Path Planning in Environments with Intermittent State Feedback

S. C. Edwards, D. M. Le, D. P. Guralnik and W. E. Dixon, "A Topologically Inspired Path-Following Method With Intermittent State Feedback," in IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4449-4456, July 2021, doi: 10.1109/LRA.2021.3067295.

NCRt

- Systems often operate in environments that include:
- A2AD (Anti Access/Area Denial) Environments
- Unknown Terrain
- Complex Environments (Mountains, Extreme Weather, Marine, etc.)
- Limitations:
- Sensing (GPS, Cameras, Lidar, etc.)
- Global Communication

UF|

- Task: Agent is to follow path $\left(X_{d}\right)$ where state feedback is denied
- Agent must switch between two tasks:
- Following X_{d}
- Obtaining state feedback to regulate tracking errors

H-Y. Chen, et. al.,"A Switched Systems Approach to Path Following with
Intermittent State Feedback", IEEE TRO, 2019.

TEXAS
(x)

1. Depart from the feedback region to X_{d}.
2. Follow X_{d} until it is time to return to the feedback region.
3. Take a recommended return trajectory such to guarantee reentry into the feedback region.

圈TEXAS

(4)UC SANTH CRIUZ

- Previous methods only considered circular feedback regions and circular paths to follow.
- This has issues...

UF|FLORIIDA \quad Duket
TEXAS
© IUC SANTH CRUZ

- Jordan Curve (C) separates plane into two regions
- A curve originating in the exterior with an odd number of intersections with C terminates in the interior
- An even number of intersections terminates in the exterior.

䀲 TEXAS

(all SANTA CRUL

- Bounding regions are used to upper bound potential trajectories
- Required for separation of the initial position state and terminal state

圈 TEXAS

- Using Jordan Curves, "Target Regions" $\left(T_{C, R}\right)$ are developed to guarantee an agent's re-entry.
- The return target is the center of the ball inscribed in $T_{C, R}$.
- This generalizes to higher dimensions.

- With a total of 46,855 data points, the meanaverage increase in the MAUR was found to be 233\%.

- The largest increase was found to be 969\%. This was observed in the "horseshoe" geometry (C).

UC SANTH CRIUZ

MAUR Computation Methods

- Current methods use a brute force approach
- New methods aim to reduce computation time from hours to fractions of a second
- Add other animation of old method

MAUR Computation Methods

- Current methods use a brute force approach
- New methods aim to reduce computation time from hours to fractions of a second
- Add other animation of old method

圈TEXAS

© IUC SANTH CRUZ
z

$$
3
$$

$$
2
$$

$$
2
$$

$$
2
$$

Topological Methods for Guaranteeing Transitions in Switched Systems

Dan P. Guralnik
University of Florida/NCR Lab

Sage C. Edwards

Warren E. Dixon

April 30, 2021

Duke

Motivation

Informal Challenge: Given a controlled hybrid system with uncertain state, how to guarantee transitions into a desired operational mode?
\leadsto crucial for ensuring high-level plan execution
\rightsquigarrow complicated geometry of transition boundaries
\rightsquigarrow must be addressed with minimal specific geometric insight

Duke

Motivation

Informal Challenge: Given a controlled hybrid system with uncertain state, how to guarantee transitions into a desired operational mode?
\rightsquigarrow crucial for ensuring high-level plan execution
\rightsquigarrow complicated geometry of transition boundaries
\rightsquigarrow must be addressed with minimal specific geometric insight

Guaranteed Transitions: Lack of symmetry makes the problem less intuitive...
$\rightsquigarrow I t$'s not about thickness of the target domain
$\rightsquigarrow I t ' s$ about the transition boundary separating the error cone

Formal Problem Statement

A setup, successfully generalizing our work in [1]:

- Incomplete information on state-environment interaction: agent dynamics over $x \in \mathcal{F}^{C}, \mathcal{F} \subset \mathbb{R}^{n}$ closed, given by

$$
\begin{equation*}
\|\dot{x}-f(x, u)\| \leq \bar{d} \tag{1}
\end{equation*}
$$

Formal Problem Statement

A setup, successfully generalizing our work in [1]:

- Incomplete information on state-environment interaction: agent dynamics over $x \in \mathcal{F}^{C}, \mathcal{F} \subset \mathbb{R}^{n}$ closed, given by

$$
\begin{equation*}
\|\dot{x}-f(x, u)\| \leq \bar{d} \tag{1}
\end{equation*}
$$

- A collection \mathscr{A} of curves $\hat{x}:[0, \infty) \rightarrow \mathbb{R}^{n}$, called admissible plans,

$$
\begin{aligned}
& \mathscr{A}_{p} \triangleq\{\hat{x} \in \mathscr{A}: \hat{x}(0)=p\} \\
& \rightsquigarrow \text { Usually, expect to have } \mathscr{A}_{p}=p+\mathscr{A}_{0}=\left\{p+\hat{x}: \hat{x} \in \mathscr{A}_{0}\right\} \\
& \rightsquigarrow \text { In Sage's problem } \hat{x}(t) \triangleq p+t \mathrm{v}, \text { with }\|\mathrm{v}\|=v_{0} \text { a known constant }
\end{aligned}
$$

©ULS SHNTH CRUL

Formal Problem Statement

A setup, successfully generalizing our work in [1]:

- Incomplete information on state-environment interaction: agent dynamics over $x \in \mathcal{F}^{C}, \mathcal{F} \subset \mathbb{R}^{n}$ closed, given by

$$
\begin{equation*}
\|\dot{x}-f(x, u)\| \leq \bar{d} \tag{1}
\end{equation*}
$$

- A collection \mathscr{A} of curves $\hat{x}:[0, \infty) \rightarrow \mathbb{R}^{n}$, called admissible plans,

$$
\begin{equation*}
\mathscr{A}_{p} \triangleq\{\hat{x} \in \mathscr{A}: \hat{x}(0)=p\} \tag{2}
\end{equation*}
$$

\rightsquigarrow Usually, expect to have $\mathscr{A}_{p}=p+\mathscr{A}_{0}=\left\{p+\hat{x}: \hat{x} \in \mathscr{A}_{0}\right\}$
\rightsquigarrow In Sage's problem $\hat{x}(t) \triangleq p+t \mathbf{v}$, with $\|\mathbf{v}\|=v_{0}$ a known constant

- Each plan is executed by applying a control $u(t), t \geq 0$, guaranteeing

$$
\begin{equation*}
\|x(t)-\hat{x}(t)\| \leq \varrho(t), t \geq 0 \tag{3}
\end{equation*}
$$

where $\varrho:[0, \infty) \rightarrow[0, \infty)$ is a known error-bounding function (EBF).
\rightsquigarrow There can be many EBFs, e.g., depending on $p=\hat{x}(0)$

Formal Problem Statement

Definition. A plan $\hat{x} \in \mathscr{A}_{p}$ provides an ε-guaranteed transition into \mathcal{F}, if

$$
\begin{equation*}
\left(\forall_{p^{*} \in B_{p}(\varepsilon)}\right)\left(\exists_{t \geq 0}\right)\left(x(0)=p^{*} \rightarrow x(t) \in \mathcal{F}\right) . \tag{4}
\end{equation*}
$$

Formal Problem Statement

Definition. A plan $\hat{x} \in \mathscr{A}_{p}$ provides an ε-guaranteed transition into \mathcal{F}, if

$$
\begin{equation*}
\left(\forall_{p^{*} \in B_{p}(\varepsilon)}\right)\left(\exists_{t \geq 0}\right)\left(x(0)=p^{*} \rightarrow x(t) \in \mathcal{F}\right) \tag{4}
\end{equation*}
$$

- $\mathscr{G}_{p}(\varepsilon) \subseteq \mathscr{A}_{p}$ is the collection of all plans satisfying (4).

Formal Problem Statement

Definition. A plan $\hat{x} \in \mathscr{A}_{p}$ provides an ε-guaranteed transition into \mathcal{F}, if

$$
\begin{equation*}
\left(\forall_{p^{*} \in B_{p}(\varepsilon)}\right)\left(\exists_{t \geq 0}\right)\left(x(0)=p^{*} \rightarrow x(t) \in \mathcal{F}\right) . \tag{4}
\end{equation*}
$$

- $\mathscr{G}_{p}(\varepsilon) \subseteq \mathscr{A}_{p}$ is the collection of all plans satisfying (4).
- $p \in \mathbb{R}^{n}$ is ε-feasible, if $\mathscr{G}_{p}(\varepsilon) \neq \varnothing$.
- $p \in \mathbb{R}^{n}$ is feasible if it is ε-feasible for some $\varepsilon>0$.
- What actually guarantees a plan?

Duke

Formal Problem Statement

Definition. A plan $\hat{x} \in \mathscr{A}_{p}$ provides an ε-guaranteed transition into \mathcal{F}, if

$$
\begin{equation*}
\left(\forall_{p^{*} \in B_{p}(\varepsilon)}\right)\left(\exists_{t \geq 0}\right)\left(x(0)=p^{*} \rightarrow x(t) \in \mathcal{F}\right) . \tag{4}
\end{equation*}
$$

- $\mathscr{G}_{p}(\varepsilon) \subseteq \mathscr{A}_{p}$ is the collection of all plans satisfying (4).
- $p \in \mathbb{R}^{n}$ is ε-feasible, if $\mathscr{G}_{p}(\varepsilon) \neq \varnothing$.
- $p \in \mathbb{R}^{n}$ is feasible if it is ε-feasible for some $\varepsilon>0$.
- What actually guarantees a plan?
- Recall: Let $U \subset \mathbb{R}^{n}$ be an open domain and let $p, q \in U$. A closed set $K \subset \mathbb{R}^{n}$ separates U between p and q, if p, q lie in distinct components of $U \backslash K$.

- $\partial \mathcal{F}$ separates \mathbb{R}^{n} between $p \in \mathcal{F}^{\mathcal{C}}$ and any $q \in \operatorname{int}(\mathcal{F})$.

Formal Problem Statement

Definition. The maximum allowed uncertainty radius (MAUR) at p :

$$
\mathbf{M}_{\mathcal{F}}^{*}(p) \triangleq \begin{cases}\sup \left(\varepsilon>0: \mathscr{G}_{p}(\varepsilon) \neq \varnothing\right), & \text { if } p \text { is feasible } \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

and denote $\mathcal{M}(\mathcal{F}) \triangleq\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}: f \leq \mathbf{M}_{\mathcal{F}}^{*}\right\}$, the MAUR bounds.
Problem 1. Find explicit constructions of $f \in \mathcal{M}(\mathcal{F})$.
\rightsquigarrow The inscribed ball criterion (IBC) leads to one such construction

Problem 2. Given $f \in \mathcal{M}(\mathcal{F})$ and $p \in \mathbb{R}^{n}$, compute $f(p)$ and $\hat{x} \in \mathscr{G}_{p}(f(p))$.
\rightsquigarrow Expect: the better f approximates $\mathbf{M}_{\mathcal{F}}^{*}$, the more complex this problem will be

Duke
TEXAS
The triversity of Texas at 9Lst:

Topological Transition Guarantee (TTG)

- An IBC certificate at p is an EBF ϱ with
- $B_{\hat{x}(s)}(\varrho(s)) \subseteq \mathcal{F}$, for some $\hat{x} \in \mathscr{A}_{p}, s \geq 0$.

Topological Transition Guarantee

- An IBC certificate at p is an EBF ϱ with
- $B_{\hat{x}(s)}(\varrho(s)) \subseteq \mathcal{F}$, for some $\hat{x} \in \mathscr{A}_{p}, s \geq 0$.
- Then one defines the IBC-MAUR:
$>\mathbf{M}_{\mathcal{F}}^{I B C}(p) \triangleq \sup \left(\varrho(0): \begin{array}{l}\varrho \text { is an IBC } \\ \text { certificate at } p\end{array}\right)$
and $\mathbf{M}_{\mathcal{F}}^{I B C}(p) \triangleq 0$ otherwise.

Duke

Topological Transition Guarantee (TTG)

- An IBC certificate at p is an EBF ϱ with
- $B_{\hat{x}(s)}(\varrho(s)) \subseteq \mathcal{F}$,
for some $\hat{x} \in \mathscr{A}_{p}, s \geq 0$.
- Then one defines the IBC-MAUR:
$>\mathbf{M}_{\mathcal{F}}^{I B C}(p) \triangleq \sup \left(\varrho(0): \begin{array}{l}\varrho \text { is an IBC } \\ \text { certificate at } p\end{array}\right)$
and $\mathbf{M}_{\mathcal{F}}^{I B C}(p) \triangleq 0$ otherwise.

- Clearly, $\mathbf{M}_{\mathcal{F}}^{I B C} \leq \mathbf{M}_{\mathcal{F}}^{*}$.

Duke

Topological Transition Guarantee (TTG)

- An IBC certificate at p is an EBF ϱ with
- $B_{\hat{x}(s)}(\varrho(s)) \subseteq \mathcal{F}$, for some $\hat{x} \in \mathscr{A}_{p}, s \geq 0$.
- Then one defines the IBC-MAUR:
$>\mathbf{M}_{\mathcal{F}}^{I B C}(p) \triangleq \sup \left(\varrho(0): \begin{array}{l}\varrho \text { is an IBC } \\ \text { certificate at } p\end{array}\right)$
and $\mathbf{M}_{\mathcal{F}}^{I B C}(p) \triangleq 0$ otherwise.
- Clearly, $\mathbf{M}_{\mathcal{F}}^{I B C} \leq \mathbf{M}_{\mathcal{F}}^{*}$.

- The argument takes no account of the error cone!
\rightsquigarrow Information about $x(t)$ is thrown away

Duke

Topological Transition Guarantee (TTG)

- Let \mathcal{U} be a collection of open domains such that
- $\mathbb{R}^{n} \in \mathcal{U}$,
- $0 \in R$ for all $R \in \mathcal{U}$.
$\rightsquigarrow \operatorname{In}[1], \mathcal{U}$ consists of all strips centered at $0 \in \mathbb{R}^{2}$ $\rightsquigarrow \mathcal{U}$ expresses a bound on the growth of error cones

Topological Transition Guarantee (TTG)

- Let \mathcal{U} be a collection of open domains such that
- $\mathbb{R}^{n} \in \mathcal{U}$,
- $0 \in R$ for all $R \in \mathcal{U}$.
$\rightsquigarrow \operatorname{In}[1], \mathcal{U}$ consists of all strips centered at $0 \in \mathbb{R}^{2}$ $\rightsquigarrow \mathcal{U}$ expresses a bound on the growth of error cones
- Given $R \in \mathcal{U}, p \in \mathbb{R}^{n}$ the target at p, $\mathbf{T}_{R}(p)$, is defined as the set of $q \in \mathbb{R}^{n}$ separated from p by $\partial \mathcal{F}$ in $p+R$.

Duke

Topological Transition Guarantee (TTG)

- Let \mathcal{U} be a collection of open domains such that
- $\mathbb{R}^{n} \in \mathcal{U}$,
- $0 \in R$ for all $R \in \mathcal{U}$.
$\rightsquigarrow \operatorname{In}[1], \mathcal{U}$ consists of all strips centered at $0 \in \mathbb{R}^{2}$ $\rightsquigarrow \mathcal{U}$ expresses a bound on the growth of error cones
- Given $R \in \mathcal{U}, p \in \mathbb{R}^{n}$ the target at p, $\mathbf{T}_{R}(p)$, is defined as the set of $q \in \mathbb{R}^{n}$ separated from p by $\partial \mathcal{F}$ in $p+R$.
- A \mathcal{U}-certificate at p is an EBF ϱ, with:

- $B \triangleq B_{\hat{x}(s)}(\varrho(s)) \subseteq \mathbf{T}_{R}(p)$, and
- $\hat{x}(t) \in p+R$ for all $0 \leq t \leq s$.
for some $\hat{x} \in \mathscr{A}_{p}, s \geq 0$ and $R \in \mathcal{U}$.

Duke

Topological Transition Guarantee (TTG)

- We can then define the $\mathcal{U}-M A U R$:

$$
\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p) \triangleq \sup \left(\varrho(0): \begin{array}{l}
\varrho \text { is a } \mathcal{U}- \\
\text { certificate at } p
\end{array}\right)
$$ and $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p) \triangleq 0$ otherwise.

Topological Transition Guarantee (TTG)

- We can then define the $\mathcal{U}-M A U R$:

$$
\nabla \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p) \triangleq \sup \left(\varrho(0): \begin{array}{l}
\varrho \text { is a } \mathcal{U}- \\
\text { certificate at } p
\end{array}\right)
$$ and $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p) \triangleq 0$ otherwise.

- Since $\mathbf{T}_{\mathbb{R}^{n}}(p)=\mathcal{F}$, we have
$>\mathbf{M}_{\mathcal{F}}^{I B C} \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}} \leq \mathbf{M}_{\mathcal{F}}^{*}$.

Topological Transition Guarantee (TTG)

- We can then define the $\mathcal{U}-M A U R$:
$-\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p) \triangleq \sup \left(\varrho(0): \begin{array}{l}\varrho \text { is a } \mathcal{U} \text { - } \\ \text { certificate at } p\end{array}\right)$ and $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p) \triangleq 0$ otherwise.
- Since $\mathbf{T}_{\mathbb{R}^{n}}(p)=\mathcal{F}$, we have
$-\mathbf{M}_{\mathcal{F}}^{I B C} \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}} \leq \mathbf{M}_{\mathcal{F}}^{*}$.
- Hence a focus on computability of LOWER BOUNDS $f \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$, OBTAINED BY
- restircting \mathcal{U} : strips, cylinders, cones

- restricting ϱ : specific EBFs
- restricting $\partial \mathcal{F}$: collared spheres

Duke

Towards Computable TTG MAURs

- Jordan Curves [2] provide a "separation standard" in the plane.
- $\partial \mathcal{F}$ can be any continuous simple closed curve (SCC)
- $\partial \mathcal{F}$ can be lower-approximated by polygonal SCCs

Duke

The Impersily of Texas at qusta

Towards Computable TTG MAURs

- Jordan Curves [2] provide a "separation standard" in the plane.
- $\partial \mathcal{F}$ can be any continuous simple closed curve (SCC)
- $\partial \mathcal{F}$ can be lower-approximated by polygonal SCCs
- For simple parametric \mathcal{U} (strips, cones), lower bounds on $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p)$ are...
- Piecewise regular for regular increasing ϱ
- Solutions to a constrained optimization problem
\rightsquigarrow Combinatorial/Topological aspects to be resolved
- Computations are parallelizable.
\rightsquigarrow Target balls picked via edge-by-edge optimization

Duke
The triverity of Texas at qustil

Towards Computable TTG MAURs

- Jordan Curves [2] provide a "separation standard" in the plane.
- $\partial \mathcal{F}$ can be any continuous simple closed curve (SCC)
- $\partial \mathcal{F}$ can be lower-approximated by polygonal SCCs
- For simple parametric \mathcal{U} (strips, cones), lower bounds on $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}(p)$ are...
- Piecewise regular for regular increasing ϱ
- Solutions to a constrained optimization problem
\rightsquigarrow Combinatorial/Topological aspects to be resolved
- Computations are parallelizable.
\rightsquigarrow Target balls picked via edge-by-edge optimization
- Higher-dimensional analog via collared spheres [3]:
\Rightarrow An embedding $\gamma: \mathbb{S}^{n-1} \times\{0\} \hookrightarrow \mathbb{R}^{n}$ is collared, if it extends to an embedding of $\mathbb{S}^{n-1} \times[-1,1] \hookrightarrow \mathbb{R}^{n}$.
- Generalized Schoenflies [4] implies: If $\gamma: \mathbb{S}^{n-1} \hookrightarrow \mathbb{S}^{n}$ is collared, then $\mathbb{S}^{n} \backslash \gamma\left(\mathbb{S}^{n-1}\right)$ is the disjoint union of two open balls.

Duke
TEXAS
The trivesty of Texas at alstil

Future Directions: Reactive TTGs

- Returning to Single-Agent Relay Tracking,
- Available plans: For all $p, \mathscr{A}_{p} \equiv \mathbb{S}^{n-1}$;
- Desired TTG: $f \in \mathcal{M}(\mathcal{F})$ with $f \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$;
- Task: X_{d}, parametric or subdivided.

Future Directions: Reactive TTGs

- Returning to Single-Agent Relay Tracking,
- Available plans: For all $p, \mathscr{A}_{p} \equiv \mathbb{S}^{n-1}$;
- Desired TTG: $f \in \mathcal{M}(\mathcal{F})$ with $f \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$;
- Task: X_{d}, parametric or subdivided.
- Observe: TTG direction \hat{x}_{p} is well-defined for all $p \in \mathcal{F}^{\complement}$ except for a null set.
$\Rightarrow f$ increases in the direction \hat{x}_{p};
- f may vary along X_{d} (see figure).

Future Directions: Reactive TTGs

- Returning to Single-Agent Relay Tracking,
- Available plans: For all $p, \mathscr{A}_{p} \equiv \mathbb{S}^{n-1}$;
- Desired TTG: $f \in \mathcal{M}(\mathcal{F})$ with $f \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$;
- Task: X_{d}, parametric or subdivided.
- Observe: TTG direction \hat{x}_{p} is well-defined for all $p \in \mathcal{F}^{\mathrm{C}}$ except for a null set.
$>f$ increases in the direction \hat{x}_{p};
${ }^{-} f$ may vary along X_{d} (see figure).
- Problem 3: Compute approximations

$f \leq \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ in closed form.
- Problem 4: Determine the relationship between ∇f and TTG plans.
- Characterizing TTG plans locally?
- Value tradeoffs à-la $[5,6]$ between tracking X_{d} and detours into \mathcal{F} ?

Future directions: Learning TTGs

In the absence of complete knowledge of \mathcal{F}...

- Instead of learning \mathcal{F}, learn $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ (or possibly $\nabla \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$), as a model.

Duke

Future directions: Learning TTGs

In the absence of complete knowledge of \mathcal{F}...

- Instead of learning \mathcal{F}, learn $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ (or possibly $\nabla \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$), as a model.
- With f_{t} approximating $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ at time t,
- f_{t} corresponding to a polygonal approximation \mathcal{F}_{t} of \mathcal{F};
\triangleright Monotonicity, $t \leq s \Longrightarrow f_{t} \leq f_{s}$, ensure a valid TTG for all time.
- Challenge: Maintain a connected model of \mathcal{F}, or-
- Challenge: Extend methods over disconnected \mathcal{F}, and-
- Challenge: Directed exploration of $\partial \mathcal{F}$ may be required.

Duke

Future directions: Learning TTGs

In the absence of complete knowledge of \mathcal{F}...

- Instead of learning \mathcal{F}, learn $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ (or possibly $\nabla \mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$), as a model.
- With f_{t} approximating $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}$ at time t,
- f_{t} corresponding to a polygonal approximation \mathcal{F}_{t} of \mathcal{F};
$>$ Monotonicity, $t \leq s \Longrightarrow f_{t} \leq f_{s}$, ensure a valid TTG for all time.
- Challenge: Maintain a connected model of \mathcal{F}, or-
- Challenge: Extend methods over disconnected \mathcal{F}, and-
- Challenge: Directed exploration of $\partial \mathcal{F}$ may be required.
- Closed parametric form $\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}=H\left(c^{*}\right), c^{*} \in \mathbb{R}^{N}$ means...
$>f_{t}$ takes the form of $H\left(c_{t}\right), c_{t} \in \mathbb{R}^{N}$;
- Think of N as a bound on the complexity of \mathcal{F}_{t};
- We could attempt Learning c^{*};
- A natural loss function is, e.g., $\mathcal{L}(c) \triangleq\left\|\mathbf{M}_{\mathcal{F}}^{\mathcal{U}}-H(c)\right\|_{2}^{2}$;
- Question: Does GD over \mathcal{L} respond well to the above challenges?
\rightarrow Question: Could exploration be guided so that GD responds adequately to these challenges?

Thank You for Your Attention!

圈TEXAS

References

[1] S. C. Edwards, D. M. Le, D. P. Guralnik, and W. E. Dixon, "A Topologically Inspired Path-Following Method with Intermittent State Feedback," IEEE Robotics Automation Letters, 2021.
[2] J. Gallier and D. Xu, A Guide to the Classification Theorem for Compact Surfaces, ch. Appendix E, pp. 157-163. Springer, 2012.
[3] A. Hatcher, Algebraic Topology. Cambridge University Press, Cambridge, 2002, 2002.
[4] M. Brown, "A proof of the generalized Schoenflies theorem," Bulletin of the American Mathematical Society, vol. 66, no. 2, pp. 74-76, 1960.
[5] P. Reverdy and D. E. Koditschek, "A dynamical system for prioritizing and coordinating motivations," SIAM Journal on Applied Dynamical Systems, vol. 17, no. 2, pp. 1683-1715, 2018.
[6] P. Reverdy, "A route to limit cycles via unfolding the pitchfork with feedback," in 2019 American Control Conference (ACC), pp. 3057-3062, 2019.

The triversty of Texas at qustil

