POMDPs and Reinforcement Learning for
Cross-Layer Control and Network
Optimization

John M. Shea and Caleb M. Bowyer

1/43

Big Picture: Joint Optimization of Control and
Networks

O P = = = wac
2/43

Challenges

Q>
3/43

Challenges

Fading/
' Shadowing

Q>
4/43

Challenges

o~

* Latency

Time-varying'
Topologies -,

Congestion Fading/ "
Shadowing ISy

= = ¥

Multi-objective, distributed, partially observable
= Partially observable stochastic game

4/43

Constrained Problem: Distributed Sensing

DA
5/43

Constrained Problem: Distributed Sensing

B

\\\/\\\N\ »)\ —

Distributed Sensing and Coordination: Who senses and
transmits? = Partially observable, multi-agent MDP

5/43

Constrained Problem: Distributed RF Localization

6/43

Constrained Problem: Distributed RF Localization

Coordinated sensing and localization: When to sense?
When to synchronize? = Partially Observable MDP

6/43

Application: Distributed Localization in
GPS-Denied Environments

» Desire low cost, low complexity, robust, high-performance
solutions to tracking/RADAR in GPS-denied

environments

7/43

Application: Distributed Localization in
GPS-Denied Environments

» Desire low cost, low complexity, robust, high-performance
solutions to tracking/RADAR in GPS-denied
environments

» Low cost, low complexity: sensors have unreliable
clocks and noisy RF

» Robust: no single point of failure = distributed sensors
with robustness to failure of individual sensors

» High-performance: need to generate reliable
localization estimates using noisy ToF measurements
from noisy clocks

7/43

Application: Distributed Localization in
GPS-Denied Environments

8/43

Application: Distributed Localization in
GPS-Denied Environments

9/43

Need for Synchronization

» Given accurate sensor locations and tightly synchronized
clocks, distributed sensor networks can produce accurate
location estimates

» With unreliable clocks, timing drifts between
synchronization times reduces localization accuracy

» Clock synchronization requires communication among
sensors and localization may not be possible during the
synchronization times

10/43

Need for Synchronization

» Given accurate sensor locations and tightly synchronized
clocks, distributed sensor networks can produce accurate
location estimates

» With unreliable clocks, timing drifts between
synchronization times reduces localization accuracy

» Clock synchronization requires communication among
sensors and localization may not be possible during the
synchronization times

Need to optimize between localization and
synchronization

10/43

System Model

» Network of m stationary sensing agents
» Single asset to be tracked:

P Asset transmits beacon signal at known times to agents
to facilitate tracking in GPS-denied environment
» Asset moves according to known Markov model

11/43

System Model — cont.

» Sensors measure time-of-flights (ToFs) of beacon signal
and reference leader agent localizes (LOC) asset once
measurements are fused

» Each agent’s clock drifts independently and variance of
clock signals increase with time

» Agents can synchronize (SYNCH) clocks at expense of
not being able to measure ToFs during that time

12/43

Model-Free Localization for general 3D space

> Let coordinates of asset and sensor i in interval k be
(Xk.a, Yk 2 Zk,2) and (x;, yi, z;)

13/43

Model-Free Localization for general 3D space

> Let coordinates of asset and sensor i in interval k be
(Xk,25 Yk,25 Zk,a) and (xi, i, zi)
» Using sensor m — 1 as a reference, form linear equations

A-v.=03
» Here vy = [xk,a,yk,a,zk,a]T, A is a matrix with row 7 given
by

Ai = [2(Xi - Xm—l)? 2(.yl - .ym—l)7 2(Zi - Zm—l)]7
ie{0,1,...,m-2),

and 3, is a column vector with component

Bi=c (?;3,,- - ?Ig,mfl) - (X,2 - Xﬁyfl) - (ylz - y,f,,l)

—(zf —2%4), i€{0,1,...,m—2}

m—1

13/43

Localization Solution

» The linear least squares solution is
[Xk.25 Yi.as ?k,a]T = A3, where AT is the Moore-Penrose
pseduo-inverse of A

» Not always solvable, depending on sensor topology — can
also solve constrained least squares problem

14/43

Optimal Coordination of Localization and
Synchronization

» Pure localization generally not good enough because of
noisy clocks

» Does not inform system of when SYNC is needed
» Resolve both problems by treating tracking problem as

HMM and treating choice of SYNC/LOC as control
problem

15/43

Optimal Coordination of Localization and
Synchronization

» Pure localization generally not good enough because of
noisy clocks

» Does not inform system of when SYNC is needed

» Resolve both problems by treating tracking problem as
HMM and treating choice of SYNC/LOC as control
problem

» Since true state of asset not directly observable, this
results in a Partially Observable Markov Decision
Process (POMDP)

15/43

POMDP

1. State space M x T, tuples of movement state M and
time since last sync 7 = Z*

2. Two controls U = {uy, us}, corresponding to localize or
synchronize

3. Continuous set of noisy observations from ToF
measurements, O

4. State-to-state transition function:
pii(u) = Pr(Myy1 = jIMy =i, Uy = u) V i,j € M based
on Markov movement model
(Note time since last sync is deterministic given previous
state and control

16/43

POMDP - cont.

5. State-to-observation density function:
Gjo(U) = f(Oky1 = o|Myy1 =j, Uk =u)VjeEM, Voe
O from ToF noise

6. Cost function: MMSE of position estimate

17/43

Belief States, Observation Sequences and Control
Sequences

» Given:

» oy: vector of observations up to interval k
» uy_1: vector of controls leading up to interval k — 1

18/43

Belief States, Observation Sequences and Control
Sequences

» Given:

» oy: vector of observations up to interval k
» uy_1: vector of controls leading up to interval k — 1

» Belief state at interval k is by:
bk(m) = Pr(Mx = m|ox, ux_1)

» the maximum a posteriori (MAP) estimate of the asset
state is R
M, = arg max by (m).
k gmeM K (m)

18/43

Belief Update

» Continuous observation space (localization results) —
most papers consider only a finite observation space

f(okp1, m u
bua(men) = HGE)

where
f(Oky1, Miy1|uk) = Fokg1 [mMiy1) Z Pr(my1 [my, uk)

mgeM

- ok, my Juk—1)

19/43

Localization Density in Belief Update

» the conditional distribution of o, given m, and T,Es) is
modeled as multi-variate Gaussian with mean determined
by My and covariances determined by ToF variance, oy

> Relation between oy and covariances is determined
empirically:

» position estimate variances are proportional to 0,2\, (input
ToF Variance)

» different coordinates are approximately uncorrelated and
are thus treated as independent

20/43

Beleif Updates During Sync

» If the control is sync, then no measurement oy, is
available from localization;

» Update the belief by applying the Markov model
transitions probabilities

b1 =P - by

21/43

Simulation Model: 3D Sensing Model

22/43

3D Sensing Model and Asset Ground Station

23/43

3D Sensing and Asset Movement Model

24/43

3D Sensing and Asset Movement Model

25/43

3D Sensing and Asset Movement Model

e

' T
N A

26 /43

3D Sensing and Asset Movement Model
> wv A
| | et
e .

e I

27 /43

Belief State Evolution

AR

°] N | II\ Ry
7 \ | Il |
gep | | Iﬂ | 111
§5‘|”|| |

@ 41

f VIIH’”
fﬂhfw’“ﬁl\\/¥uwl

2 4 0.3
v LT L 02
AN ASABAAMAAAAAAMAMOAA AR
l—l—l—l—l—l

Belief State Evolution Detailed View

Belief b(m)

.- 0
4 B EE &

1 n

;) 0 "
5-

D 1
3-

9 g

- "
0 +% . . —X . .

406 410 414 418 422 426

Interval k

1.0

0.8

0.6

0.4

0.2

0.0

29/43

Belief State

» Belief state is a sufficient statistic for deciding the control
uy at stage k
» However: state space has | M| continuous dimensions

» To apply Q-learning, need to do some form of
approximation:

30/43

Approximate Q-Learning

Two fundamental approaches
» @Q-function Approximation:

» Linear function of beliefs: replicated Q (RQ)-learning
» Nonlinear: Deep Q-learning

31/43

Approximate Q-Learning

Two fundamental approaches
» @Q-function Approximation:

» Linear function of beliefs: replicated Q (RQ)-learning
» Nonlinear: Deep Q-learning

> Belief State Approximation:

» Approximate belief distribution by parameterized
distribution (e.g., Gaussian) and quantize parameters:
our triple Q (TQ)-learning

» Belief uncertainty can be represented by universal

measures (entropy) or application-specific measures
(EMSE)

31/43

Belief State Compression

» Compress beliefs and syncing information into triple of
discrete values
I T(S) .
m, = [fnka k s Vk]-

32/43

Belief State Compression

» Compress beliefs and syncing information into triple of
discrete values
m, = [I’/T\'lk, T}Es)’ Vk]l
» M. ML estimate for movement state

> T,ES): is the number of time since last sync
» v,: Quantized EMSE

» Called: Triple Q-Learning (TQ-Learning)

32/43

TQ-Learning Update

» Use tabular Q-learning with usual update rule:

Q(m, u)+ = a|c +ymin Q(g(m, v), v) — Q(m, u) .

33/43

TQ-Learning Update

» Use tabular Q-learning with usual update rule:

Q(m, u)+ = a|c +ymin Q(g(m, v), v) — Q(m, u) .

» Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
function, and ¢’ is the control that minimizes the cost in

the next interval.

33/43

TQ-Learning Update

» Use tabular Q-learning with usual update rule:

Q(m, u)+ = a|c +ymin Q(g(m, v), v) — Q(m, u) .

» Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
function, and ¢’ is the control that minimizes the cost in
the next interval.

» The other constants affect how learning progresses:

33/43

TQ-Learning Update

» Use tabular Q-learning with usual update rule:

Q(m, u)+ = a|c +ymin Q(g(m, v), v) — Q(m, u) .

» Here, c is the cost of performing u from whatever true

state the asset actually is in, g is a generic state update
function, and ¢’ is the control that minimizes the cost in

the next interval.
» The other constants affect how learning progresses:

> «: learning rate

33/43

TQ-Learning Update

» Use tabular Q-learning with usual update rule:

Q(m, u)+ = a|c +ymin Q(g(m, v), v) — Q(m, u) .

» Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
function, and ¢’ is the control that minimizes the cost in
the next interval.

» The other constants affect how learning progresses:

> «: learning rate
» ~: discount factor

33/43

Replicated Q-learning (RQ-learning)

» Replicated Q-learning uses one vector q, for each control
u € U and approximates the value of the Q-function for
belief state b as Q,(u) = q, - b.

» Because our POMDP state contains both motion state
M and time since last sync, T,ES),

» The q, vector's elements are updated by

qu(x) = qu(x)+ab(x) |c+~ rTLI/n Qu(u)—qu(x)| Vx € X.

34/43

Replicated Q-learning (RQ-learning)

» Replicated Q-learning uses one vector q, for each control
u € U and approximates the value of the Q-function for
belief state b as Q,(u) = q, - b.

» Because our POMDP state contains both motion state
M and time since last sync, T(S),
» The q, vector's elements are updated by

qu(x) = qu(x)+ab(x) |c+~ rTLI/n Qu(u)—qu(x)| Vx € X.

» Exploit deterministic part of state to represent as 2T«
vectors of dimensions | M|

34/43

Fixed-Rate Deterministic Policies (Model-Free)

» Fixed-rate deterministic (FRD) is the standard approach
used in most of the sensing literature that addresses
timing synchronization

» FRD syncs every k intervals, where the value of k is
optimzied to minimize the MSE

35/43

TQ-learning Training Curve:

Average cost ¢

TQ-learning Training Curve

102 .

10 4

100 4

0 20000 40000 60000 80000 100000
Interval k

2
[

=12ns, m=4
oy=16ns, m=4
oy=4ns, m=12
oy=8ns, m=12

oy=12ns, m=12
oy=16ns, m=12

36/43

TQ-learning Optimal Sync Times
High Input ToF Variance

Optimal Sync Times N, for m=4, oy=16ns

XmL
=) ~N o w » w N - o

0 2 4 6 8
MSE Level N,

» Note that for the highest input ToF variance, the higher
levels of the quantized MSE are reached.
» Also, note that generally the network can optimally wait

longer periods of time to resync at the lowest MSE level.
37/43

RQ-learning Training Curve:

RQ-learning Training Curve

w24] e oy=4ns, m=4
----- oy=8ns, m=4

S}

‘g oy=12ns, m=4

; oy=16ns, m=4

2 oy=4ns, m=12

§101- oy=8ns, m=12

< oy=12ns,m=12
oy=16ns, m=12

10° 4

0 20000 40000 60000 80000 100000
Interval k

38/43

RQ-learning Approximate Sync Times (ML state)

» RQ-learning uses the entire belief vector, so no simple

visualization of optimal sync times

» Below we show the sync times if all the belief was
concentrated on the ML state:

N
o

Optimal Sync Times N,
w
w

=
o
L

w
L

RQ Optimal Sync Times N, for m=4

w
o
L

N
w
L

N
o
L

=
w
L

I

m=4,oy=4
m=4,oy=8
m=4, oy =12
m=4, oy =16

39/43

Performance: Localization MSE

Average Test Cost ¢

on(ns)

= TQm=4
=% TQm=12
—e— RQm=4
@ ROm=12
-8 FRDm=4
--@M- FRDm=12

40/43

Performance: Average Sync Rates

0.25 1

o
N
o

Test Sync Rate
o
a
o

0.05 4

=)

o

&
1

on(ns)

=% TQm=4
—— TOm=12
@ ROm=4
—&— RQOm=12
-.@- FRDm=4
—— FRDmM=12

41/43

Conclusion

» Formulated problem of optimizing synchronization times
for system of distributed sensors tracking a mobile asset
as a POMDP

» Applied dimensionality reduction techniques to perform
Q-learning on that POMDP:

» TQ-learning replaces belief distribution with ML
estimate for motion state, time since last sync, and
(quantized) expected MSE

» “old" RQ-learning uses one g vector for each control of
size |[M].

> “new”’ RQ-learning uses one g vector for each control
and stage number of size |M]|.

» (Q-learning approaches outperform best FRD policies

» Deep Q-learning techniques are a good match for
POMDP problems because they can accept the

continuous belief state info — currently investigating
42/43

Conclusion

» Develop approaches for distributed decision making in
sensor networks (partially observable MAMDPs)

» Want to deploy and test these ideas using our AFOSR
DURIP-funded testbed

» Work torwards general framework for joint optimization of
stochastic controls and networks

43 /43

	Big Picture
	Continuous Observation POMDP
	Belief States and Observations
	Results
	Belief State Evolution Macroscopic View
	TQ-learning Motivation
	TQ-Learning
	RQ-learning
	Fixed-Rate Deterministic Policies (Model-Free)
	Training Curves
	Training Curves
	Performance

	Conclusions
	Next Steps

