
POMDPs and Reinforcement Learning for

Cross-Layer Control and Network

Optimization

John M. Shea and Caleb M. Bowyer

1 / 43



Big Picture: Joint Optimization of Control and

Networks
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Challenges
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Control
Systems &
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Constrained Problem: Distributed Sensing

Distributed Sensing and Coordination: Who senses and
transmits? ⇒ Partially observable, multi-agent MDP
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Constrained Problem: Distributed RF Localization

Coordinated sensing and localization: When to sense?
When to synchronize? ⇒ Partially Observable MDP
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Application: Distributed Localization in

GPS-Denied Environments

I Desire low cost, low complexity, robust, high-performance
solutions to tracking/RADAR in GPS-denied
environments

I Low cost, low complexity: sensors have unreliable
clocks and noisy RF

I Robust: no single point of failure ⇒ distributed sensors
with robustness to failure of individual sensors

I High-performance: need to generate reliable
localization estimates using noisy ToF measurements
from noisy clocks
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Need for Synchronization

I Given accurate sensor locations and tightly synchronized
clocks, distributed sensor networks can produce accurate
location estimates

I With unreliable clocks, timing drifts between
synchronization times reduces localization accuracy

I Clock synchronization requires communication among
sensors and localization may not be possible during the
synchronization times

Need to optimize between localization and
synchronization
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System Model

I Network of m stationary sensing agents

I Single asset to be tracked:
I Asset transmits beacon signal at known times to agents

to facilitate tracking in GPS-denied environment
I Asset moves according to known Markov model
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System Model – cont.

I Sensors measure time-of-flights (ToFs) of beacon signal
and reference leader agent localizes (LOC) asset once
measurements are fused

I Each agent’s clock drifts independently and variance of
clock signals increase with time

I Agents can synchronize (SYNCH) clocks at expense of
not being able to measure ToFs during that time
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Model-Free Localization for general 3D space
I Let coordinates of asset and sensor i in interval k be

(xk,a, yk,a, zk,a) and (xi , yi , zi)

I Using sensor m − 1 as a reference, form linear equations
A · vk = βk

I Here vk = [xk,a, yk,a, zk,a]T , A is a matrix with row i given
by

Ai = [2(xi − xm−1), 2(yi − ym−1), 2(zi − zm−1)] ,

i ∈ {0, 1, . . . ,m − 2},

and βk is a column vector with component

βi = c2
(
τ̂ 2k,i − τ̂ 2k,m−1

)
−
(
x2i − x2m−1

)
−
(
y 2
i − y 2

m−1
)

−
(
z2i − z2m−1

)
, i ∈ {0, 1, . . . ,m − 2}
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Localization Solution

I The linear least squares solution is
[x̂k,a, ŷk,a, ẑk,a]T = A†βk where A† is the Moore-Penrose
pseduo-inverse of A

I Not always solvable, depending on sensor topology – can
also solve constrained least squares problem
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Optimal Coordination of Localization and

Synchronization

I Pure localization generally not good enough because of
noisy clocks

I Does not inform system of when SYNC is needed

I Resolve both problems by treating tracking problem as
HMM and treating choice of SYNC/LOC as control
problem

I Since true state of asset not directly observable, this
results in a Partially Observable Markov Decision
Process (POMDP)
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POMDP

1. State space M×T , tuples of movement state M and
time since last sync T = Z+

2. Two controls U = {ul , us}, corresponding to localize or
synchronize

3. Continuous set of noisy observations from ToF
measurements, O

4. State-to-state transition function:
pij(u) = Pr(Mk+1 = j |Mk = i ,Uk = u) ∀ i , j ∈M based
on Markov movement model
(Note time since last sync is deterministic given previous
state and control
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POMDP – cont.

5. State-to-observation density function:
qjo(u) = f (Ok+1 = o|Mk+1 = j ,Uk = u) ∀ j ∈M, ∀ o ∈
O from ToF noise

6. Cost function: MMSE of position estimate
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Belief States, Observation Sequences and Control

Sequences

I Given:
I ok : vector of observations up to interval k
I uk−1: vector of controls leading up to interval k − 1

I Belief state at interval k is bk :

bk(m) = Pr (Mk = m |ok ,uk−1 )

I the maximum a posteriori (MAP) estimate of the asset
state is

M̂k = arg max
m∈M

bk (m) .

18 / 43



Belief States, Observation Sequences and Control

Sequences

I Given:
I ok : vector of observations up to interval k
I uk−1: vector of controls leading up to interval k − 1

I Belief state at interval k is bk :

bk(m) = Pr (Mk = m |ok ,uk−1 )

I the maximum a posteriori (MAP) estimate of the asset
state is

M̂k = arg max
m∈M

bk (m) .

18 / 43



Belief Update

I Continuous observation space (localization results) –
most papers consider only a finite observation space

bk+1(mk+1) =
f (ok+1,mk+1 |uk )

f (ok+1 |uk )
(1)

where

f (ok+1,mk+1 |uk ) = f (ok+1 |mk+1 )
∑

mk∈M
Pr(mk+1 |mk , uk )

· f (ok ,mk |uk−1 )
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Localization Density in Belief Update

I the conditional distribution of ok given mk and T
(s)
k is

modeled as multi-variate Gaussian with mean determined
by Mk and covariances determined by ToF variance, σN

I Relation between σN and covariances is determined
empirically:
I position estimate variances are proportional to σ2N (input

ToF Variance)
I different coordinates are approximately uncorrelated and

are thus treated as independent
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Beleif Updates During Sync

I If the control is sync, then no measurement ok+1 is
available from localization;

I Update the belief by applying the Markov model
transitions probabilities

bk+1 = P · bk
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Simulation Model: 3D Sensing Model
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3D Sensing Model and Asset Ground Station
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3D Sensing and Asset Movement Model
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3D Sensing and Asset Movement Model
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3D Sensing and Asset Movement Model
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3D Sensing and Asset Movement Model
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Belief State Evolution

0 200 400 600 800 1000
Interval k

1

2

3

4

5

6

7

8

9

Be
lie

f b
(m

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

28 / 43



Belief State Evolution Detailed View

406 410 414 418 422 426
Interval k

0
1
2
3
4
5
6
7
8
9

Be
lie

f b
(m

)

0.0

0.2

0.4

0.6

0.8

1.0

29 / 43



Belief State

I Belief state is a sufficient statistic for deciding the control
uk at stage k

I However: state space has |M| continuous dimensions

I To apply Q-learning, need to do some form of
approximation:
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Approximate Q-Learning

Two fundamental approaches

I Q-function Approximation:
I Linear function of beliefs: replicated Q (RQ)-learning
I Nonlinear: Deep Q-learning

I Belief State Approximation:
I Approximate belief distribution by parameterized

distribution (e.g., Gaussian) and quantize parameters:
our triple Q (TQ)-learning

I Belief uncertainty can be represented by universal
measures (entropy) or application-specific measures
(EMSE)
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Belief State Compression

I Compress beliefs and syncing information into triple of
discrete values
mk = [m̂k ,T

(s)
k , νk ]:

I m̂k : ML estimate for movement state
I T

(s)
k : is the number of time since last sync

I νk : Quantized EMSE

I Called: Triple Q-Learning (TQ-Learning)
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TQ-Learning Update

I Use tabular Q-learning with usual update rule:

Q(m, u)+ = α

[
c + γmin

u′
Q(g(m, u), u′)− Q(m, u)

]
.

I Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
function, and u′ is the control that minimizes the cost in
the next interval.

I The other constants affect how learning progresses:
I α: learning rate
I γ: discount factor
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Replicated Q-learning (RQ-learning)

I Replicated Q-learning uses one vector qu for each control
u ∈ U and approximates the value of the Q-function for
belief state b as Qb(u) = qu · b.

I Because our POMDP state contains both motion state
Mk and time since last sync, T

(s)
k ,

I The qu vector’s elements are updated by

qu(x) = qu(x)+αb(x)

[
c+γ min

u′
Qb′(u

′)−qu(x)

]
∀x ∈ X .

I Exploit deterministic part of state to represent as 2Tmax

vectors of dimensions |M|
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Fixed-Rate Deterministic Policies (Model-Free)

I Fixed-rate deterministic (FRD) is the standard approach
used in most of the sensing literature that addresses
timing synchronization

I FRD syncs every k intervals, where the value of k is
optimzied to minimize the MSE
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TQ-learning Training Curve:
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TQ-learning Training Curve
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TQ-learning Optimal Sync Times
High Input ToF Variance
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I Note that for the highest input ToF variance, the higher
levels of the quantized MSE are reached.

I Also, note that generally the network can optimally wait
longer periods of time to resync at the lowest MSE level.
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RQ-learning Training Curve:
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RQ-learning Training Curve

N = 4 ns, m = 4
N = 8 ns, m = 4
N = 12 ns, m = 4
N = 16 ns, m = 4
N = 4 ns, m = 12
N = 8 ns, m = 12
N = 12 ns, m = 12
N = 16 ns, m = 12

38 / 43



RQ-learning Approximate Sync Times (ML state)
I RQ-learning uses the entire belief vector, so no simple

visualization of optimal sync times
I Below we show the sync times if all the belief was

concentrated on the ML state:
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Performance: Localization MSE
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Performance: Average Sync Rates
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Conclusion
I Formulated problem of optimizing synchronization times

for system of distributed sensors tracking a mobile asset
as a POMDP

I Applied dimensionality reduction techniques to perform
Q-learning on that POMDP:
I TQ-learning replaces belief distribution with ML

estimate for motion state, time since last sync, and
(quantized) expected MSE

I “old” RQ-learning uses one q vector for each control of
size |M|.

I “new” RQ-learning uses one q vector for each control
and stage number of size |M|.

I Q-learning approaches outperform best FRD policies
I Deep Q-learning techniques are a good match for

POMDP problems because they can accept the
continuous belief state info → currently investigating
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Conclusion

I Develop approaches for distributed decision making in
sensor networks (partially observable MAMDPs)

I Want to deploy and test these ideas using our AFOSR
DURIP-funded testbed

I Work torwards general framework for joint optimization of
stochastic controls and networks
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