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• Current state of deployed UASs currently involve 
significant human interaction (<=L3 autonomy)
• Autonomous systems will potentially learn from 

simulation data informed by human interaction
• Augmented reality (AR) systems can assist near-term 

operations while virtual reality (VR) simulators are 
standard for training
• What risks to privacy are

incurred in these systems?

Human-Machine Interaction



Original Dataset

2

C

Stimulus1
Stimulus2
StimulusM

Stimulus1
Stimulus2
StimulusM

Stimulus1
Stimulus2
StimulusM

Pass event data for 
each stimulus into 
privacy mechanism 
𝒫 for Feature data

𝒫
Feature

: <e1 ,…, eE > :<f’1,…, f’E>

C Individuals
M Stimuli
Gaze Sample Data

1

Output de-identified 
feature vectors

Event Detection:
Label gaze 
samples
ei = {�⃗�, tstart, tend}

De-identified Dataset

1

2

C

Stimulus1
Stimulus2
StimulusM

Stimulus1
Stimulus2
StimulusM

Stimulus1
Stimulus2
StimulusM

C Individuals
M Stimuli
Feature Data

Feature Pipeline



Feature Extraction 
(Fixation/Saccade):

F(ei) → 𝑓

Cluster Features:
For each stimulus cluster 

individuals randomly
Parameter: k

# of clusters based on k

k-same:
Replacement of original 

data features with cluster 
centroids

(now data is k-same)

𝒫
Feature

Input: Sequence of event data 
for each individual and stimulus

Output: Sequence of de-identified feature 
vectors for each individual and stimulus

k-same

Feature Extraction 
(Fixation/Saccade):

F(ei) → 𝑓

Exponential Noise:
Independently Sampled

Parameter: ε
L1 Sensitivity based on range 

of feature values

Exponential DP:
Add Exponential privacy 

noise to original data 
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F(ei) → 𝑓

Marginals Generative Model:
Input: Discrete distribution of 
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Privacy Test:
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IF FAIL: Repeat
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Evaluation

• Generative model and exponential-DP rapidly reduce 
identification rate
• Utility of k-same is higher than both of these mechanisms
• Plausible deniability of marginals generative model 

provides formal guarantees about contributing inputs
• Next step opportunities: applying synthetic data from 

generative modeling in agent environments 



Fully Homomorphic
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Environments
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Fully homomorphic encryption (FHE)

• Assuring data privacy during computation

• allows for arbitrary operations on encrypted data

• Lattice-based cryptosystem (LBC) 

• Hard problems used: closest/shortest vector problems, learning with errors (LWE)

• Current schemes are IND-CPA secure

• Applications: cloud computing, machine learning, evaluation of private data (medical, 
financial, personal, IoT, etc.)

Recent Advancements:

o key/modulus switching – minimizes noise without 
requiring secret key or bootstrapping (BGV schemes)

o Improved FHE performance – approximate/continuous 
space operations (CKKS scheme) 

o uses parallel processing on GPUs, FPGAs, ASICs

Encryption/decryption are primarily composed of 
linear transforms over large integer vectors. 

Lattice Cryptography



FHE vs. PHE 

Partially HE (PHE)
• Allows arbitrary number of addition OR 

multiplication operations

• Efficient for specific/singular applications,             
lower overhead than FHE
• handles limited class of low-deg polynomial 

functions/circuits
• Pallier (addition), El Gamal/RSA 

(multiplication)

• Not post-quantum
• Hard problems: DCRA, discrete logarithm, 

integer factorization respectively… all vulnerable 
to quantum and classical attacks

• Overall greater overhead if needed for various 
applications/data types, implement multiple different 
SHE/PHE schemes

• Not inherently boostrappable, no easy way to handle 
decryption function w/o exposing secret key

FHE
• Allows arbitrary number of addition AND 

multiplication operations

• Efficiency has grown significantly in recent years

• Modified SHE where decryption function is reduced 
enough for bootstrapping

• bootstrapping, modulus switching

• Necessary for large circuits/complex 
functions to reduce noise accumulated

• Does not require secret key knowledge

• Post-quantum lattice-based crypto (LBC)

• Hard problems: closest/shortest vector problem 
(CVP/SVP) and learning with errors (LWE)

• Allows for complex functions/operations needed in 
algorithms such as Dijkstra, ML and cloud 
computing operations



Goals and Methods

Method:
• Palisade crypto toolkit for FHE, integrated with 

ROS software tested on Nvidia AI development 
boards

• Server/client program testing various 
evaluations in two FHE schemes,  
determining scalability and overhead 

Program setup

Goal: Implement FHE in contested environments, 

i.e. UAVs, satellites, other limited-resource systems

• secure robotic operations by integrating FHE into 
ROS operations

• secure outsourcing of crypto/computationally 
expensive tasks



Implementation

Object Binary size (bytes)
plaintext 96

cryptocontext 2687

public key 396221

evalmult key 203295

ciphertext 1 396249

ciphertext 2 396249

Overhead of objects in code

Code sample (c++)

ROS Publisher Subscriber Model

MathWorks

ROS sharing file



Future Work

More computations
• Dijkstra’s search algorithm
• optimize scheme used for specific UAV operations/data types

Outsource computationally-expensive tasks
• heavy cryptographic components
• particular data types, e.g. images

Testing platforms
• test programs on UAVs and other resource-constrained 

systems, e.g. satellites



Note: Quadratic optimization with PHE

• Shoukry et al. (CDC 2016) developed a solution for a 
class of convex optimization problems using partially 
homomorphic encryption
• Argument: FHE too slow to be practical

• Demonstrated using PHE to solve quadratic 
programs with linear inequality constraints
• Paillier cryptosystem (addition only is possible)

• Open question: what types of optimization problems 
require both addition and multiplication and could 
benefit from advances in FHE?
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Motivation

Heterogenous multi-agent systems are capable of “language 
emergence” while learning to perform a task. 

In this scheme, the communication channel acts as a “shim 
layer” between otherwise incompatible agents. 
Main problem: learned communication can only be grounded 
to the environment
Goal: Ground messages to environment and agent knowledge

“Receiver” Agent

Task information

Reward Signal

“Sender” Agent
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Background

Is there cognitive theory view of this problem?
Gentner (2010) - Language supports relational 
cognition (analogical processing):

#1: How to build 
structurally-
consistent 

representations?

#2: How to align 
representations 
over a channel?
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Approach

We consider two agents playing a Lewis Signaling Game:

#1: Get a structure consistency from disentangled 
representations

Sentence 
about Image

Error signal



Disentangled representations

Disentangled representations (DR) enable tuning the reasoning process.
DR generally split the learning domain into k concept classes (which can be 
different from dataset classes).
-> learn latent representation with concept separation

Concept Whitening for Interpretable Image Recognition (Chen et al. 2020)



Approach

Disentangled representations (DR) enable tuning the reasoning process.
DR generally split the learning domain into k concept classes (which can be 
different from dataset classes).
-> learn latent representation with concept separation

ProtoPNet (Chen et al. 2018)
• Unsupervised disentanglement - using prototypical image patches from 

the data to represent concepts (denoted z).



Approach

• Now for #2 (bulk of this talk): How can we compare/contrast 
learning structures through language (i.e., over the channel)?
• Difficult problem. Without supervision, the channel 

completely mixes the sender structure:
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Approach

• Now for #2 (bulk of this talk): How can we compare/contrast 
learning structures through language (i.e., over the channel)?
• Difficult problem. Without supervision, the channel 

completely mixes the sender structure.

• Since we lose the mapping between sender agent’s structure 
and the language, what if we make the agents learn it? 
• Refer to this as reification process

• Using the language-structure mapping, we can then ask 
receiver agent to perform relational inference against its own 
structure. 
• Multi-task learning



Multi-task learning (MTL)

• Sender solves two joint tasks:
1. Learn to embed their top-1 activate structure (zS) in the message
2. Learn to describe the target objects

• Receiver solves two joint tasks:
1. Learn to reconstruct the sender’s top-1 structure (rec(zS)) from the 

message (reconstruction loss) 

2. Learn to signal the correct target object (classification loss) 
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Setup

Challenges:
• Although DR have structural consistency, those used in 

ProtoPNet follow an arbitrary distribution. 
• Sender and Receiver are different models, so their DR may 

not concentrate in the same regions of latent space, 
hurting comparison
• Practically speaking, architecture is very sensitive to 

hyper-parameters -> grid search for 200 GPU hours on 
ACT3 cluster

This talk: Preliminary study on MNIST
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Qualitative Results
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Performance
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Lingering Questions

How to ensure similar latent space concentration between 
sender and receiver? 

Current scheme assumes (vector) latent space, what about other 
knowledge priors like graphs?

Future work:
• Embedding top-k structures as n-gram 
• Submission to ACL RR
• Leveraging different agent logic (e.g., Dan Guralnik’s UMA 

models) for structural comparison



Future Work

• Senders solve two three joint tasks:
1. Learn to embed their top-1 activate structure in the 

message
2. Learn to describe the target objects
3. Update knowledge structure based on embedding 

difficulty
• Receivers solve two three joint tasks:

1. Learn to reconstruct the sender’s top-1 structure from 
the message

2. Learn to signal the correct target object
3. Update knowledge structure based on perceived utility of 

sender structure



Thank you

w.garcia@ufl.edu


