Path Planning in Environments with
Intermittent State Feedback
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 Systems often operate in
environments that include:

« A2AD (Anti Access/Area
Denial) Environments

« Unknown Terrain

« Complex Environments
(Mountains, Extreme
Weather, Marine, etc.)

« Limitations:

* Sensing (GPS, Cameras,
Lidar, etc.)

e Global Communication
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Problem Statement

 Task: Agent is to follow
path (X,) where state
feedback is denied

« Agent must switch

between two tasks:
 Following X,

« Obtaining state

feedback to regulate
tracking errors
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H-Y. Chen, et. al.,”A Switched Systems Approach to Path Following with
Intermittent State Feedback”, IEEE TRO, 2019.
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1. Depart from the feedback region
to X d-

2. Follow X; until it is time to
return to the feedback region.

3. Take a recommended return
trajectory such to guarantee re-
entry into the feedback region.
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_%__\w/" Previous Method

 Previous methods only considered circular feedback regions and
circular paths to follow.

e This has issues...
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» Jordan Curve (C) separates plane \ <\ 2
into two regions

* A curve originating in the exterior \\ /L
with an odd number of

intersections with C terminates in
the interior

5\7

(21

@B |G SHNTH CRUL

« An even number of intersections
terminates in the exterior.
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* Bounding regions are used to
upper bound potential
trajectories

 Required for separation of the
initial position state and
terminal state
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Target Regions

Uinit — 0R

— Return Trajectory
- x(t)

—Ecr(p)

- \\;;g)

 Using Jordan Curves, “Target
Regions” (T r) are developed to

Upf:
guarantee an agent’s re-entry. fin

* The return target is the center of
the ball inscribed in T¢ p.

 This generalizes to higher
dimensions.
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\ ’ lowed Uncertainty Regions (MAURSs)
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 With a total of 46,855 — 1 L |
data points, the mean-
. . T o g [%
average increase in the —
MAUR was found to be = e e
233%.
* The largest increase was
found to be 969%. This
was observed in the s ol
“horseshoe” geometry (C). = ..l /"
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\ ’ MAUR Computation Methods

e Current methods use a brute force
approach

« New methods aim to reduce
computation time from hours to
fractions of a second

* Add other animation of old method
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N2 , MAUR Computation Methods

e Current methods use a brute force
approach

« New methods aim to reduce
computation time from hours to
fractions of a second

* Add other animation of old method R
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Topological Methods for
Guaranteeing Transitions in
Switched Systems

April 30, 2021
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J Motivation

Informal Challenge: Given a controlled hybrid system with uncertain state,
how to guarantee transitions into a desired operational mode?
~~ crucial for ensuring high-level plan execution
~~ complicated geometry of transition boundaries

~» must be addressed with minimal specific geometric insight
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Informal Challenge: Given a controlled hybrid system with uncertain state,
how to guarantee transitions into a desired operational mode?
~~ crucial for ensuring high-level plan execution
~~ complicated geometry of transition boundaries

~~ must be addressed with minimal specific geometric insight

Guaranteed Transitions: Lack of symmetry makes the problem less intuitive. ..
~~ It's not about thickness of the target domain

~~ It's about the transition boundary separating the error cone
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{\”/J Formal Problem Statement

A setup, successfully generalizing our work in [1]:

» Incomplete information on state-environment interaction: agent dynamics
over z € F°, F C R" closed, given by

& = f(z, w)ll < d. (1)
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{\”/J Formal Problem Statement

A setup, successfully generalizing our work in [1]:

» Incomplete information on state-environment interaction: agent dynamics
over z € F°, F C R" closed, given by

& = f(z, w)ll < d. (1)

> A collection o of curves % : [0,00) — R", called admissible plans,

A (A o
oy = {2 € o: £(0) =p}, (2)
~>  Usually, expect to have @/, =p+ oy ={p+ &: & € o}
~ In Sage'’s problem (1) £ p + tv, with |v|| = vo a known constant
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{\"/J ormal Problem Statement

A setup, successfully generalizing our work in [1]:

» Incomplete information on state-environment interaction: agent dynamics
over z € F¢, F C R™ closed, given by

& = f(z, w)ll < d. (1)

> A collection o of curves % : [0,00) — R", called admissible plans,

A (A o
oy = {2 € o: £(0) =p}, (2)
~~>  Usually, expect to have o7, = p+ oy = {p+2&: T € 9}
~~ In Sage’s problem %(t) S p + tv, with |v|| = vo a known constant

» Each plan is executed by applying a control u(t), ¢ > 0, guaranteeing
|(t) = 2(t)]| < olt), t >0 (3)

where ¢ : [0,00) — [0, 00) is a known error-bounding function (EBF).

~ There can be many EBFs, e.g., depending on p = z(0)
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{\”/J Formal Problem Statement

Definition. A plan & € &7, provides an e-guaranteed transition into F, if

(VoreBye)) (3r20) (2(0) = p™ = x(t) € F). (4)
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{\”/J Formal Problem Statement

Definition. A plan & € &7, provides an e-guaranteed transition into F, if

(VoreBye)) (3r20) (2(0) = p™ = x(t) € F). (4)

> 4,(e) C o) is the collection of all plans
satisfying (4).
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{\"/J ormal Problem Statement

Definition. A plan & € &7, provides an e-guaranteed transition into F, if

(VoreBye)) (3r20) (2(0) = p™ = x(t) € F). (4)

> 4,(e) C o) is the collection of all plans
satisfying (4).

> p e R" is e-feasible, if 4,(c) # @.

» p e R" is feasible if it is e-feasible for
some € > 0.

» WHAT ACTUALLY GUARANTEES A PLAN?
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{\"/} ormal Problem Statement

Definition. A plan & € &7, provides an e-guaranteed transition into F, if

(VoreBye)) (3r20) (2(0) = p™ = x(t) € F). (4)

> 4,(e) C o) is the collection of all plans By (€)
satisfying (4). +(0)
> p e R" is e-feasible, if 4,(c) # @.

» p e R"™ is feasible if it is e-feasible for
some € > 0.

p=%(0)

» WHAT ACTUALLY GUARANTEES A PLAN?

> Recall: Let U C R" be an open domain o)

and let p,qg € U. A closed set K C R"
separates U between p and q, if p, q lie in
distinct components of U \ K.

> OF separates R" between p € F© and
any ¢ € int(F).
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{\”/J Formal Problem Statement

Definition. The maximum allowed uncertainty radius (MAUR) at p:
sup (€ > 0: 9,(¢) # @), if pis feasible,

M(p) £ { (5)

0 otherwise,
and denote M(F) £ {f:R" = R.,: f < M}}, the MAUR bounds.

Problem 1. Find explicit constructions of f € M(F).

~~ The inscribed ball criterion (IBC) leads to one such construction

Problem 2. Given f € M(F) and p € R", compute f(p) and & € 4,(f(p)).

~> Expect: the better f approximates M-, the more complex this problem will be
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Ay, Topologeal Transition G

» An IBC certificate at p is an EBF o with /p:g(o)
> Bas(e(s)) € F, MO y
for some 2 € <7, s > 0. M) — X
x(s)

UFiioiivh € Duke



» An IBC certificate at p is an EBF p with
> Bise(s) € F,
for some 2 € <7, s > 0. M) — X

» Then one defines the IBC-MAUR:

> M%Bc(p)ésw(Q(O): 0 an IBC )

certificate at p

p=5(0)

x(0)— g

x(s)
and M%?€(p) £ 0 otherwise.
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» An IBC certificate at p is an EBF p with
> Bise(s) € F,
for some 2 € <7, s > 0. M) — X

» Then one defines the IBC-MAUR:

> M}Bc(p)ésup((_)(()): Qis_én I8¢ )

p=5(0)

x(0)— g

certificate at p X(s)
and M%?€(p) £ 0 otherwise.
> Clearly, M%P¢ < M*%.
UNIVERSITY of = =
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» An IBC certificate at p is an EBF o with
> Bis)e(s)) € F,
for some 2 € <7, s > 0.
» Then one defines the IBC-MAUR:

> M}Bc(p)ésup((_)(()): Qis_én I8¢ )

certificate at p

and M%?€(p) £ 0 otherwise.

> Clearly, M%P¢ < M*%. J/

» The argument takes no account of the
error conel!

~ Information about x(t) is thrown away
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» Let U be a collection of open domains
such that

> R™ €U,
> 0e Rforall ReU.

~> In [1], U consists of all strips centered at 0eRr?

3

~» U expresses a bound on the growth of error cones

x(s) / °
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» Let U be a collection of open domains
such that
» R"el,
> 0€ Rforall ReU.
~~ In [1], U consists of all strips centered at 0eRr?
~ U expresses a bound on the growth of error cones
> Given R € U, p € R" the target at p,

Tr(p), is defined as the set of ¢ € R"
separated from p by OF in p+ R.
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» Let U be a collection of open domains
such that

> R™ €U,
> 0e Rforall ReU.

~~ In [1], U consists of all strips centered at 0eRr?

~ U expresses a bound on the growth of error cones

> Given R € U, p € R" the target at p,
Tr(p), is defined as the set of ¢ € R"
separated from p by OF in p+ R.

» A U-certificate at p is an EBF p, with:

> B = Bi(sfe(s)) € Tr(p), and
> &(t)ep+ Rforall 0 <t <s.

for some & € «,, s > 0and R e U.
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» We can then define the U/-MAUR:

> MY (p)2 sup (g(m: ol )

certificate at p

and M%(p) £ 0 otherwise.
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» We can then define the U/-MAUR:

> MY (p)2 sup (g(m: ol )

certificate at p
and M%(p) £ 0 otherwise.
» Since Tr~(p) = F, we have
> MPC < M% < M3
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» We can then define the U/-MAUR:
- M) 2 sup (o00): 2500 )

certificate at p
and M%(p) £ 0 otherwise.
» Since Tr~(p) = F, we have
> MPC < M% < M3

» HENCE A FOCUS ON COMPUTABILITY OF
LOWER BOUNDS f < M%, OBTAINED BY

> restircting U: strips, cylinders, cones
> restricting ¢: specific EBFs
> restricting OF: collared spheres
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» Jordan Curves [2] provide a “separation standard” in the plane.

> OF can be any continuous simple closed curve (SCC)
> OF can be lower-approximated by polygonal SCCs

UFiisiiva € Duke &Y




A y
4 , Towards

» Jordan Curves [2] provide a “separation standard” in the plane.

> OF can be any continuous simple closed curve (SCC)
> OF can be lower-approximated by polygonal SCCs

> For simple parametric U (strips, cones), lower bounds on M%(p) are. ..
> Piecewise regular for regular increasing o
> Solutions to a constrained optimization problem
~~ Combinatorial / Topological aspects to be resolved

> Computations are parallelizable.

~ Target balls picked via edge-by-edge optimization

Duke &BY ©TEXAS
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\ , Towards

» Jordan Curves [2] provide a “separation standard” in the plane.

> OF can be any continuous simple closed curve (SCC)
> OF can be lower-approximated by polygonal SCCs

> For simple parametric U (strips, cones), lower bounds on M%(p) are. ..
> Piecewise regular for regular increasing o
> Solutions to a constrained optimization problem
~ Combinatorial /Topological aspects to be resolved
> Computations are parallelizable.
~ Target balls picked via edge-by-edge optimization

» Higher-dimensional analog via collared spheres [3]:
> An embedding v : "' x {0} < R"™ is collared, if it extends to an
embedding of $" 7! x [~1,1] < R".
> Generalized Schoenflies [4] implies: If  : 3"~ < §™ is collared,
then $™ ~ v($"') is the disjoint union of two open balls.
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»> Returning to Single-Agent Relay Tracking,
> Available plans: For all p, o, = $";
> Desired TTG: f € M(F) with f < MY;

P Task: X4, parametric or subdivided.

UFFioriDA &)



A i
A Foure Divecions: R

»> Returning to Single-Agent Relay Tracking,
> Available plans: For all p, o, = $";
> Desired TTG: f € M(F) with f < MY;
P Task: X4, parametric or subdivided.

> Observe: TTG direction &), is well-defined
for all p € F° except for a null set.

> f increases in the direction Z;

> f may vary along X (see figure).
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A Foure Divecions: R

»> Returning to Single-Agent Relay Tracking,
Available plans: For all p, o7, = 8" 1;
Desired TTG: f € M(F) with f < M%,;
Task: Xg, parametric or subdivided.

> Observe: TTG direction &), is well-defined
for all p € F° except for a null set.

f increases in the direction Zy;

f may vary along X (see figure).

» Problem 3: Compute approximations
f < MY in closed form.

» Problem 4: Determine the relationship
between V f and TTG plans.

Characterizing TTG plans locally?

Value tradeoffs a-/a [5, 6] between
tracking X4 and detours into F7?
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In the absence of complete knowledge of F...

> Instead of learning F, learn M% (or possibly VM%), as a model.
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In the absence of complete knowledge of F..
» Instead of learning F, learn M% (or possibly VM%), as a model.
> With f; approximating M4 at time ¢,

> fi corresponding to a polygonal approximation F; of F;

> Monotonicity, t <s = f; < fs, ensure a valid TTG for all time.
> Challenge: Maintain a connected model of F, or—

> Challenge: Extend methods over disconnected F, and—

> Challenge: Directed exploration of 0F may be required.
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In the absence of complete knowledge of F...

> Instead of learning F, learn M4 (or possibly VMI}), as a model.

> With f; approximating MY at time ¢,

ft corresponding to a polygonal approximation F; of F;
Monotonicity, t < s = fi < fs, ensure a valid TTG for all time.
Challenge: Maintain a connected model of F, or—

Challenge: Extend methods over disconnected F, and—
Challenge: Directed exploration of OF may be required.

> Closed parametric form M% = H(c*), ¢ € RY means. ..

UNIVERSITY of
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ft takes the form of H(c:), ¢; € RY;

Think of N as a bound on the complexity of F%;

WE COULD ATTEMPT LEARNING c*

A natural loss function is, e.g., L(c HM“ — (c)Hz,

Question: Does GD over £ respond well to the above challenges?
Question: Could exploration be guided so that GD responds
adequately to these challenges?
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