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Online Decision Making — Big Picture
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The agent learn aims to choose actions that maximize expected rewards.
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Slide adapted from Dr. Bareinboim’s ICML 2020 Tutorial
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Causal Online Decision Making — Big Picture
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Structural Causal Equation

Observational, interventional

Slide adapted from Dr. Bareinboim’s ICML 2020 Tutorial
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Structural Causal Models & Causal Graphs

Processes « Intervention
Drug < fp(Age, Ul‘ﬂf Drug < Hi{riee)
Headache < fy(Drug, Age, Up)
Tz B (Age\
X (Drug) Y (VHeadache) Drug Y (Headache)
P(Y,Z|X) P(Y,Z|do(X=x))
(observational) (interventional)
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MAB with Unobserved Confounders

* Input: P(x,y), learn: P(y|do(x)).

— Robotics: learning by demonstration when the expert can observe
a richer context (e.g., more accurate sensors)

— Mobile Health: optimal experimental design from observation data

learning task
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How to estimate P(Y|do(X))?

/\ learning task
—
> ®

P(Y|X) # P(Y|do(X))

P(X,Y)=) PY|X,U)PX|U}PU)

P(do(X),Y) =Y P(Y|do(X),U}P(do(X)|U)P(U)
=2 POX U Pw) Duke
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How to estimate P(Y|do(X))?

* Even though we cannot have a point estimate of

P(Y|do(x)), bounds on it can be obtained by solving an
optimization problem. p(y(do(z)) = 3~ P (xjjy(»w <U>

u

LB(UB) P(y|do(r)) = min (max) Z auf(u)

Ay by aqy,by

u

s.t. P(u) > by, by > ay, Linear Programming
1 < P2, y), bu < P(2),
ay =2 P(z,y) + P(u) — 1, by = P(x) + P(u) — 1,
w, by = 0, for all u € U;

Zau—Pccy Zb = P(x
“ Duke
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Agents aim to find a policy that maximizes the expected return while avoiding large

losses.

We consider Conditional Value at Risk (CVaR) as the risk measure for our problem.

Risk-averse Online Learning

Frequency

11

Maximum
loss

Probability
l-a «—

CVaR

VaR Deviation

j¢—— CVaR Deviation ——

A 4

[ Maximum Loss Deviation

Mean

Slide adapted from Dr. Uryasev’s 2000 CVaR tutorial
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CVaR Calculation: Discrete Distributions

with unobserved confounders, e.g., 0.1<=p1<=0.2

Six scenarios, |p,=p, = =p;=+| a =5

CVaR =1VaR +4CVaR" =1f, +2f, +2f,

Probability CVaR
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CVaR with Unobserved Confounders

Mixed-integer
Programming

CVaRq (Y|do(x))min = min - m —n
s.t. P(y|do(x)) < a4+ M(1—m),

— P(yldo(x)) < —a+ Mm,
ag < P(yldo(x)) < by, a1 < P(yldo(x)) < by,
n < Mm,n < P(y|do(x))/a,
n 2> P(yldo(z))/o = M(1 —m),
P(y|do(x)) + P(yl|do(z)) =1,
n >0,m € {0,1},

where M is a constant large number.
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How does causal bounds help?

» Causal bounds tell us with probability 1, P(y|do(x)) is
contained in the causal bounds.

* In many online learning problems, concentrations bounds
tell us with probability 1 — o, P(y|do(x)) is contained in the

concentration bounds.

 Causal bounds can help us to better estimate all quantities
built upon P(y|do(x)) in online learning, e.g., expected

returns, UCB type algorithms. As a result, unsafe
explorations are avoided.
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Causal Bound Constrained Online Exploration

~

Foy) ¢ (Fely) — &y € [0,0)})
UCBDEWOIP (1) 2% .= min{|CVaRa (£, o)

X

//’

Risk-averse upper confidence bound causal upper bound
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Regret Analysis

Lemma 1 (Regret Decomposition). The CVaR regret satisfies the following identity
K

R =Y ASE[T(n)],

rx=1

where AY = max CVaR,(F;) — CVaR,(F,) is the sub-optimality gap of arm x with
respect to the opflmal CVaR arm and T(n) is the number of times arm x has been pulled up to
time step n.

Theorem 1. Let. #° = max CVaRq(F7%). Then, the expected number of times that any
sub-optimal arm x is puIIed by Algorithm 1 is upper bounded by:

0 he < lmax

E[T,(n)] < {1 Imax < B < p* .

2
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A Case Study in Emotion Regulation in Mobile Health

U
learning task
—

O
X Y X
U: motion detection N

X: two strategies to relieve stress and
anxiety Y
(S1) Seeking advice/comfort from 5
others £ 20
(S2) Accepting thoughts/feelings 1o

Y: user’s self-reporting binary evaluations
on the selected recommendations

—— CVaR-UCB

—— CVaR-UCB with Causal Bounds

0

2000

4000 6000 8000 10000

Duke

UNIVERSITY




Risk-averse Convex Games

x_i other agents’ decisions

agent i’s decision * C’i agent i’s cost function

Goal: find an optimal decision that minimize the CVaR value of
the cost function with bandit feedback (zeroth-order information).
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Challenges in Risk-averse Convex Games

* Individual cost functions depend on joint decisions.

» CVaR values of cost functions cannot be accurately
estimated due to finite samples.

» (Gradients cannot be accurately measured due to bandit
feedback.

Sampling strategy:

ng = [bU*(T —t 4 1)%]

IIIIIIIIII




Momentum Method for Risk-Averse Online
Convex Games

/ using past samples

) =[P )|+ (1 - B) ()

using previous gradient estimate

d; \-

Git =~ (CVaRy, [Fi+] —|CVaR,, [Fi1]) wi

Reduce Variance

Source: Empirical distribution function, Wikipedia Duke
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number of samples

Preliminary Numerical Results

* \We consider a Cournot game example.

J; =

1—(2—
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Summary

« \We proposed a transfer learning method for risk-averse MAB that
can handle UCs. Specifically, we formulated a mixed-integer linear
program (MIP) that utilizes the observational data to calculate causal
bounds on CVaR values. We then transferred these CVaR causal

bounds to the learner and proposed a causal bound constrained
UCB algorithm to reduce the variance of online learning.

« We proposed a zeroth-order momentum method for online convex
games with risk-averse agents.
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