
POMDPs and Reinforcement Learning for

Cross-Layer Control and Network

Optimization

John M. Shea and Caleb M. Bowyer

1 / 43

Big Picture: Joint Optimization of Control and

Networks

2 / 43

Challenges

Diverse
Control
Systems &
Objectives

3 / 43

Challenges

Latency
Jamming

Congestion

Time-varying
Topologies

Fading/
Shadowing

Multi-objective, distributed, partially observable
⇒ Partially observable stochastic game

4 / 43

Challenges

Latency
Jamming

Congestion

Time-varying
Topologies

Fading/
Shadowing

Multi-objective, distributed, partially observable
⇒ Partially observable stochastic game

4 / 43

Constrained Problem: Distributed Sensing

Distributed Sensing and Coordination: Who senses and
transmits? ⇒ Partially observable, multi-agent MDP

5 / 43

Constrained Problem: Distributed Sensing

Distributed Sensing and Coordination: Who senses and
transmits? ⇒ Partially observable, multi-agent MDP

5 / 43

Constrained Problem: Distributed RF Localization

Coordinated sensing and localization: When to sense?
When to synchronize? ⇒ Partially Observable MDP

6 / 43

Constrained Problem: Distributed RF Localization

Coordinated sensing and localization: When to sense?
When to synchronize? ⇒ Partially Observable MDP

6 / 43

Application: Distributed Localization in

GPS-Denied Environments

I Desire low cost, low complexity, robust, high-performance
solutions to tracking/RADAR in GPS-denied
environments

I Low cost, low complexity: sensors have unreliable
clocks and noisy RF

I Robust: no single point of failure ⇒ distributed sensors
with robustness to failure of individual sensors

I High-performance: need to generate reliable
localization estimates using noisy ToF measurements
from noisy clocks

7 / 43

Application: Distributed Localization in

GPS-Denied Environments

I Desire low cost, low complexity, robust, high-performance
solutions to tracking/RADAR in GPS-denied
environments
I Low cost, low complexity: sensors have unreliable

clocks and noisy RF
I Robust: no single point of failure ⇒ distributed sensors

with robustness to failure of individual sensors
I High-performance: need to generate reliable

localization estimates using noisy ToF measurements
from noisy clocks

7 / 43

Application: Distributed Localization in

GPS-Denied Environments

8 / 43

Application: Distributed Localization in

GPS-Denied Environments

9 / 43

Need for Synchronization

I Given accurate sensor locations and tightly synchronized
clocks, distributed sensor networks can produce accurate
location estimates

I With unreliable clocks, timing drifts between
synchronization times reduces localization accuracy

I Clock synchronization requires communication among
sensors and localization may not be possible during the
synchronization times

Need to optimize between localization and
synchronization

10 / 43

Need for Synchronization

I Given accurate sensor locations and tightly synchronized
clocks, distributed sensor networks can produce accurate
location estimates

I With unreliable clocks, timing drifts between
synchronization times reduces localization accuracy

I Clock synchronization requires communication among
sensors and localization may not be possible during the
synchronization times

Need to optimize between localization and
synchronization

10 / 43

System Model

I Network of m stationary sensing agents

I Single asset to be tracked:
I Asset transmits beacon signal at known times to agents

to facilitate tracking in GPS-denied environment
I Asset moves according to known Markov model

11 / 43

System Model – cont.

I Sensors measure time-of-flights (ToFs) of beacon signal
and reference leader agent localizes (LOC) asset once
measurements are fused

I Each agent’s clock drifts independently and variance of
clock signals increase with time

I Agents can synchronize (SYNCH) clocks at expense of
not being able to measure ToFs during that time

12 / 43

Model-Free Localization for general 3D space
I Let coordinates of asset and sensor i in interval k be

(xk,a, yk,a, zk,a) and (xi , yi , zi)

I Using sensor m − 1 as a reference, form linear equations
A · vk = βk

I Here vk = [xk,a, yk,a, zk,a]T , A is a matrix with row i given
by

Ai = [2(xi − xm−1), 2(yi − ym−1), 2(zi − zm−1)] ,

i ∈ {0, 1, . . . ,m − 2},

and βk is a column vector with component

βi = c2
(
τ̂ 2k,i − τ̂ 2k,m−1

)
−
(
x2i − x2m−1

)
−
(
y 2
i − y 2

m−1
)

−
(
z2i − z2m−1

)
, i ∈ {0, 1, . . . ,m − 2}

13 / 43

Model-Free Localization for general 3D space
I Let coordinates of asset and sensor i in interval k be

(xk,a, yk,a, zk,a) and (xi , yi , zi)

I Using sensor m − 1 as a reference, form linear equations
A · vk = βk

I Here vk = [xk,a, yk,a, zk,a]T , A is a matrix with row i given
by

Ai = [2(xi − xm−1), 2(yi − ym−1), 2(zi − zm−1)] ,

i ∈ {0, 1, . . . ,m − 2},

and βk is a column vector with component

βi = c2
(
τ̂ 2k,i − τ̂ 2k,m−1

)
−
(
x2i − x2m−1

)
−
(
y 2
i − y 2

m−1
)

−
(
z2i − z2m−1

)
, i ∈ {0, 1, . . . ,m − 2}

13 / 43

Localization Solution

I The linear least squares solution is
[x̂k,a, ŷk,a, ẑk,a]T = A†βk where A† is the Moore-Penrose
pseduo-inverse of A

I Not always solvable, depending on sensor topology – can
also solve constrained least squares problem

14 / 43

Optimal Coordination of Localization and

Synchronization

I Pure localization generally not good enough because of
noisy clocks

I Does not inform system of when SYNC is needed

I Resolve both problems by treating tracking problem as
HMM and treating choice of SYNC/LOC as control
problem

I Since true state of asset not directly observable, this
results in a Partially Observable Markov Decision
Process (POMDP)

15 / 43

Optimal Coordination of Localization and

Synchronization

I Pure localization generally not good enough because of
noisy clocks

I Does not inform system of when SYNC is needed

I Resolve both problems by treating tracking problem as
HMM and treating choice of SYNC/LOC as control
problem
I Since true state of asset not directly observable, this

results in a Partially Observable Markov Decision
Process (POMDP)

15 / 43

POMDP

1. State space M×T , tuples of movement state M and
time since last sync T = Z+

2. Two controls U = {ul , us}, corresponding to localize or
synchronize

3. Continuous set of noisy observations from ToF
measurements, O

4. State-to-state transition function:
pij(u) = Pr(Mk+1 = j |Mk = i ,Uk = u) ∀ i , j ∈M based
on Markov movement model
(Note time since last sync is deterministic given previous
state and control

16 / 43

POMDP – cont.

5. State-to-observation density function:
qjo(u) = f (Ok+1 = o|Mk+1 = j ,Uk = u) ∀ j ∈M, ∀ o ∈
O from ToF noise

6. Cost function: MMSE of position estimate

17 / 43

Belief States, Observation Sequences and Control

Sequences

I Given:
I ok : vector of observations up to interval k
I uk−1: vector of controls leading up to interval k − 1

I Belief state at interval k is bk :

bk(m) = Pr (Mk = m |ok ,uk−1)

I the maximum a posteriori (MAP) estimate of the asset
state is

M̂k = arg max
m∈M

bk (m) .

18 / 43

Belief States, Observation Sequences and Control

Sequences

I Given:
I ok : vector of observations up to interval k
I uk−1: vector of controls leading up to interval k − 1

I Belief state at interval k is bk :

bk(m) = Pr (Mk = m |ok ,uk−1)

I the maximum a posteriori (MAP) estimate of the asset
state is

M̂k = arg max
m∈M

bk (m) .

18 / 43

Belief Update

I Continuous observation space (localization results) –
most papers consider only a finite observation space

bk+1(mk+1) =
f (ok+1,mk+1 |uk)

f (ok+1 |uk)
(1)

where

f (ok+1,mk+1 |uk) = f (ok+1 |mk+1)
∑

mk∈M
Pr(mk+1 |mk , uk)

· f (ok ,mk |uk−1)

19 / 43

Localization Density in Belief Update

I the conditional distribution of ok given mk and T
(s)
k is

modeled as multi-variate Gaussian with mean determined
by Mk and covariances determined by ToF variance, σN

I Relation between σN and covariances is determined
empirically:
I position estimate variances are proportional to σ2N (input

ToF Variance)
I different coordinates are approximately uncorrelated and

are thus treated as independent

20 / 43

Beleif Updates During Sync

I If the control is sync, then no measurement ok+1 is
available from localization;

I Update the belief by applying the Markov model
transitions probabilities

bk+1 = P · bk

21 / 43

Simulation Model: 3D Sensing Model

22 / 43

3D Sensing Model and Asset Ground Station

23 / 43

3D Sensing and Asset Movement Model

24 / 43

3D Sensing and Asset Movement Model

25 / 43

3D Sensing and Asset Movement Model

26 / 43

3D Sensing and Asset Movement Model

27 / 43

Belief State Evolution

0 200 400 600 800 1000
Interval k

1

2

3

4

5

6

7

8

9

Be
lie

f b
(m

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

28 / 43

Belief State Evolution Detailed View

406 410 414 418 422 426
Interval k

0
1
2
3
4
5
6
7
8
9

Be
lie

f b
(m

)

0.0

0.2

0.4

0.6

0.8

1.0

29 / 43

Belief State

I Belief state is a sufficient statistic for deciding the control
uk at stage k

I However: state space has |M| continuous dimensions

I To apply Q-learning, need to do some form of
approximation:

30 / 43

Approximate Q-Learning

Two fundamental approaches

I Q-function Approximation:
I Linear function of beliefs: replicated Q (RQ)-learning
I Nonlinear: Deep Q-learning

I Belief State Approximation:
I Approximate belief distribution by parameterized

distribution (e.g., Gaussian) and quantize parameters:
our triple Q (TQ)-learning

I Belief uncertainty can be represented by universal
measures (entropy) or application-specific measures
(EMSE)

31 / 43

Approximate Q-Learning

Two fundamental approaches

I Q-function Approximation:
I Linear function of beliefs: replicated Q (RQ)-learning
I Nonlinear: Deep Q-learning

I Belief State Approximation:
I Approximate belief distribution by parameterized

distribution (e.g., Gaussian) and quantize parameters:
our triple Q (TQ)-learning

I Belief uncertainty can be represented by universal
measures (entropy) or application-specific measures
(EMSE)

31 / 43

Belief State Compression

I Compress beliefs and syncing information into triple of
discrete values
mk = [m̂k ,T

(s)
k , νk]:

I m̂k : ML estimate for movement state
I T

(s)
k : is the number of time since last sync

I νk : Quantized EMSE

I Called: Triple Q-Learning (TQ-Learning)

32 / 43

Belief State Compression

I Compress beliefs and syncing information into triple of
discrete values
mk = [m̂k ,T

(s)
k , νk]:

I m̂k : ML estimate for movement state
I T

(s)
k : is the number of time since last sync

I νk : Quantized EMSE

I Called: Triple Q-Learning (TQ-Learning)

32 / 43

TQ-Learning Update

I Use tabular Q-learning with usual update rule:

Q(m, u)+ = α

[
c + γmin

u′
Q(g(m, u), u′)− Q(m, u)

]
.

I Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
function, and u′ is the control that minimizes the cost in
the next interval.

I The other constants affect how learning progresses:
I α: learning rate
I γ: discount factor

33 / 43

TQ-Learning Update

I Use tabular Q-learning with usual update rule:

Q(m, u)+ = α

[
c + γmin

u′
Q(g(m, u), u′)− Q(m, u)

]
.

I Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
function, and u′ is the control that minimizes the cost in
the next interval.

I The other constants affect how learning progresses:
I α: learning rate
I γ: discount factor

33 / 43

TQ-Learning Update

I Use tabular Q-learning with usual update rule:

Q(m, u)+ = α

[
c + γmin

u′
Q(g(m, u), u′)− Q(m, u)

]
.

I Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
function, and u′ is the control that minimizes the cost in
the next interval.

I The other constants affect how learning progresses:

I α: learning rate
I γ: discount factor

33 / 43

TQ-Learning Update

I Use tabular Q-learning with usual update rule:

Q(m, u)+ = α

[
c + γmin

u′
Q(g(m, u), u′)− Q(m, u)

]
.

I Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
function, and u′ is the control that minimizes the cost in
the next interval.

I The other constants affect how learning progresses:
I α: learning rate

I γ: discount factor

33 / 43

TQ-Learning Update

I Use tabular Q-learning with usual update rule:

Q(m, u)+ = α

[
c + γmin

u′
Q(g(m, u), u′)− Q(m, u)

]
.

I Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
function, and u′ is the control that minimizes the cost in
the next interval.

I The other constants affect how learning progresses:
I α: learning rate
I γ: discount factor

33 / 43

Replicated Q-learning (RQ-learning)

I Replicated Q-learning uses one vector qu for each control
u ∈ U and approximates the value of the Q-function for
belief state b as Qb(u) = qu · b.

I Because our POMDP state contains both motion state
Mk and time since last sync, T

(s)
k ,

I The qu vector’s elements are updated by

qu(x) = qu(x)+αb(x)

[
c+γ min

u′
Qb′(u

′)−qu(x)

]
∀x ∈ X .

I Exploit deterministic part of state to represent as 2Tmax

vectors of dimensions |M|

34 / 43

Replicated Q-learning (RQ-learning)

I Replicated Q-learning uses one vector qu for each control
u ∈ U and approximates the value of the Q-function for
belief state b as Qb(u) = qu · b.

I Because our POMDP state contains both motion state
Mk and time since last sync, T

(s)
k ,

I The qu vector’s elements are updated by

qu(x) = qu(x)+αb(x)

[
c+γ min

u′
Qb′(u

′)−qu(x)

]
∀x ∈ X .

I Exploit deterministic part of state to represent as 2Tmax

vectors of dimensions |M|

34 / 43

Fixed-Rate Deterministic Policies (Model-Free)

I Fixed-rate deterministic (FRD) is the standard approach
used in most of the sensing literature that addresses
timing synchronization

I FRD syncs every k intervals, where the value of k is
optimzied to minimize the MSE

35 / 43

TQ-learning Training Curve:

0 20000 40000 60000 80000 100000
Interval k

100

101

102

Av
er

ag
e

co
st

 c
TQ-learning Training Curve

N = 4 ns, m = 4
N = 8 ns, m = 4
N = 12 ns, m = 4
N = 16 ns, m = 4
N = 4 ns, m = 12
N = 8 ns, m = 12
N = 12 ns, m = 12
N = 16 ns, m = 12

36 / 43

TQ-learning Optimal Sync Times
High Input ToF Variance

0 2 4 6 8
MSE Level N

0

1

2

3

4

5

6

7

8

x M
L

Optimal Sync Times N *
s for m=4, N=16ns

2

4

6

8

10

12

14

16

18

I Note that for the highest input ToF variance, the higher
levels of the quantized MSE are reached.

I Also, note that generally the network can optimally wait
longer periods of time to resync at the lowest MSE level.

37 / 43

RQ-learning Training Curve:

0 20000 40000 60000 80000 100000
Interval k

100

101

102

Av
er

ag
e

co
st

 c
RQ-learning Training Curve

N = 4 ns, m = 4
N = 8 ns, m = 4
N = 12 ns, m = 4
N = 16 ns, m = 4
N = 4 ns, m = 12
N = 8 ns, m = 12
N = 12 ns, m = 12
N = 16 ns, m = 12

38 / 43

RQ-learning Approximate Sync Times (ML state)
I RQ-learning uses the entire belief vector, so no simple

visualization of optimal sync times
I Below we show the sync times if all the belief was

concentrated on the ML state:

1 2 3 4 5 6 7 8 9
xML

5

10

15

20

25

30

35

40

Op
tim

al
 S

yn
c

Ti
m

es
 N

* s

RQ Optimal Sync Times N *
s for m=4

m=4, N = 4
m=4, N = 8
m=4, N = 12
m=4, N = 16

39 / 43

Performance: Localization MSE

4 8 12 16
N(ns)

101Av
er

ag
e

Te
st

 C
os

t c TQ m = 4
TQ m = 12
RQ m = 4
RQ m = 12
FRD m = 4
FRD m = 12

40 / 43

Performance: Average Sync Rates

4 8 12 16
N(ns)

0.05

0.10

0.15

0.20

0.25

Te
st

 S
yn

c
Ra

te TQ m = 4
TQ m = 12
RQ m = 4
RQ m = 12
FRD m = 4
FRD m = 12

41 / 43

Conclusion
I Formulated problem of optimizing synchronization times

for system of distributed sensors tracking a mobile asset
as a POMDP

I Applied dimensionality reduction techniques to perform
Q-learning on that POMDP:
I TQ-learning replaces belief distribution with ML

estimate for motion state, time since last sync, and
(quantized) expected MSE

I “old” RQ-learning uses one q vector for each control of
size |M|.

I “new” RQ-learning uses one q vector for each control
and stage number of size |M|.

I Q-learning approaches outperform best FRD policies
I Deep Q-learning techniques are a good match for

POMDP problems because they can accept the
continuous belief state info → currently investigating

42 / 43

Conclusion

I Develop approaches for distributed decision making in
sensor networks (partially observable MAMDPs)

I Want to deploy and test these ideas using our AFOSR
DURIP-funded testbed

I Work torwards general framework for joint optimization of
stochastic controls and networks

43 / 43

	Big Picture
	Continuous Observation POMDP
	Belief States and Observations
	Results
	Belief State Evolution Macroscopic View
	TQ-learning Motivation
	TQ-Learning
	RQ-learning
	Fixed-Rate Deterministic Policies (Model-Free)
	Training Curves
	Training Curves
	Performance

	Conclusions
	Next Steps

