checker, ./)

0""

Composition
Strategy Analysis

(Model Checker, .1)

Private Variables Representation

Delayed Actions Representation

Bisimulation relation

[1] M. Elfar, Y. Wang, and M. Pajic, “Security-Aware Synthesis using Delayed Action Games”, 31st CAV, 2019.

Synthesis Framework [CAV19]



Lidar Attacks – Visualizations in Camera Frame

Classified as invalid at 10 m

Classified as valid at 20 m

Classified as valid at 30 m

Classified as valid at 40 m



Attacks on Camera-Lidar Fusion
Frustum Pointnet Vulnerability Example

• Injection of just 65 points (bracketed red) can fool frustum pointnet 3D object detection, 
even against a valid object (bracketed yellow) of 492 points

• An adversary capitalizes on physics-based assumptions that few LiDAR points penetrate 
physical objects.

Fusion of camera + LiDAR is still vulnerable to attacks 
with knowledge of the approximate frustum 



Tracking Case Study – Incoming Vehicle 

Initial detection 
of vehicle

Track over 9 
subsequent injections

1-Sigma projected track bounds 
on [0, 1.2] seconds later

• Move false detections into false target tracking.

• Initial injection is in red box, white line is track history, and white box 
is ground truth target location. 

• False moving target created with a time-to-impact with the host 
vehicle of just under 1.2 seconds



Tracking Case Study: Vehicle Following

1-Sigma projected track bounds 
on [0, 2] seconds later

Injected’ trajectory over 9 
subsequent injections

Final detection 
of vehicle

Attack goal: create a false vehicle trajectory moving away from the host vehicle  

• resulting in unsafe behavior of the host vehicle. 



Thank you


