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Deep Fully-Connected and Residual 
Neural (ResNet) Network-Based 

Adaptive Control: A Lyapunov-Based 
Approach



Fully-Connected DNN Architecture

• Fully-Connected DNN with some input 𝜂𝜂

• Recursive Representation

• Universal Approximation Property

• Dynamics



Control Design

• Adaptive Feedforward DNN Term

• Control Law DNN

where 

• Let



Adaptation Law

• Adaptation Law (analysis allows for ReLU activation functions)

where is computed using the chain rule as 



ResNet Architecture

• ResNets contain shortcut connections

• A ResNet can be modeled using 
fully-connected blocks as

• Each fully-connected block can be 
expressed using the recursive relation

where 𝑘𝑘𝑝𝑝 denotes the depth of the 𝑝𝑝𝑡𝑡𝑡 block 



Control Design

• Adaptive Feedforward DNN Term

• Control Law
ResNet

• Let



Adaptation Law

• Adaptation Law

where can be computed using the chain rule as 



Stability Analysis

Proof:

• Invoking LaSalle-Yoshizawa theorem for nonsmooth systems yields

• Candidate Lyapunov Function

• Upper-bounding yields



Simulation Results

• System

• Simulations were performed with seven ResNet configurations, each with a 
different depth or width. Hyperbolic tangent activation function was used.

• Based on ResNets I-IV, increasing the depth or width provided improved 
tracking and function approximation

• Given ResNets IV-VII with the same total depth, ResNets with deeper Φ2, i.e., 
shortcut connections across more layers yielded better tracking and function 
approximation 



Simulation Results

Weight Estimates of ResNet IV

• ResNet VII has a slower adaptation than ResNet IV, due to vanishing gradient 
in Φ1 and Φ3.

• Although Φ2 is deeper in ResNet IV, the shortcut connection in ResNets
circumvents vanishing gradient that occurs due to depth Φ2 .

Normalized tracking and function approximation errors with ResNet IV



Conclusion

• First result on Lyapunov-derived weight adaptation laws for 
ResNets

• ResNets with shortcut connections across more layers were 
found to yield better tracking and function approximation

• In future work, recurrent residual neural network 
architectures can be explored



Accelerated Gradient Decent 
for Adaptive Control



Motivation

• GD converges in 5574 iterations
• NAG converges in 447 iterations

Technical Challenges

• Can not naively implement in closed-loop control

• Convergence of parameter estimations

• Nesterov’s Accelerated Gradient
• Add “momentum” to the update law by adding the current step a weighted 

version of the previous step

• Connections to continuous time analogues*
• Dynamical systems perspective and analysis
• Insights and heuristics on adaptation design

*Su.Boyd.Candes, 2019
Wibisono.Wilson.Jordan, 2016
Wilson.Recht.Jordan, 2021
**Gaudio. Annaswamy.et2021

**



Problem Formulation

• Control objective 
• Trajectory tracking
• Real-time parameter estimation

• Tracking and filtered tracking errors

• Parameter estimation errors

Regressor
Matrix

Unknown
Parameters



Control Design

• Control Input

• Higher-order adaptation laws (implementable form)

• Higher-order adaptation laws (analysis form)



Simulations

• Simulation 1 – Standard Adaptive • Simulation 2 – ICL Adaptive 

• Simulation 3 – Developed Method



Simulations

Evolution of the normalized parameter estimation error
trajectories for each simulation. The red line represents the
simulation using the standard adaptive method. The blue
line represents the simulation using the ICL adaptive
method. The black line represents the simulation using the
developed method.

(top): Parameter estimation error using the ICL adaptive 
method. (bottom): Parameter estimation error using the 
developed method.



Neural Network Extension

Neural Network Model

Dynamics
• Unknown/unstructured model 

uncertainty (i.e., does not satisfy the 
LIP assumption)



Controller and Adaptation Laws

Higher-order output-layer weight adaptation laws

Higher-order hidden-layer weight adaptation laws

Control input



Sketch Proof

Lyapunov Function

…

Invoke LaSalle-Yoshizawa theorem extension for nonsmooth systems



Simulations

Dynamics:

Simulations:

1. Developed method

2. Standard gradient-based NN adaptive controller

Desired trajectory:



Simulations

Function approximation error for each simulation
Output-layer weight estimates using the
developed method and the standard NN
adaptive controller



Switched Approximate Dynamic 
Programming and Applications to 

Hierarchical Reinforcement 
Learning



Outline

• Model-Based Reinforcement Learning for Optimal 
Feedback Control of Switched Systems

• Time-Based Switched ADP
• Facilitate Trajectory Tracking
• Switched Multiple Lyapunov UUB Stability Theorem

• Hierarchical Reinforcement Learning-based Supervisory 
Control of Unknown Nonlinear Systems

• Builds on Switched ADP Result
• Switch Between Multiple Control Policies
• Optimal Value Function-Based Hierarchical Policy



Switched ADP

Barrier Function
Given a control affine nonlinear dynamical system:

Dynamical System

̇𝜁𝜁 = 𝐹𝐹 𝜁𝜁 + 𝐺𝐺 𝜁𝜁 𝜇𝜇

Design a controller, 𝜇𝜇, which minimizes a cost function:

Control Objective

𝐽𝐽 𝜁𝜁, 𝜇𝜇 = min
𝜇𝜇 𝜏𝜏 𝜖𝜖𝜖𝜖
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Optimal value function:

Cost-to-Go

𝑉𝑉∗ 𝑥𝑥 = min
𝜇𝜇 𝜏𝜏 𝜖𝜖𝜖𝜖

�
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∞
𝑄𝑄 𝜁𝜁 𝜏𝜏 + 𝜇𝜇 𝜏𝜏 𝑇𝑇𝑅𝑅𝜇𝜇 𝜏𝜏 𝑑𝑑𝜏𝜏



Value Function and Optimal Control Policy Approximation

�𝑉𝑉 𝜁𝜁, �𝑊𝑊𝑐𝑐 = �𝑊𝑊𝑐𝑐
𝑇𝑇𝜎𝜎 𝜁𝜁 𝜇̂𝜇 𝜁𝜁, �𝑊𝑊𝑎𝑎 = − 1

2
𝑅𝑅−1𝐺𝐺 𝜁𝜁 𝑇𝑇 𝛻𝛻𝜁𝜁𝜎𝜎 𝜁𝜁 𝑇𝑇 �𝑊𝑊𝑎𝑎

Bellman Error (BE): Residual from HJB 

𝛿̂𝛿 𝜁𝜁, �𝑊𝑊𝑐𝑐, �𝑊𝑊𝑎𝑎 ≜ 𝑄𝑄 𝜁𝜁 + 𝜇̂𝜇 𝜁𝜁, �𝑊𝑊𝑎𝑎
𝑇𝑇𝑅𝑅𝜇̂𝜇 𝜁𝜁, �𝑊𝑊𝑎𝑎 + 𝛻𝛻𝜁𝜁 �𝑉𝑉 𝜁𝜁, �𝑊𝑊𝑐𝑐 �𝐹𝐹𝑖𝑖 𝜁𝜁 + 𝐺𝐺 𝜁𝜁 𝜇̂𝜇 𝜁𝜁, �𝑊𝑊𝑎𝑎

Switched ADP

Optimal Value Function and Optimal Control Policy:

Unknown: Neural weights
�𝑊𝑊𝑐𝑐: Critic weight 
�𝑊𝑊𝑎𝑎: Actor weight

𝑉𝑉∗ 𝜁𝜁 = 𝑊𝑊𝑇𝑇𝜎𝜎 𝜁𝜁 + 𝜀𝜀 𝜁𝜁 𝜇𝜇∗ 𝜁𝜁 = − 1
2
𝑅𝑅−1𝐺𝐺 𝜁𝜁 𝑇𝑇 𝛻𝛻𝜁𝜁𝜎𝜎 𝜁𝜁 𝑇𝑇𝑊𝑊 + 𝛻𝛻𝜁𝜁𝜀𝜀 𝜁𝜁 𝑇𝑇

�𝑊𝑊𝑐𝑐, �𝑊𝑊𝑎𝑎 → 𝑊𝑊



Switched ADP

• ADP Subsystem Stability is Well-Understood
• Switched ADP is More Complicated

28

• Each subsystem must remain active until it has decayed past its 
subsequent jump.

𝑉𝑉𝐿𝐿,𝑖𝑖 𝑟𝑟𝑖𝑖, 𝑡𝑡 “Jump”



Switched ADP

• Initial Result:
• Analyze Subsystems Separately

𝑉𝑉𝐿𝐿,𝑖𝑖 𝑟𝑟𝑖𝑖, 𝑡𝑡 = 𝑉𝑉𝑖𝑖∗ 𝑒𝑒, 𝑡𝑡 +
1
2
�𝑊𝑊𝑐𝑐,𝑖𝑖

𝑇𝑇Γ𝑖𝑖−1 �𝑊𝑊𝑐𝑐,𝑖𝑖 +
1
2
�𝑊𝑊𝑎𝑎,𝑖𝑖

𝑇𝑇 �𝑊𝑊𝑎𝑎,𝑖𝑖

• Switched Lyapunov-Based Analysis

• Problem #1: Unknown Value Function 𝑉𝑉𝑖𝑖∗
• Common Lyapunov Function?

• Problem #2: Lyapunov Function Decay Rate
• Assumptions on quadratic bound on Lyapunov function required for 

exponential stability

• Problem #3: Subsystem State Vector 𝑟𝑟𝑖𝑖
• “Discontinuous” States (i.e., 𝑟𝑟𝑖𝑖 𝑡𝑡 ≠ 𝑟𝑟𝑖𝑖+1 𝑡𝑡 )?

29



Switched ADP

Switched UUB Theorem (Informal)

Given that each subsystem is UUB in the sense of Theorem 4.18 of Khalil  
and let 𝑡𝑡𝜎𝜎 = 𝑡𝑡0, 𝑡𝑡1, 𝑡𝑡2, … represents a switching sequence. If the minimum 
dwell-time condition

𝜏𝜏 𝑡𝑡𝑖𝑖 ≥ �
𝛼𝛼2,𝜎𝜎 𝑡𝑡𝑖𝑖 𝑟𝑟 𝑡𝑡𝑖𝑖 − 𝛼𝛼1,𝜎𝜎 𝑡𝑡𝑖𝑖

− 𝑟𝑟 𝑡𝑡𝑖𝑖
𝜅𝜅

𝑉𝑉𝜎𝜎 𝑡𝑡𝑖𝑖 𝑟𝑟 𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖 > �𝛼𝛼

> 0 𝑉𝑉𝜎𝜎 𝑡𝑡𝑖𝑖 𝑟𝑟 𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖 ≤ �𝛼𝛼

is satisfied, then the trajectories of the switched system converge to a 
bounded region given by lim

𝑡𝑡→∞
𝑟𝑟 𝑡𝑡 ≤ max

𝑝𝑝∈𝑃𝑃
𝛼𝛼1,𝑝𝑝
−1 �𝛼𝛼 .
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Dynamic Model

Mode 1, Unaltered Model

Mode 2, Altered Model

Mode 3, Altered Model

31

• F-16 Longitudinal 
Dynamics 

• [Stevens, Lewis, Johnson, 2016]

Switched ADP

31



32

• Switch between multiple 
dynamical systems

• Arbitrary switching sequence
• Satisfies minimum dwell-time 

condition

• Switching Sequence
• {1,2,3,1,3,2}

Switched ADP

32



33 Switched ADP
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Hierarchical Reinforcement 
Learning-based Supervisory Control 

of Unknown Nonlinear Systems



Hierarchical ADP

35

• Hierarchical ADP
• Hierarchical Agent

• Switching Logic
• Approximation of Optimal Value 

Function

• ADP Sub-Policies
• Each ADP Policy Learning Separately
• 1 Control Policy is Selected by HRL 

Agent

• System Identification
• Approximation of Drift Dynamics
• Approximation used to Update 

Model-Based ADP Weights



Hierarchical ADP

Hierarchical ADP Stability Analysis (Sketch)

1. Each ADP Subsystem Learns Separately
2. Simultaneous System Identification
3. Each Subsystem is UUB in the Sense of Khalil Thm. 4.18
4. HRL Agent Switches Active Policy

• Based on Optimal Value Function Appx. & Dwell-Time

5. Leverage Switched ADP Stability Result
6. The trajectories of the switched system converge to a 

bounded region given by lim
𝑡𝑡→∞

𝑟𝑟 𝑡𝑡 ≤ max
𝑝𝑝∈𝑃𝑃

𝛼𝛼1,𝑝𝑝
−1 �𝛼𝛼
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37 Hierarchical ADP
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38 Hierarchical ADP

38

Controller Total Cost 99% Rise 
Time (s)

HRL Controller 1073 2.08

Controller 1 2683 2.97

Controller 2 1701 4.11

Controller 3 1940 3.07

• Simulation Performance
• Total Cost

• Cost of Implementing 
Each Controller

• HRL Costs Less by 37%
• Rise Time

• Time to Reach 1% of the 
Initial State Error

• HRL Faster by 30%



High Order Control Barrier 
Functions



High Order Control Barrier Functions

• Previously, we have developed control barrier functions (CBF) for 
situations where safety-ensuring control inputs exist:

• High-order CBFs are used when safety cannot be assured in certain 
regions of the safe set

Trajectories 
starting with 
positive velocity 
near the 
boundary will 
always exit the 
safe set

• Often occurs because barrier 
function does not depend on a state 
whose dynamics depend on the 
control input



High Order Control Barrier Functions

• Assuming Γ𝑖𝑖 doesn’t depend on the control input, we define a new 
CBF

• Defines a safe set                                                                         where  
is nonempty

• The parameter 𝜖𝜖𝑖𝑖 > 0 provides some robustness and is needed for theoretical 
reasons

Problem states 
are removed 
from the safe set



High Order Control Barrier Functions

• Recursively define multiple CBFs until for some 𝑘𝑘 > 1 the following 
set is nonempty

in which case the set                        can be made forward invariant 
using any control law 

• Our results apply to a more general class of dynamics than current 
HOCBF formulations

• Apply to problems with additional HOCBFs and traditional CBFs
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