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Our Goal: Add resiliency to controls across different/all levels of the autonomy stack
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Low-Level Control in the Presence of Attacks
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𝑠𝑢𝑝𝑝 𝐚' = 𝒦
𝐚',) = 0, ∀𝑖 ∈ 𝒦*

Can Attacker Reach Any State?

[1] I. Jovanov and M. Pajic, “Relaxing Integrity Requirements for Attack-Resilient Cyber-Physical Systems”, IEEE Trans. on Automatic Control, 2019
[2] A. Khazraei and M. Pajic, “Perfect Attackability of Linear Dynamical Systems with Bounded Noise,” ACC 2020.
[3] A. Khazraei and M. Pajic, “Attack-Resilient State Estimation with Intermittent Data Authentication,” Automatica, 2022.

Theorem 1 [1,2,3]:
A system presented above is perfectly attackable if and only if it is unstable, and at least 
one eigenvector v corresponding to an unstable mode satisfies 𝑠𝑢𝑝𝑝(𝐂𝐯) ⊆ 𝒦 and v is a 
reachable state of the dynamic system. 

Physics-based detectors cannot always protect us from an intelligent attacker

𝐱'+, = 𝑓(𝐱', 𝐮') + 𝐰'
𝐲' = 𝐶𝐱' + 𝐚' + 𝐯'



What happens when we include 
perception?

A. Khazraei, H. Pfister, and M. Pajic, “Resiliency of Perception-Based Controllers Against Attacks”, Learning for Dynamics and 
Control (L4DC), 2022, accepted, spotlight paper. 



System Model/Architecture

𝑥"#$ = 𝑓 𝑥" + 𝐵𝑢" + 𝑤"

𝑧" = 𝐺 𝑥"

𝑦"% = 𝐶%𝑥" + 𝑣"%

𝑦"& = 𝐶&𝑥" + 𝑣&(𝑥")

𝑢" = 𝜋 𝑧" , 𝑦"%



Intrusion Detector

• 𝐻!: Normal condition (the ID receives Y = 𝑦!: 𝑦" with distribution 𝑷)

• 𝐻": Abnormal behavior (the ID receives 𝑌# = 𝑦!#: 𝑦"# with distribution 𝑸)

𝑦" =
𝑦"$
𝑦"%

𝑦"# =
𝑦"
$,#

𝑦"
&,#

Intrusion Detector:   𝒟 ,𝑌 → {0,1}

𝑝"' = ℙ 𝒟 ,𝑌 = 0 ,𝑌~𝑸 + ℙ(𝒟 ,𝑌 = 1|,𝑌~𝑷)

Random Guess:     𝑝"' = ℙ 𝒟 ,𝑌 = 0 + ℙ 𝒟 ,𝑌 = 1 = 1



Assumptions

Assumption 1: There exists a safe set 𝒮 around the operating point such that for all 𝑥 ∈ 𝒮 , it holds

that 𝑃 𝑧 − 𝐶&𝑥 ≤ 𝛾', where 𝑧 = 𝐺(𝑥)– i.e., for all 𝑥 ∈ 𝒮, 𝑣&(𝑥) < 𝛾'. Without loss of generality, in this work we

consider the origin as the operating point – i.e., 𝑥( = 0.

Assumption 2: We assume that for the closed-loop system (4) is exponentially stable on a set 𝒟 = 𝐵).

Using the converse Lyapunov theorem, there exists a Lyapunov function that satisfies the following inequalities hold with

constants 𝑐$, 𝑐*, 𝑐+ and 𝑐, on a set 𝒟 = 𝐵)

𝑐$ 𝑥" * ≤ 𝑉(𝑥") ≤ 𝑐* 𝑥" * 𝑉 𝑥"#$ − 𝑉 𝑥" ≤ −𝑐+ 𝑥" * -.
-/

≤ 𝑐, 𝑥



Class of unstable functions

Definition: The class of functions 𝒰( contains all functions 𝑓 such that the dynamics 𝑥")* = 𝑓 𝑥" + 𝑑",
where 𝑑" satisfies 𝑑" ≤ 𝜌, becomes arbitrarily large for some nonzero initial state 𝑥!. Also, for a function
𝑓 from 𝒰( and initial condition 𝑥!, we define 𝑇+ 𝛼, 𝑥! = 𝑚𝑖𝑛 𝑡| 𝑥" > 𝛼 .

Proposition: Let 𝑉: ℝ0 → ℝ be a continuously differentiable function satisfying 𝑉 0 = 0 and define

𝑈1! = 𝑥 ∈ 𝐵1!| 𝑉 𝑥 > 0 . 

Assume that -.(/)
-/

≤ 𝛽( 𝑥 ) and for any 𝑥 ∈ 𝑈1! it holds that 𝑉 𝑓 𝑥 − 𝑉(𝑥) ≥ 𝛼( 𝑥 ) where 𝛽( 𝑥 ) and
𝛼( 𝑥 ) are in class 𝒦 functions. Further, assume that 𝑟$ can be chosen arbitrarily large.

If lim
/ →5

6( / )
7( / )

→ ∞, then f ∈ 𝒰8 for any 𝜌 > 0. 

If lim
/ →5

6( / )
7( / )

= 𝛾 then f ∈ 𝒰8 for any 𝜌 < 𝛾. 



Attack Model

• The attacker has full knowledge of the system, its 
dynamics and employed architecture

• The attacker has the required computation power to 
calculate suitable attack signals to inject a subset of 
sensors, while planning ahead as needed

• The attacker has the ability to compromise
camera images by 𝑧XY

• The attacker has the ability to compromise the sensor 
measurements

• Attack objective: effective and stealthy!



Stealthiness Definition

Definition: An attack sequence is strictly stealthy if there exists no detector such that the sum of conditional

error probabilities 𝑝"' satisfies 𝒑𝒕𝒆 < 𝟏, for any 𝑡 ≥ 0. An attack is 𝝐-stealthy if for a given 𝜖 > 0, there exists

no detector such that 𝒑𝒕𝒆 < 𝟏 − 𝝐 for any 𝑡 ≥ 0.

Theorem: An attack sequence is strictly stealthy if and only if

𝑲𝑳 𝑸 𝑦!#: 𝑦"# ||𝑷 𝑦!: 𝑦" = 𝟎 for any 𝑡 ≥ 0, 

(𝐾𝐿 represents the Kullback-Leibler divergence operator).

An attack sequence is 𝝐-stealthy if the corresponding observation sequence satisfies

𝑲𝑳 𝑸 𝑦!#: 𝑦"# ||𝑷 𝑦!: 𝑦" ≤ log( *
*.𝝐!

)

𝑝"' = ℙ 𝒟 \𝑌 = 0 \𝑌~𝑸 + ℙ(𝒟 \𝑌 = 1|\𝑌~𝑷)



Attacker’s Goal

Definition 2: Attack sequence, denoted as 𝑧!#, 𝑦!
&,#, 𝑧*#, 𝑦*

&,#, … is an 𝝐, 𝜶 -successful attack if there

exists 𝑡0 ≥ 0 such that 𝑥"" ≥ 𝛼 and the attack is 𝜖-stealthy for all 𝑡 ≥ 0.

When such a sequence exists for a system, the system is called 𝛜, 𝛂 -attackable. Finally, when the

system is 𝜖, 𝛼 -attackable for arbitrarily large 𝛼 the system is referred to as perfectly attackable.

Definition 3: For an attack-free state trajectory 𝑥!: 𝑥" , and for any 𝑇 ≥ 0 𝑏1 > 0 and 𝑏2 > 0 ,

𝛿(𝑇, 𝑏2, 𝑏1) is the probability that the system state and physical sensor noise 𝑣& remain in the ball with

radius 𝑏2 and 𝑏1, respectively, during 0 ≤ 𝑡 ≤ 𝑇– i.e.,

𝛿 𝑇, 𝑏2, 𝑏1 = ℙ sup
!3"34

𝑥" < 𝑏2 , sup
!3"34

𝑣" < 𝑏1



Attack Strategy I: Using Estimate of the Plant State

𝑧"! = 𝐺 𝑥"! − 𝑠"

𝑦"
%,! = 𝐶% 𝑥"! − 𝑠" + 𝑣"%

Attack dynamics: 𝑠"#$ = 𝑓 "𝑥"! − 𝑓 "𝑥"! − 𝑠"

Assumption: 𝜻 = 𝒙𝒕𝒂 − e𝒙𝒕𝒂,   𝜻 ≤ 𝒃𝜻

Theorem 2: Assume that the functions 𝑓, 𝑓0 and Π0(i.e., derivatives of 𝑓 and Π) are Lipschitz with
constants 𝐿+, 𝐿+0 and 𝐿50 , respectively, and let us define

𝐿* = 𝐿+0 (𝑏2 + 2𝑏6 + 𝑑), 𝐿7 = 𝑚𝑖𝑛 2𝐿+, 𝐿+0 (𝛼 + 𝑏2 + 𝑏6 and 𝐿8 = 𝐿50 (𝑏2 + 𝑑 + 𝑏1). 
Moreover, assume that 𝑏2 has the maximum value such that the inequalities

𝐿* + 𝐿8 𝐵 < 9#
9$

and 𝐿7𝑏6 <
9#.(;%);# < )9$

9$
9%
9!
𝜃𝑟 for some 0 < 𝜃 < 1, are satisfied. 

Then, the system is 𝛜, 𝛂 -attackable with probability 𝛿 𝑇(𝛼 + 𝑏 + 𝑏2, 𝑠!), 𝑏2, 𝑏1 for some 𝜖 > 0, if 𝑓 ∈

𝒰( with 𝜌 = 2𝐿+(𝑏 + 𝑏2 + 𝑏6) and 𝑏 = 9$
9#.(;%);# < )9$

9!
9%

;!>&
?

.

Attack 
injection

Idea:
Fake state e = 𝑥"! − 𝑠" , 



Attack Strategy II

Theorem: Assume that the functions 𝑓= and Π=(i.e., derivatives of 𝑓 and Π) are Lipschitz, with constants 𝐿> , 𝐿>= and 𝐿?= ,
respectively, and let us define 𝐿$ = 𝐿>= (𝛼 + 𝑑), 𝐿* = 𝐿>= (𝛼 + 𝑏/) and 𝐿+ = 𝐿?= (𝑏/ + 𝑑 + 𝑏@). Moreover, assume that

𝑏/ has the maximum value such that the inequalities 𝐿$ + 𝐿+ 𝐵 < A"
A#

and 𝐿*𝑏/ <
A"B(C!#C" D )A#

A#

A!
A$
𝜃𝑟 for some

0 < 𝜃 < 1, are satisfied.

Then, the system is 𝛜, 𝛂 -attackable with probability 𝛿 𝑇(𝛼 + 𝑏 + 𝑏/ , 𝑠E), 𝑏/ , 𝑏@ for some 𝜖 > 0, if 𝑓 ∈ 𝒰E and 𝑏 =
A#

A"B(C!#C" D )A#

A$
A!

C$F%
G

.

𝑧"! = 𝐺 𝑥"! − 𝑠"

𝑦"
%,! = 𝐶% 𝑥"! − 𝑠" + 𝑣"%

Attack dynamics: 𝑠"#$ = 𝑓 𝑠"Attack 
injection



Attack on LTI Systems

Corollary 2: Consider an LTI perception-based control system with 𝑓 𝑥" = 𝐴𝑥" and a linear feedback controller.
If the matrix A is unstable, the system is 𝜖, 𝛼 -attackable with probability 1 for arbitrarily large 𝛼 and 𝜖 = 1 − 𝑒BF&,

where 𝑏H = 𝜆I!/ ΣJB$ + 𝜆I!/(𝐶%KΣ@B$𝐶% + ΣJB$)
A$
A!

''(

$B''(
and 𝑒B7 is the largest eigenvalue of the closed-loop

system.

Corollary 1: Consider an LTI perception-based control system with 𝑓 𝑥" = 𝐴𝑥".
If 𝐿+ 𝐵 < A"

A#
with 𝐿+ = 𝐿?= 𝑏/ + 𝑑 + 𝑏@ and the matrix A is unstable, the system is 𝛜, 𝛂 -attackable with

probability 𝛿 𝑇(𝛼 + 𝑏/ , 𝑠E), 𝑏/ , 𝑏@ for arbitrarily large 𝛼 and 𝜖 = 1 − 𝑒BF&, where

𝑏H = 𝜆I!/ ΣJB$ + 𝜆I!/ 𝐶%KΣ@B$𝐶% + ΣJB$ min 𝑇 𝛼 + 𝑏/ , 𝑠E ,
𝑐*
𝑐$

𝑒B7

1 − 𝑒B7
𝑠E

and 𝑒B7 is the largest eigenvalue of the closed-loop system.



Case Study : Inverted Pendulum

Evolution of the angle’s  𝜃 absolute value over time for 
different levels of 𝑏' (left). The norm of the residue over time 

when the attack starts at time 𝑡 = 0 (right)

Evolution of the angle’s 𝜃 absolute value over time for 
attack strategy Ⅱ. The norm of the residue over time 

when the attack starts at time 𝑡 = 0 (right)

Perception map 
performance 



Camera-LiDAR Fusion
Multiple Architectures for Sensor Fusion

Most common sensors:
• LiDAR data is sparse in R4

– X-Y-Z-intensity
– Full 3D resolution

• Camera data is dense in R3
– R-G-B channels
– 2D (angles-only) resolution

Semantic-Level Fusion Feature-Level Fusion

• Semantic fusion popular across industry due to:
– Reduce of "curse of dimensionality" of input space
– Greater flexibility in industry for "plug-and-play"/swap-ability of components

• Feature-level-fusion high-performing due to fusion of low-level, machine-
learned features
• Fusion touted to improve resiliency and performance compared to single-
sensor perception alone

Fusion at tracking
"Integrated semantic fusion"

Feature-level-fusionCascaded semantic fusion



Beyond Naïve Attack: Novel Frustum Attack Is Feasible

Compromise Fusion (and LiDAR-only)
• Fusion robust against naïve attack because naïve attack is not 

consistent between sensor modalities
• Ensure consistency by spoofing within the frustum (i.e. in-view, 

as seen by camera) of existing vehicles
• This does not require any knowledge of the camera data

Feasibility
• We validated attack feasibility with limited additional 

knowledge required over original, naïve black-box spoofing
• Only additional requirement is attack orientation

Three candidate realizations of the frustum attack. 
Additional configurations shown later

Target car in front of victim Spoofer set behind target car Stable spoof points placed in frustum

Demonstrated controlling (i.e.
moving to attacker's specified 
location) spoof points stably over 
time with moving vehicles

S. Hallyburton, Y. Liu, Y. Cao, Z. M. Mao, and M. Pajic, "Security Analysis of Camera-LiDAR Fusion Against Black-Box Attacks on Autonomous 
Vehicles", 31st USENIX Security Symposium (USENIX SECURITY), 2022, accepted.



Frustum Attack is Widely Successful

(c) BEV shows false positive 
detection around spoofed points

(a) Target 
vehicle at 
~20m distance 
from victim

(b) Target victim (yellow, 238 
pts) has many more points than 
the spoof points (red 20pts)

Frustum attack successful even 
with just 2 spoof points!

Frustum attack widely 
successful with 60 spoof points

Compromise Fusion (and LiDAR-only)
• Frustum attack demonstrated to compromise BOTH LiDAR-only 

AND camera-LiDAR fusion
• Frustum attack shown indefensible by state-of-the-art defenses 

(CARLO, SVF, ShadowCatcher, LIFE)

Extensive Evaluations
• We perform the most extensive evaluation of attacks on perception to-date 

with 8 algorithms and 4 defenses (7 and 3 for large-scale evaluation)
• > 75 million attack traces evaluated --> number of spoof points, distance of 

spoof point placement, each object, each frame of data



Longitudinal Frustum Attacks Are Dangerous

Evaluation of Multi-Frame Tracking
• Use captured KITTI dataset to evaluate impact of 

frustum attack over multiple frames
• Demonstrated stably executing frustum attack in 

longitudinally-consistent way to obtain adversarial 
tracks (white + cyan) that can:

• 1) project to collide with victim
• 2) project to accelerate flow of traffic

End-to-End, Industry-Grade AVs
• Preliminary evaluation of the vulnerability of Baidu 

Apollo perception + control stack to the frustum 
attack – emergency braking engaged

• Baidu fuses LiDAR and camera detections at 
the tracking-level

• Use multi-stage approach since Baidu+SVL 
combination is still under development

• Physics-based simulations of AV driving with the 
SVL Simulator



Stealthy Spoofing Frustum-Attacks: 
Attacking Baidu’s Apollo



Conclusion

§ Perception combined with controls opens new attack surface

§ Moving from single instance analysis to longitudinal (i.e., time-series) analysis 



Thank you


