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• Systems often operate in 
environments that include:

• A2AD (Anti Access/Area 
Denial) Environments

• Unknown Terrain

• Complex Environments 
(Mountains, Extreme 
Weather, Marine, etc.)

• Limitations:

• Sensing (GPS, Cameras, 
Lidar, etc.)

• Global Communication

Motivation



• Task: Agent is to follow 
path (𝑋𝑑) where state 
feedback is denied

• Agent must switch 
between two tasks:

• Following 𝑋𝑑
• Obtaining state 

feedback to regulate 
tracking errors

Problem Statement



1. Depart from the feedback region 
to 𝑋𝑑.

2. Follow 𝑋𝑑 until it is time to 
return to the feedback region.

3. Take a recommended return 
trajectory such to guarantee re-
entry into the feedback region.

Planning Strategy

— 𝑋𝑑
→ 𝑥𝜋



• Previous methods only considered circular feedback regions and 
circular paths to follow.

• This has issues…

 

 

 
 

 

 

 

 

Previous Method



• Jordan Curve (𝐶) separates plane 
into two regions

• A curve originating in the exterior 
with an odd number of 
intersections with 𝐶 terminates in 
the interior

• An even number of intersections 
terminates in the exterior.
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Jordan Curves



• Bounding regions are used to 
upper bound potential 
trajectories

• Required for separation of the 
initial position state and 
terminal state

Bounding Regions

BA



• Using Jordan Curves, “Target 
Regions” (𝑇𝐶,𝑅) are developed to 
guarantee an agent’s re-entry.

• The return target is the center of 
the ball inscribed in 𝑇𝐶,𝑅.

• This generalizes to higher 
dimensions.

ℱ

𝑇𝐶,𝑅

𝑈𝑓𝑖𝑛

𝑈𝑖𝑛𝑖𝑡

𝑣0

— 𝜕𝑅
→ Return Trajectory
--- 𝑥 𝑡
—𝐸𝐶,𝑅(𝑝)

Target Regions



Maximum Allowed Uncertainty Regions (MAURs)



• With a total of 46,855 
data points, the mean-
average increase in the 
MAUR was found to be 
233%.

• The largest increase was 
found to be 969%. This 
was observed in the 
“horseshoe” geometry (C).

Results



• Current methods use a brute force 
approach

• New methods aim to reduce 
computation time from hours to 
fractions of a second

• Add other animation of old method

MAUR Computation Methods
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Motivation

Informal Challenge: Given a controlled hybrid system with uncertain state,
how to guarantee transitions into a desired operational mode?

 crucial for ensuring high-level plan execution

 complicated geometry of transition boundaries

 must be addressed with minimal specific geometric insight
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Guaranteed Transitions: Lack of symmetry makes the problem less intuitive. . .

 It’s not about thickness of the target domain

 It’s about the transition boundary separating the error cone



Formal Problem Statement

A setup, successfully generalizing our work in [1]:

I Incomplete information on state-environment interaction: agent dynamics
over x ∈ F{, F ⊂ Rn closed, given by

‖ẋ− f(x, u)‖ ≤ d̄. (1)

I A collection A of curves x̂ : [0,∞)→ Rn, called admissible plans,

Ap , {x̂ ∈ A : x̂(0) = p} , (2)

 Usually, expect to have Ap = p + A0 = {p + x̂ : x̂ ∈ A0}

 In Sage’s problem x̂(t) , p + tv, with ‖v‖ = v0 a known constant

I Each plan is executed by applying a control u(t), t ≥ 0, guaranteeing

‖x(t)− x̂(t)‖ ≤ %(t), t ≥ 0 (3)

where % : [0,∞)→ [0,∞) is a known error-bounding function (EBF).

 There can be many EBFs, e.g., depending on p = x̂(0)



Formal Problem Statement

A setup, successfully generalizing our work in [1]:

I Incomplete information on state-environment interaction: agent dynamics
over x ∈ F{, F ⊂ Rn closed, given by
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Formal Problem Statement

Definition. A plan x̂ ∈ Ap provides an ε-guaranteed transition into F , if

(∀p∗∈Bp(ε)) (∃t≥0) (x(0) = p∗ → x(t) ∈ F). (4)

I Gp(ε) ⊆ Ap is the collection of all plans
satisfying (4).

I p ∈ Rn is ε-feasible, if Gp(ε) 6= ∅.

I p ∈ Rn is feasible if it is ε-feasible for
some ε > 0.

I What actually guarantees a plan?

I Recall: Let U ⊂ Rn be an open domain
and let p, q ∈ U . A closed set K ⊂ Rn

separates U between p and q, if p, q lie in
distinct components of U rK.

I ∂F separates Rn between p ∈ F{ and
any q ∈ int(F).

x(s)

x(0)

x(t)

p=x(0)
B  (�)p
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Formal Problem Statement

Definition. The maximum allowed uncertainty radius (MAUR) at p:

M∗F (p) ,

 sup (ε > 0: Gp(ε) 6= ∅) , if p is feasible,

0 otherwise,
(5)

and denote M(F) ,
{
f : Rn → R≥0

: f ≤M∗F
}

, the MAUR bounds.

Problem 1. Find explicit constructions of f ∈M(F).

 The inscribed ball criterion (IBC) leads to one such construction

Problem 2. Given f ∈M(F) and p ∈ Rn, compute f(p) and x̂ ∈ Gp(f(p)).

 Expect: the better f approximates M∗F , the more complex this problem will be



Topological Transition Guarantee (TTG)

I An IBC certificate at p is an EBF % with

I Bx̂(s)(%(s)) ⊆ F ,

for some x̂ ∈ Ap, s ≥ 0.

I Then one defines the IBC-MAUR:

I MIBC
F (p),sup

(
%(0) :

% is an IBC

certificate at p

)
and MIBC

F (p) , 0 otherwise.

I Clearly, MIBC
F ≤M∗F .

I The argument takes no account of the
error cone!

 Information about x(t) is thrown away

x(s)

x(0)

x(t)

p=x(0)
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Topological Transition Guarantee (TTG)

I Let U be a collection of open domains
such that

I Rn ∈ U ,
I 0 ∈ R for all R ∈ U .

 In [1], U consists of all strips centered at 0∈R2

 U expresses a bound on the growth of error cones

I Given R ∈ U , p ∈ Rn the target at p,
TR(p), is defined as the set of q ∈ Rn

separated from p by ∂F in p+R.

I A U-certificate at p is an EBF %, with:

I B , Bx̂(s)(%(s)) ⊆ TR(p), and
I x̂(t) ∈ p+R for all 0 ≤ t ≤ s.

for some x̂ ∈ Ap, s ≥ 0 and R ∈ U .

p+R

x(s)
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Topological Transition Guarantee (TTG)

I We can then define the U-MAUR:

I MUF (p), sup

(
%(0) :

% is a U-

certificate at p

)
and MUF (p) , 0 otherwise.

I Since TRn(p) = F , we have

I MIBC
F ≤MUF ≤M∗F .

I Hence a focus on computability of
lower bounds f ≤MUF , obtained by

I restircting U : strips, cylinders, cones
I restricting %: specific EBFs
I restricting ∂F : collared spheres
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Towards Computable TTG MAURs

I Jordan Curves [2] provide a “separation standard” in the plane.

I ∂F can be any continuous simple closed curve (SCC)
I ∂F can be lower-approximated by polygonal SCCs

I For simple parametric U (strips, cones), lower bounds on MUF (p) are. . .

I Piecewise regular for regular increasing %

I Solutions to a constrained optimization problem

 Combinatorial/Topological aspects to be resolved

I Computations are parallelizable.

 Target balls picked via edge-by-edge optimization

I Higher-dimensional analog via collared spheres [3]:

I An embedding γ : Sn−1 × {0} ↪→ Rn is collared, if it extends to an
embedding of Sn−1 × [−1, 1] ↪→ Rn.

I Generalized Schoenflies [4] implies: If γ : Sn−1 ↪→ Sn is collared,
then Sn r γ(Sn−1) is the disjoint union of two open balls.
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Future Directions: Reactive TTGs

I Returning to Single-Agent Relay Tracking,

I Available plans: For all p, Ap ≡ Sn−1;

I Desired TTG: f ∈M(F) with f ≤MUF ;

I Task: Xd, parametric or subdivided.

I Observe: TTG direction x̂p is well-defined
for all p ∈ F{ except for a null set.

I f increases in the direction x̂p;

I f may vary along Xd (see figure).

I Problem 3: Compute approximations
f ≤MUF in closed form.

I Problem 4: Determine the relationship
between ∇f and TTG plans.

I Characterizing TTG plans locally?

I Value tradeoffs à-la [5, 6] between
tracking Xd and detours into F?

p

Xd

v
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Future directions: Learning TTGs

In the absence of complete knowledge of F . . .

I Instead of learning F , learn MUF (or possibly ∇MUF), as a model.

I With ft approximating MUF at time t,

I ft corresponding to a polygonal approximation Ft of F ;
I Monotonicity, t ≤ s =⇒ ft ≤ fs, ensure a valid TTG for all time.
I Challenge: Maintain a connected model of F , or—
I Challenge: Extend methods over disconnected F , and—
I Challenge: Directed exploration of ∂F may be required.

I Closed parametric form MUF = H(c∗), c∗ ∈ RN means. . .

I ft takes the form of H(ct), ct ∈ RN ;
I Think of N as a bound on the complexity of Ft;
I We could attempt learning c∗;
I A natural loss function is, e.g., L(c) ,

∥∥MUF −H(c)
∥∥2
2
;

I Question: Does GD over L respond well to the above challenges?
I Question: Could exploration be guided so that GD responds

adequately to these challenges?
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Thank You for Your Attention!
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