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\/ Problem Formulation

- Q,r,

A system is modeled as Design an observer capable of reconstructing
) f( ) ny the system’s state, i.e.,
Lo = J(Zo : . :
’ lim sup [|z;(t) —xo(t)|| <e VieV
where t—o00
where € > 0.

ro € R™ unmeasurable, system state,

_ _ _ Moreover,
d € R™ time-varying disturbance, - Distributed,

. RN n : « event-triggered ,
f: R™ = R™ uncertain. - adaptive through DNN.

Consider a MAS with [NV agents

Assumptions
g = (Va g)a « The function f is locally Lipschitz.
V=1{1,2,..,N} « The disturbance d is bounded.
? J Y 3 . .
 The graph G is connected for all time.
ECV XV, » The state of the system is bounded,
z; € R™, l.e., xg € D.

= Cizg € R™.
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Function Approximation
Se

Since f is Lipschitz continuous and zo C D,

flp(z0) = Wy o(®(20)) + €

- /)
h'd

Ideal DNN Reconstruction error in R™.

Wo € REX"™ is the ideal outer layer weight matrix

o : RP — R is a user-defined bounded continuous function (sigmoid, Gaussian)

$ : R™ — RP is an ideal continuous function (ideal inner DNN)

(I)(J?()) == (WETQf)g @) We—r_lgbg_l ©...0 Wf_qbl)(azo)
Using the structure of f|p and @,

fi(iﬁiawiawuy ,Wez) = WJU(@(@@)),

D, :(Z;) is piecewise continuous, {TZ

p=1"
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Observer Design
See

Let {t }k o be an increasing sequence of sampling and broadcast times, where

Ti(t) = 2(t,), t€[th,thiq)

The observe of agent 1 is designed as

FF Model Approx. Output feedback

A
A
e ™ ~ ~

z;(t) & Wz—T(t)a(;I; (2:(t))) + K1 (z:(t) — C;' (9:(t) — wi(t))),

JEN; Consensus on sampled
estimates
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Inner DNN Training
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Layer1 Layer2 Layer3 Layer4 Layer5

Inputs () Outputs
’ / / /

N
Wy Wo Wi Wi Ws
. J
Y

Levenberg-Marquardt algorithm + Input-Output Data

Levenberg-Marquardt algorithm
« Supervised learning (every input has a corresponding output)

* Nonlinear regression

2o = f(wo) T = f(@o) +d 2 = fi(@)
Vo VN T

Output  Input Unknown Unknown Unknown Output  Input
Output Input Disturbance
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Main Result

e14(t) = 2;(t) — xo(t), state estimation error.
e1(t) = [ef 1 (1), 1 (), e y(B)] " € R,

Theorem:

The observer and outer weight update law for each : € V ensure the state estimation error
is UUB in the sense that

lex (D)]1* < cre™" + ea(1 — e7)

provided all assumptions are satisfied, the sufficient parameter conditions (listed in the
paper) are satisfied, there exists a matrix K satisfying the bilinear matrix inequality

%(IN ®K1)0T0—|— %CTC(IN ® K1)+ (L® Ky) > kil,n,

and agent 2 broadcasts its state estimate as determined by the event-trigger mechanism

7 . i €
b 2inf {t > #: pullezs(®? 2 dallm(t)IP + T |

N
k K k
A V2 2 A 2
=— 4+ (| LXK = :
(ﬁl 2 —I— 2” ® 1” ’ ¢2 4||L®In||2
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Simulation Results
4;§§2’ IIIIIIIIIIIIIIIIIIIIIIII

The system model is a 3D Van der Pol oscillator, where

p(a(t) —2°(t)/3 — y(t))
f(@o(t)) = z(t)/ , w=03.
—pz(t)

The disturbance acting on the system is
d(t) = [0.5sin(3t), 0.75cos(t), cos(3.75¢)]"
The MAS observing the system consists of three agents with the following output matrices
Ci,=[100], C;=[010], C3=1[001].

The adjacency matrix encoding the communication topology of the MAS is A =

—_ = O
o O
o O =

The simulation parameters are

N=3k=1€e=3x10°,T =313, p=2,5 =0.3, ky = 10, and k; = 23.3

134.86 0 0
Ky = 0 263.23 0

0 0 263.23
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\ Simulation Results
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\j, Closing

« Conclusion
» Performed distributed state estimation
« Uncertain nonlinear system,
» Event-triggered communication,
* Deep neural networks,
» Multi-timescale learning (online and offline).
* Free to adopt several (offline) training strategies
* Robust to external disturbances (UUB).

 Future Work .
 Under what conditions does z; — o ? Are there any offline learning strategies capable
ensuring fi = f?
« Develop a training strategy that runs consensus on the neural network weights.
« Develop an observer that does not require all states of the system to be measurable
by the MAS.
« Consider sensor/measurement noise (unmatched uncertainty).
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Event/Self-Triggered Multi-Agent System
Rendezvous with Graph Maintenance

F. M. Zegers, D. Guralnik, and W. E. Dixon, "Event/Self-Triggered Multi-Agent System Rendezvous with Graph
Maintenance," in IEEE Control Systems Letters/IEEE Conference on Decision and Control. Submitted.
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Problem Formulation
S

Consider a multi-agent system of N agents. Design an event/self-triggered controller
_ capable of
Dynamics of agent p « achieving v—approximate rendezvous, and
Iy = Uy « maintaining the edges of the initial G (x(0)).
n "
Ty € R™, position of agent p Key Assumption
Uy € R™, control of agent p « The initial graph Gr(x(0)) is connected,
and every edge (p, q) € £(x(0)) satisfies

« Undirected Network Topology |2,(0) — 2,(0)]| < R.

Gr(x(0)) = (V,€(x(0)), W(x)),

x £ (2p)pev € Conf(V) = (R™)Y,

V={1,2,..N},

Er(x(0)) ={(p,q) € V xV: [l2p(0) — 24(0)[| < R},
W (x) = [wpy] € RV,

UFiisiivh €
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g\/ Potential Functions
Qr ’

Let r : R>9 — R>( be a non-decreasing continuous function such that r(0) > 0.
Also, let

P(p) £ [Ir(s)sds, p € Rxo.

The potential and edge weight assigned to edge {p, ¢} € £ are
Vig(x) = P (|lzp — 24| ,
wpq = 7 (lzp — 24]]) -

Next, define ¢ > 0 and R £ R(1 —¢).

1, s €[0,R]
r(s) 2 {1+ w(s? — %), s e[ R
14+ w(R?—-R?), s>R.
—
s\
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\/ I Controller and Closed-Loop Dynamics

- Q,r,

The controller of agent p is u, = 7,.
The hybrid system for agent p is

4

x.p =  Tp,
H: ! 7.-p = 1, ﬁp = Op, TP(G) >0
T; = 0, 77; = > wpg(wg—1p), Tp(§) =0,
\ qEN
where

1. n= (1p)pev € Conf(V), T = (7p)pev € [0,00)",
E2x",n",7T]T € X & Conf(V) x Conf(V) x [0, 00),

2. For each p € V,the trigger of agent p, i.e.,,T, : X — R, is a continuous function

T,(§) =0=T,y(£") > 0.

that satisfies
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Supporting Items
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Lemma 1. Every initial condition ¢(0,0) € C determines one and only one

maximal solution of the hybrid system H as defined in (6). Moreover, every
maximal solution of H is either t—complete or Zeno (complete).

Sketch of Proof: Use Proposition 2.10 & properties of our H.
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\/’ Graph Maintenance & t-Completeness

Additional Restrictions on Tp:

Tpis an admissible trigger, if Tp IS continuously differential,Tp < fp throughout X’
and there exist m, h > 0 such that

(a) Tp(£+) > b at each jump of H,
(b) %Tp > —m holds along any solution of .

Theorem 1. Given R = R(1 — ¢) satisfying (3) and a connected graph Gr(x(0)), if
{Tp}pEV is a collection of admissible triggers, then every solution of H satisfying (10)

and initiating from C 5 (G ) remains Cr (G), is t—complete, and the controllers 1, are
bounded for all time.

i
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\/’ v —Approximate Rendezvous

- ¢;r/’

Theorem 2. Let v > 0, R = R(1 — ¢) satisfy (3), and Gr(x(0)) be a connected graph.
Suppose 0 < 8 < O'KR2 and {Tp}pgv is a collection of admissible triggers such that,
over solutions of 7 satisfying (10) and initiating from C5(G),

T, +oKR>< f, + 0

holds for all p € V. Then, any such solution satisfies

Iax(0z < S (1ax(O)[ e TR + 07
oo — r(O) o0 )

Ax = (wp — wq)pqec‘f

In this sense, R, is exponentially stable for

v> _ r(0)
E|R2 T(R)’

In particular, ' — approximate rendezvous is achieved for every such maximal solution,
forany v’ > v.

ag =
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g\/ Simulation Results
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Simulation parameters: T, 1 (&) = ||, |1* — |G 117 + a(|m, )
_B
a(s) = {ﬁ S S5€ 0,7

0, s>y
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\/, Closing

« Conclusion
« Event/self-triggered approximate rendezvous framed in the hybrid systems setting.
« Allows the consideration of multiple event/self trigger mechanisms.
« Edge potentials
* bounded,
« arbitrarily small buffer, and
« adjustable given any initial configuration.

* Future Work
» Develop robustness to perturbations in the state and trigger
« Hybrid Basic Conditions.
« Consider more complex dynamics.
» Develop self-triggers that adhere to prescribed periods of radio silence.
« Extend development to other types of mobile network control problems.
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