Path Planning in Environments with Intermittent State Feedback

S. C. Edwards, D. M. Le, D. P. Guralnik and W. E. Dixon, "A Topologically Inspired Path-Following Method With Intermittent State Feedback," in IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4449-4456, July 2021, doi: 10.1109/LRA.2021.3067295.

Motivation

- Systems often operate in environments that include:
 - A2AD (Anti Access/Area Denial) Environments
 - Unknown Terrain
 - Complex Environments (Mountains, Extreme Weather, Marine, etc.)
- Limitations:
 - Sensing (GPS, Cameras, Lidar, etc.)
 - Global Communication

Problem Statement

- Task: Agent is to follow path (X_d) where state feedback is denied
- Agent must switch between two tasks:
 - Following X_d
 - Obtaining state feedback to regulate tracking errors

H-Y. Chen, et. al.,"A Switched Systems Approach to Path Following with Intermittent State Feedback", IEEE TRO, 2019.

- 1. Depart from the feedback region to X_d .
- 2. Follow X_d until it is time to return to the feedback region.
- 3. Take a recommended return trajectory such to guarantee reentry into the feedback region.

- Previous methods only considered circular feedback regions and circular paths to follow.
- This has issues...

Jordan Curves

- Jordan Curve (*C*) separates plane into two regions
- A curve originating in the exterior with an odd number of intersections with *C* terminates in the interior
- An even number of intersections terminates in the exterior.

- Bounding regions are used to upper bound potential trajectories
- Required for separation of the initial position state and terminal state

Target Regions

- Using Jordan Curves, "Target Regions" $(T_{C,R})$ are developed to guarantee an agent's re-entry.
- The return target is the center of the ball inscribed in $T_{C,R}$.
- This generalizes to higher dimensions.

Maximum Allowed Uncertainty Regions (MAURs)

uke

- With a total of 46,855 data points, the meanaverage increase in the MAUR was found to be 233%.
- The largest increase was found to be 969%. This was observed in the "horseshoe" geometry (C).

MAUR Computation Methods

- Current methods use a brute force approach
- New methods aim to reduce computation time from hours to fractions of a second
- Add other animation of old method

- Current methods use a brute force approach
- New methods aim to reduce computation time from hours to fractions of a second
- Add other animation of old method

Topological Methods for Guaranteeing Transitions in Switched Systems

Dan P. Guralnik University of Florida/NCR Lab Sage C. Edwards

Warren E. Dixon

April 30, 2021

Informal Challenge: Given a controlled hybrid system with uncertain state, how to guarantee transitions into a desired operational mode?

 \rightsquigarrow crucial for ensuring high-level plan execution

 \rightsquigarrow complicated geometry of transition boundaries

 \rightsquigarrow must be addressed with minimal specific geometric insight

Informal Challenge: Given a controlled hybrid system with uncertain state, how to guarantee transitions into a desired operational mode?

 \rightsquigarrow crucial for ensuring high-level plan execution

 \rightsquigarrow complicated geometry of transition boundaries

 \rightsquigarrow must be addressed with minimal specific geometric insight

Guaranteed Transitions: Lack of symmetry makes the problem less intuitive...

→ It's not about thickness of the target domain

 \rightsquigarrow It's about the transition boundary separating the error cone

A setup, successfully generalizing our work in [1]:

Incomplete information on state-environment interaction: agent dynamics over x ∈ F⁰, F ⊂ ℝⁿ closed, given by

$$\|\dot{x} - f(x, u)\| \le \bar{d}.$$
(1)

A setup, successfully generalizing our work in [1]:

Incomplete information on state-environment interaction: agent dynamics over x ∈ F⁰, F ⊂ ℝⁿ closed, given by

$$\|\dot{x} - f(x, u)\| \le \bar{d}.$$
(1)

• A collection \mathscr{A} of curves $\hat{x}: [0, \infty) \to \mathbb{R}^n$, called *admissible plans*,

$$\mathscr{A}_p \triangleq \left\{ \hat{x} \in \mathscr{A} \colon \hat{x}(0) = p \right\},\tag{2}$$

 \rightsquigarrow Usually, expect to have $\mathscr{A}_p = p + \mathscr{A}_0 = \{p + \hat{x} : \hat{x} \in \mathscr{A}_0\}$ \rightsquigarrow In Sage's problem $\hat{x}(t) \triangleq p + t\mathbf{v}$, with $\|\mathbf{v}\| = v_0$ a known constant

A setup, successfully generalizing our work in [1]:

Incomplete information on state-environment interaction: agent dynamics over x ∈ F⁰, F ⊂ ℝⁿ closed, given by

$$\|\dot{x} - f(x, u)\| \le \bar{d}.$$
(1)

• A collection \mathscr{A} of curves $\hat{x}: [0,\infty) \to \mathbb{R}^n$, called *admissible plans*,

$$\mathscr{A}_p \triangleq \left\{ \hat{x} \in \mathscr{A} \colon \hat{x}(0) = p \right\},\tag{2}$$

 \rightsquigarrow Usually, expect to have $\mathscr{A}_p = p + \mathscr{A}_0 = \{p + \hat{x} \colon \hat{x} \in \mathscr{A}_0\}$

 \rightsquigarrow In Sage's problem $\hat{x}(t) \triangleq p + t\mathbf{v}$, with $\|\mathbf{v}\| = v_0$ a known constant

• Each plan is executed by applying a control u(t), $t \ge 0$, guaranteeing

$$|x(t) - \hat{x}(t)|| \le \varrho(t), \ t \ge 0$$
 (3)

where $\rho: [0,\infty) \to [0,\infty)$ is a known *error-bounding function* (EBF).

 \rightsquigarrow There can be many EBFs, e.g., depending on $p = \hat{x}(0)$

$$(\forall_{p^* \in B_p(\varepsilon)}) \ (\exists_{t \ge 0}) \ (x(0) = p^* \to x(t) \in \mathcal{F}).$$
(4)

$$(\forall_{p^* \in B_p(\varepsilon)}) \ (\exists_{t \ge 0}) \ (x(0) = p^* \to x(t) \in \mathcal{F}).$$
(4)

$$(\forall_{p^* \in B_p(\varepsilon)}) (\exists_{t \ge 0}) (x(0) = p^* \to x(t) \in \mathcal{F}).$$
(4)

- 𝒢_p(ε) ⊆ 𝒢_p is the collection of all plans satisfying (4).
- $p \in \mathbb{R}^n$ is ε -feasible, if $\mathscr{G}_p(\varepsilon) \neq \emptyset$.
- p ∈ ℝⁿ is *feasible* if it is ε-feasible for some ε > 0.
- ▶ What **actually** guarantees a plan?

$$(\forall_{p^* \in B_p(\varepsilon)}) (\exists_{t \ge 0}) (x(0) = p^* \to x(t) \in \mathcal{F}).$$
(4)

- 𝒢_p(ε) ⊆ 𝒢_p is the collection of all plans satisfying (4).
- $p \in \mathbb{R}^n$ is ε -feasible, if $\mathscr{G}_p(\varepsilon) \neq \emptyset$.
- p ∈ ℝⁿ is *feasible* if it is ε-feasible for some ε > 0.
- ▶ What **actually** guarantees a plan?
- ▶ **Recall:** Let $U \subset \mathbb{R}^n$ be an open domain and let $p, q \in U$. A closed set $K \subset \mathbb{R}^n$ *separates* U *between* p *and* q, if p, q lie in distinct components of $U \smallsetminus K$.
- ▶ $\partial \mathcal{F}$ separates \mathbb{R}^n between $p \in \mathcal{F}^{\complement}$ and any $q \in int(\mathcal{F})$.

Definition. The maximum allowed uncertainty radius (MAUR) at p:

$$\mathbf{M}_{\mathcal{F}}^{*}(p) \triangleq \begin{cases} \sup\left(\varepsilon > 0 \colon \mathscr{G}_{p}(\varepsilon) \neq \varnothing\right), & \text{if } p \text{ is feasible,} \\ 0 & \text{otherwise,} \end{cases}$$
(5)

and denote $\mathcal{M}(\mathcal{F}) \triangleq \{f : \mathbb{R}^n \to \mathbb{R}_{\geq 0} \colon f \leq \mathbf{M}_{\mathcal{F}}^*\}$, the *MAUR bounds*.

- **Problem 1.** Find explicit constructions of $f \in \mathcal{M}(\mathcal{F})$. \rightsquigarrow The inscribed ball criterion (IBC) leads to one such construction
- **Problem 2.** Given $f \in \mathcal{M}(\mathcal{F})$ and $p \in \mathbb{R}^n$, compute f(p) and $\hat{x} \in \mathscr{G}_p(f(p))$. \rightsquigarrow Expect: the better f approximates $\mathbb{M}^*_{\mathcal{F}}$, the more complex this problem will be

• An *IBC certificate at* p is an EBF ϱ with

$$\blacktriangleright B_{\hat{x}(s)}(\varrho(s)) \subseteq \mathcal{F},$$

for some $\hat{x} \in \mathscr{A}_p$, $s \ge 0$.

• An *IBC certificate at* p is an EBF ϱ with

 $\blacktriangleright B_{\hat{x}(s)}(\varrho(s)) \subseteq \mathcal{F},$

for some $\hat{x} \in \mathscr{A}_p$, $s \ge 0$.

► Then one defines the *IBC-MAUR*:

and $\mathbf{M}_{\mathcal{F}}^{^{IBC}}(p) \triangleq 0$ otherwise.

• An *IBC certificate at* p is an EBF ϱ with

 $\blacktriangleright B_{\hat{x}(s)}(\varrho(s)) \subseteq \mathcal{F},$

for some $\hat{x} \in \mathscr{A}_p$, $s \ge 0$.

► Then one defines the *IBC-MAUR*:

and $\mathbf{M}_{\mathcal{F}}^{^{IBC}}(p) \triangleq 0$ otherwise.

• Clearly,
$$\mathbf{M}_{\mathcal{F}}^{^{IBC}} \leq \mathbf{M}_{\mathcal{F}}^{*}$$
.

• An *IBC certificate at* p is an EBF ϱ with

 $\blacktriangleright B_{\hat{x}(s)}(\varrho(s)) \subseteq \mathcal{F},$

for some $\hat{x} \in \mathscr{A}_p$, $s \ge 0$.

► Then one defines the *IBC-MAUR*:

and $\mathbf{M}_{\mathcal{F}}^{^{IBC}}(p) \triangleq 0$ otherwise.

 $\blacktriangleright \text{ Clearly, } \mathbf{M}_{\mathcal{F}}^{^{IBC}} \leq \mathbf{M}_{\mathcal{F}}^{*}.$

The argument takes no account of the error cone!

 \rightsquigarrow Information about $\boldsymbol{x}(t)$ is thrown away

- Let U be a collection of open domains such that
 - $\blacktriangleright \ \mathbb{R}^n \in \mathcal{U},$
 - ▶ $0 \in R$ for all $R \in \mathcal{U}$.
 - $\label{eq:linear} \begin{array}{l} \rightsquigarrow \mbox{ In [1], \mathcal{U} consists of all strips centered at $0 \in \mathbb{R}^2$} \\ \rightsquigarrow \mbox{ \mathcal{U} expresses a bound on the growth of error cones} \end{array}$

- Let U be a collection of open domains such that
 - $\mathbb{R}^n \in \mathcal{U}, \\ \mathbb{D} \in R \text{ for all } R \in \mathcal{U}.$

 $\label{eq:linear} \stackrel{}{\longrightarrow} \mbox{In [1], \mathcal{U} consists of all strips centered at $0 \in \mathbb{R}^2$} \\ \stackrel{}{\longrightarrow} \mbox{\mathcal{U} expresses a bound on the growth of error cones} }$

Duke

▶ Given $R \in \mathcal{U}$, $p \in \mathbb{R}^n$ the *target at p*, $\mathbf{T}_R(p)$, is defined as the set of $q \in \mathbb{R}^n$ separated from p by $\partial \mathcal{F}$ in p + R.

- Let U be a collection of open domains such that
 - $\mathbb{R}^n \in \mathcal{U}, \\ \mathbb{D} \in R \text{ for all } R \in \mathcal{U}.$

 $\label{eq:linear} \stackrel{}{\longrightarrow} \mbox{ In [1], \mathcal{U} consists of all strips centered at $0 \in \mathbb{R}^2$} \\ \stackrel{}{\longrightarrow} \mbox{ \mathcal{U} expresses a bound on the growth of error cones} }$

- ▶ Given $R \in \mathcal{U}$, $p \in \mathbb{R}^n$ the *target at* p, $\mathbf{T}_R(p)$, is defined as the set of $q \in \mathbb{R}^n$ separated from p by $\partial \mathcal{F}$ in p + R.
- A *U*-certificate at p is an EBF ρ , with:
 - ▶ $B \triangleq B_{\hat{x}(s)}(\varrho(s)) \subseteq \mathbf{T}_R(p)$, and ▶ $\hat{x}(t) \in p + R$ for all $0 \le t \le s$.

for some $\hat{x} \in \mathscr{A}_p$, $s \ge 0$ and $R \in \mathcal{U}$.

Topolo

Topological Transition Guarantee (TTG)

► We can then define the *U*-MAUR:

•
$$\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p) \triangleq \sup \left(\varrho(0) : \frac{\varrho \text{ is a } \mathcal{U}}{\operatorname{certificate at } p} \right)$$

and $\mathbf{M}^{\mathcal{U}}_{\mathcal{F}}(p) \triangleq 0$ otherwise.

• We can then define the *U-MAUR*:

•
$$\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p) \triangleq \sup \left(\varrho(0) : \frac{\varrho \text{ is a } \mathcal{U}}{\operatorname{certificate at } p} \right)$$

and $\mathbf{M}^{\mathcal{U}}_{\mathcal{F}}(p) \triangleq 0$ otherwise.

▶ Since $\mathbf{T}_{\mathbb{R}^n}(p) = \mathcal{F}$, we have

$$\blacktriangleright \mathbf{M}_{\mathcal{F}}^{^{IBC}} \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}} \leq \mathbf{M}_{\mathcal{F}}^{*}$$

• We can then define the U-MAUR:

$$\blacktriangleright \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p) \triangleq \sup \left(\varrho(0) \colon \frac{\varrho \text{ is a } \mathcal{U}_{\text{-}}}{\operatorname{certificate at } p} \right)$$

and $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p) \triangleq 0$ otherwise.

• Since
$$\mathbf{T}_{\mathbb{R}^n}(p) = \mathcal{F}$$
, we have

 $\blacktriangleright \mathbf{M}_{\mathcal{F}}^{^{IBC}} \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}} \leq \mathbf{M}_{\mathcal{F}}^{*}.$

- ▶ Hence a focus on computability of lower bounds $f \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$, obtained by
 - restircting \mathcal{U} : strips, cylinders, cones
 - restricting *Q*: specific EBFs
 - restricting \(\partial \mathcal{F}\): collared spheres

▶ Jordan Curves [2] provide a "separation standard" in the plane.

- $\partial \mathcal{F}$ can be any continuous simple closed curve (SCC)
- $\blacktriangleright~\partial \mathcal{F}$ can be lower-approximated by polygonal SCCs

▶ Jordan Curves [2] provide a "separation standard" in the plane.

- $\partial \mathcal{F}$ can be any continuous simple closed curve (SCC)
- ▶ $\partial \mathcal{F}$ can be lower-approximated by polygonal SCCs
- ▶ For simple parametric \mathcal{U} (strips, cones), lower bounds on $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p)$ are...
 - Piecewise regular for regular increasing ϱ
 - Solutions to a constrained optimization problem

 \rightsquigarrow Combinatorial/Topological aspects to be resolved

Computations are parallelizable.

 \rightsquigarrow Target balls picked via edge-by-edge optimization

▶ Jordan Curves [2] provide a "separation standard" in the plane.

- $\partial \mathcal{F}$ can be any continuous simple closed curve (SCC)
- ▶ $\partial \mathcal{F}$ can be lower-approximated by polygonal SCCs
- ▶ For simple parametric \mathcal{U} (strips, cones), lower bounds on $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p)$ are...
 - Piecewise regular for regular increasing ϱ
 - Solutions to a constrained optimization problem

 \rightsquigarrow Combinatorial/Topological aspects to be resolved

Computations are parallelizable.

 \rightsquigarrow Target balls picked via edge-by-edge optimization

- Higher-dimensional analog via collared spheres [3]:
 - An embedding $\gamma : \mathbb{S}^{n-1} \times \{0\} \hookrightarrow \mathbb{R}^n$ is *collared*, if it extends to an embedding of $\mathbb{S}^{n-1} \times [-1, 1] \hookrightarrow \mathbb{R}^n$.
 - Generalized Schoenflies [4] implies: If γ : Sⁿ⁻¹ → Sⁿ is collared, then Sⁿ \ γ(Sⁿ⁻¹) is the disjoint union of two open balls.

Future Directions: Reactive TTGs

Returning to Single-Agent Relay Tracking,

- Available plans: For all p, $\mathscr{A}_p \equiv \mathbb{S}^{n-1}$;
- Desired TTG: $f \in \mathcal{M}(\mathcal{F})$ with $f \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$;
- Task: X_d , parametric or subdivided.

Future Directions: Reactive TTGs

Returning to Single-Agent Relay Tracking,

- Available plans: For all p, $\mathscr{A}_p \equiv \mathbb{S}^{n-1}$;
- Desired TTG: $f \in \mathcal{M}(\mathcal{F})$ with $f \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$;
- Task: X_d , parametric or subdivided.
- ► Observe: TTG direction x̂_p is well-defined for all p ∈ 𝓕^C except for a null set.
 - f increases in the direction \hat{x}_p ;
 - f may vary along X_d (see figure).

Future Directions: Reactive TTGs

Returning to Single-Agent Relay Tracking,

- Available plans: For all $p, \mathscr{A}_p \equiv \mathbb{S}^{n-1}$;
- Desired TTG: $f \in \mathcal{M}(\mathcal{F})$ with $f \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$;
- Task: X_d , parametric or subdivided.
- ► Observe: TTG direction x̂_p is well-defined for all p ∈ 𝓕^C except for a null set.
 - f increases in the direction \hat{x}_p ;
 - f may vary along X_d (see figure).
- ▶ Problem 3: Compute approximations $f \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ in closed form.
- ► Problem 4: Determine the relationship between ∇f and TTG plans.
 - Characterizing TTG plans *locally*?
 - Value tradeoffs à-la [5, 6] between tracking X_d and detours into F?

Future directions: Learning TTGs

In the absence of complete knowledge of $\mathcal{F}.\,.\,$

▶ Instead of learning \mathcal{F} , learn $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ (or possibly $\nabla \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$), as a model.

In the absence of complete knowledge of $\mathcal{F}.\,.\,$

▶ Instead of learning \mathcal{F} , learn $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ (or possibly $\nabla \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$), as a model.

• With f_t approximating $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ at time t,

- f_t corresponding to a polygonal approximation \mathcal{F}_t of \mathcal{F} ;
- Monotonicity, $t \leq s \implies f_t \leq f_s$, ensure a valid TTG for all time.
- ▶ Challenge: Maintain a connected model of *F*, or—
- ▶ Challenge: Extend methods over disconnected *F*, and—
- **Challenge:** Directed *exploration* of $\partial \mathcal{F}$ may be required.

In the absence of complete knowledge of $\mathcal{F}.\,.\,$

▶ Instead of learning \mathcal{F} , learn $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ (or possibly $\nabla \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$), as a model.

• With f_t approximating $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ at time t,

- f_t corresponding to a polygonal approximation \mathcal{F}_t of \mathcal{F} ;
- Monotonicity, $t \leq s \implies f_t \leq f_s$, ensure a valid TTG for all time.
- Challenge: Maintain a connected model of \mathcal{F} , or—
- ▶ Challenge: Extend methods over disconnected *F*, and—
- **Challenge:** Directed *exploration* of $\partial \mathcal{F}$ may be required.

• Closed parametric form $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}} = H(c^*)$, $c^* \in \mathbb{R}^N$ means...

- f_t takes the form of $H(c_t)$, $c_t \in \mathbb{R}^N$;
- Think of N as a bound on the complexity of \mathcal{F}_t ;
- We could attempt learning c^* ;
- A natural loss function is, e.g., $\mathcal{L}(c) \triangleq \left\| \mathbf{M}_{\mathcal{F}}^{\mathcal{U}} H(c) \right\|_{2}^{2}$;
- ▶ Question: Does GD over *L* respond well to the above challenges?
- Question: Could exploration be guided so that GD responds adequately to these challenges?

THANK YOU FOR YOUR ATTENTION!

References

- S. C. Edwards, D. M. Le, D. P. Guralnik, and W. E. Dixon, "A Topologically Inspired Path-Following Method with Intermittent State Feedback," *IEEE Robotics Automation Letters*, 2021.
- [2] J. Gallier and D. Xu, A Guide to the Classification Theorem for Compact Surfaces, ch. Appendix E, pp. 157–163. Springer, 2012.
- [3] A. Hatcher, Algebraic Topology. Cambridge University Press, Cambridge, 2002, 2002.

- [4] M. Brown, "A proof of the generalized Schoenflies theorem," Bulletin of the American Mathematical Society, vol. 66, no. 2, pp. 74–76, 1960.
- [5] P. Reverdy and D. E. Koditschek, "A dynamical system for prioritizing and coordinating motivations," *SIAM Journal on Applied Dynamical Systems*, vol. 17, no. 2, pp. 1683–1715, 2018.
- [6] P. Reverdy, "A route to limit cycles via unfolding the pitchfork with feedback," in 2019 American Control Conference (ACC), pp. 3057–3062, 2019.

