Verifying Probabilistic Conformance for Cyber-Physical Systems

Yu Wang*, Mojtaba Zarei*, Borzoo Bonakdarpour**, Miroslav Pajic*

*Department of Electrical and Computer Engineering Duke University

> **Department of Computer Science Michigan State University

PRATT SCHOOL of

ENGINEERING

Conformance: The behaviors of two CPS models are similar, so that the results from analyzing one model automatically transfer to the other.

Can we design a software tool to verify conformance?

Need for Formal Methods:

- 1. How to model cyber-physical systems?
- 2. How to formally express conformance specifications?
- 3. How to develop mathematically-rigorous algorithms to verify?

Probabilistic uncertain models (PUM): $S = (X, X^{init}, F, D, AP, L)$ where

- (Hybrid) state space \mathcal{X} , Initial state $X^{\text{init}} \in \mathcal{X}$
- Time-varying parameter D(t) from unknown random processes
- (Hybrid) dynamics $X^+ = F(X(t), D(t))$
- AP is a set of labels, L: $\mathcal{X} \to 2^{AP}$ is a labeling function

The PUM allows capturing

- Hybrid automata with probabilistic parameters (e.g., powertrain)
- Continuous-time Markov chains (e.g., queueing networks)

CPS dynamics are typically **hybrid** and **probabilistic**.

Conformance is a meta-specifications of (infinitely) many simple specifications.

- *M*₁: Detailed
 Dynamical
 Model
- *M*₂: Simplified
 Dynamical
 Model

Probabilistic Conformance in Startup Time: If the probability of startup by time t is (almost) equal for any t for both models M_1 and M_2 .

Traditionally, **simple specifications** are formally expressible by **STL** formulas.

We express **meta-specifications** for conformance by **parametrized STL** formulas.

Signal Temporal Logic (STL):

$$\varphi \coloneqq a \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \mathcal{U}_{[t_1, t_2]} \varphi$$

- *a*: atomic proposition,
- $t_1, t_2 \in \mathbb{Q}$ with $t_2 > t_1 \ge 0$.

Examples

- Reach to goal: $\diamond_{[t_1,t_2]}$ goal = True $\mathcal{U}_{[t_1,t_2]}$ goal
- Stay Safe: $\Box_{[t_1,t_2]}$ safe = $\neg (\diamondsuit_{[t_1,t_2]} \neg \text{ safe})$

Probabilistic Conformance in Startup Time: $\forall t > 0, |\mathbf{Pr}_{\sigma_1 \sim \mathcal{M}_1}(\sigma_1 \models \diamondsuit_{[0,t]} \text{ started}) - \mathbf{Pr}_{\sigma_2 \sim \mathcal{M}_2}(\sigma_2 \models \diamondsuit_{[0,t]} \text{ started})| < c$

Probabilistic Conformance in Startup Time: $\forall t > 0, |\mathbf{Pr}_{\sigma_1 \sim \mathcal{M}_1}(\sigma_1 \models \diamondsuit_{[0,t]} \text{ started}) - \mathbf{Pr}_{\sigma_2 \sim \mathcal{M}_2}(\sigma_2 \models \diamondsuit_{[0,t]} \text{ started})| < c$

Challenge: Traditional verification methods can only handle unparametrized STL formulas.

Conformance Definition: For a constant c > 0, if $\forall \vec{d}$. $|\mathbf{Pr}_{\sigma_1 \sim \mathcal{M}_1}(\sigma_1 \models \phi_{\vec{d}}) - \mathbf{Pr}_{\sigma_2 \sim \mathcal{M}_2}(\sigma_2 \models \phi_{\vec{d}})| < c$. We develop a new verification method for **monotonically** parametrized STL formulas.

PRATT SCHOOL of ENGINEERING

The parametrized STL formula $\phi_{\vec{d}}$ is monotonic if and only if $\Pr_{\sigma_i \sim \mathcal{M}_i}(\sigma_i \models \phi_{\vec{d}})$ for i = 1,2 increases/decreases with the entries of \vec{d} .

For any pre-given $\alpha > 0$, the result is correct with probability at least $1 - \alpha$.

For simplicity, let the parameter d be a scalar.

If ϕ_d is monotonically parametrized, then $F_i(d) = \mathbf{Pr}_{\sigma_i \sim \mathcal{M}_i}(\sigma_i \models \phi_d)$ are two cumulative distribution functions.

ENGINEERING

Duke

Let
$$\delta_{n,m} = \|(\overline{F}_1^{[n]} - F_1) - (\overline{F}_2^{[m]} - F_2)\|_{\infty}$$
,
then $\|\overline{F}_1^{[n]} - \overline{F}_2^{[m]}\|_{\infty} - \|F_1 - F_2\|_{\infty} \in [-\delta_{n,m}, \delta_{n,m}]$

Theorem 1: $\delta_{n,m}\sqrt{mn/(m+n)}$ obeys the Kolmogorov-Smirnov distribution *KS*, which is independent of the form of F_1 , F_2

The estimation error of $\|\bar{F}_1^{[n]} - \bar{F}_2^{[m]}\|_{\infty}$ for $\|F_1 - F_2\|_{\infty}$ is statistically bounded even if we don't know F_1, F_2 !

If
$$\|\bar{F}_1^{[n]} - \bar{F}_2^{[m]}\|_{\infty} = \lambda < c$$
, then $\|F_1 - F_2\|_{\infty} < c$ with significance level
 $\alpha_{n,m} = 1 - KS((\lambda - c)\sqrt{mn/(m+n)})$

Algorithm to check conformance $||F_1 - F_2||_{\infty} < c$:

Input Desired significance level $\alpha > 0$

Do drawing new samples from F_1 , F_2 .

Until $\alpha_{n,m} > \alpha$

Return True If $\left\| \overline{F}_{1}^{[n]} - \overline{F}_{2}^{[m]} \right\|_{\infty} < c$ and **False** otherwise.

Theorem 2: Algorithm terminates with probability 1 if $||F_1 - F_2||_{\infty} \neq c$.

Theorem 3: **Algorithm'**s return has significance level α .

Powertrain = Car Engine + Embedded Controller

- \mathcal{M}_d : Detailed PUM with **nonlinear** engine dynamics
- \mathcal{M}_s : Simplified PUM with **polynomial** engine dynamics (by Taylor expansion)

Conformance in Startup Time of Detailed/Simplified models of $\mathcal{M}_d/\mathcal{M}_s$ powertrain system.

$$\forall \tau \ge 0. \ \left| \mathbf{Pr}_{\sigma_{s} \sim \mathcal{M}_{s}} \left(\sigma_{s} \vDash \diamondsuit_{[0,\tau]} \left(e_{A/F} < 0.05 \right) \right) - \mathbf{Pr}_{\sigma_{d} \sim \mathcal{M}_{d}} \left(\sigma_{d} \vDash \diamondsuit_{[0,\tau]} \left(e_{A/F} < 0.05 \right) \right) \right| < c$$

Conformance in Startup Time of Detailed/Simplified models of $\mathcal{M}_d/\mathcal{M}_s$ powertrain system.

$$\forall \tau \ge 0. \ \left| \mathbf{Pr}_{\sigma_{s} \sim \mathcal{M}_{s}} \left(\sigma_{s} \vDash \diamondsuit_{[0,\tau]} \left(e_{A/F} < 0.05 \right) \right) - \mathbf{Pr}_{\sigma_{d} \sim \mathcal{M}_{d}} \left(\sigma_{d} \vDash \diamondsuit_{[0,\tau]} \left(e_{A/F} < 0.05 \right) \right) \right| < c$$

С	Confidence	Samples	Time (s)	Result
0.40	0.99	3.9e+01	1.8e-02	F
0.40	0.95	1.9e+01	4.4e-03	F
0.25	0.99	2.5e+01	4.6e-03	F
0.25	0.95	1.3e+01	2.2e-03	F
0.10	0.99	1.8e+01	3.6e-03	F
0.10	0.95	9.0e+00	1.6e-03	F
0.05	0.99	1.6e+01	2.8e-03	F
0.05	0.95	8.0e+00	1.3e-03	F

Case Study II: Lane-Keeping Controller

System = Car + Lane-Keeping Controller (for a detected lane).

PRATT SCHOOL of ENGINEERING

- \mathcal{M}_{MPC} : PUM of a car with (tradition) model predictive controller
- \mathcal{M}_{NN} : PUM of a car with neural network controller

Conformance in Track Error of $\mathcal{M}_{MPC}/\mathcal{M}_{NN}$ -based Lane-Keeping Controllers.

$$\forall \tau \ge 0. \left| \mathbf{Pr}_{\sigma_1 \sim \mathcal{M}_{\mathsf{NN}}}(\sigma_1 \vDash \diamondsuit_{[0,\tau]}(|e_y^{\mathsf{NN}}| < \gamma)) - \mathbf{Pr}_{\sigma_2 \sim \mathcal{M}_{\mathsf{MPC}}}(\sigma_2 \vDash \diamondsuit_{[0,\tau]}(|e_y^{\mathsf{MPC}}| < \gamma)) \right| < c$$

Conformance in Track Error of MPC/NN-based Lane-Keeping Controllers.

$$\forall \tau \ge 0. \left| \mathbf{Pr}_{\sigma_1 \sim \mathcal{M}_{\mathsf{NN}}}(\sigma_1 \vDash \diamondsuit_{[0,\tau]}(|e_y^{\mathsf{NN}}| < \gamma)) - \mathbf{Pr}_{\sigma_2 \sim \mathcal{M}_{\mathsf{MPC}}}(\sigma_2 \vDash \diamondsuit_{[0,\tau]}(|e_y^{\mathsf{MPC}}| < \gamma)) \right| < c$$

С	Confidence	Samples	Time (s)	Result
0.40	0.99	1.0e+04	9.6e+00	Т
0.40	0.95	3.6e+03	2.0e+00	Т
0.25	0.99	9.5e+02	3.2e-01	F
0.25	0.95	2.5e+02	5.9e-02	F
0.10	0.99	2.1e+02	4.2e-02	F
0.10	0.95	1.2e+02	2.2e-02	F
0.05	0.99	1.3e+02	2.5e-02	F
0.05	0.95	7.3e+01	1.4e-02	F

Case Study III: Power System

Power System = 100kW Photovoltaic Array + 25kV Power Grid + DC-DC Boost Converter + Voltage Source Converter.

- \mathcal{M}_d : PUM with **detailed** dynamics
- \mathcal{M}_a : PUM with **average** dynamics (by filtering out high-frequency responses)

Conformance in Voltage Deviation of Detailed/Simplified models $\mathcal{M}_d/\mathcal{M}_a$ of Power Converter.

$$\forall \gamma \ge 0. \left| \Pr_{\sigma_d \sim \mathcal{M}_d} (\sigma_d \vDash \Box_{[0.5,2]} (|e_{vdc_d}| < \gamma)) - \Pr_{\sigma_a \sim \mathcal{M}_a} (\sigma_a \vDash \Box_{[0.5,2]} (|e_{vdc_a}| < \gamma)) \right| < c$$

Conformance in Voltage Deviation of Detailed/Simplified models $\mathcal{M}_d/\mathcal{M}_a$ of Power Converter.

$$\forall \gamma \ge 0. \left| \Pr_{\sigma_d \sim \mathcal{M}_d} (\sigma_d \vDash \Box_{[0.5,2]} (|e_{vdc_d}| < \gamma)) - \Pr_{\sigma_a \sim \mathcal{M}_a} (\sigma_a \vDash \Box_{[0.5,2]} (|e_{vdc_a}| < \gamma)) \right| < c$$

С	Confidence	Samples	Time (s)	Result
0.40	0.99	3.9e+01	1.0e-02	F
0.40	0.95	1.9e+01	6.9e-03	F
0.25	0.99	2.5e+01	5.3e-03	F
0.25	0.95	1.3e+01	3.3e-03	F
0.10	0.99	1.8e+01	3.8e-03	F
0.10	0.95	9.0e+00	1.8e-03	F
0.05	0.99	1.8e+01	3.2e-03	F
0.05	0.95	8.0e+00	1.3e-03	F

Thank you

Code: <u>https://gitlab.oit.duke.edu/cpsl/conformance</u>