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Big Picture: Joint Optimization of Control and
Networks
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Constrained Problem: Distributed Sensing
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Constrained Problem: Distributed Sensing
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Distributed Sensing and Coordination: Who senses and
transmits? = Partially observable, multi-agent MDP
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Constrained Problem: Distributed RF Localization
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Constrained Problem: Distributed RF Localization

Coordinated sensing and localization: When to sense?
When to synchronize? = Partially Observable MDP
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Application: Distributed Localization in
GPS-Denied Environments

» Desire low cost, low complexity, robust, high-performance
solutions to tracking/RADAR in GPS-denied

environments
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Application: Distributed Localization in
GPS-Denied Environments

» Desire low cost, low complexity, robust, high-performance
solutions to tracking/RADAR in GPS-denied
environments

» Low cost, low complexity: sensors have unreliable
clocks and noisy RF

» Robust: no single point of failure = distributed sensors
with robustness to failure of individual sensors

» High-performance: need to generate reliable
localization estimates using noisy ToF measurements
from noisy clocks
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Application: Distributed Localization in
GPS-Denied Environments
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Need for Synchronization

» Given accurate sensor locations and tightly synchronized
clocks, distributed sensor networks can produce accurate
location estimates

» With unreliable clocks, timing drifts between
synchronization times reduces localization accuracy

» Clock synchronization requires communication among
sensors and localization may not be possible during the
synchronization times
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Need for Synchronization

» Given accurate sensor locations and tightly synchronized
clocks, distributed sensor networks can produce accurate
location estimates

» With unreliable clocks, timing drifts between
synchronization times reduces localization accuracy

» Clock synchronization requires communication among
sensors and localization may not be possible during the
synchronization times

Need to optimize between localization and
synchronization
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System Model

» Network of m stationary sensing agents
» Single asset to be tracked:

P Asset transmits beacon signal at known times to agents
to facilitate tracking in GPS-denied environment
» Asset moves according to known Markov model
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System Model — cont.

» Sensors measure time-of-flights (ToFs) of beacon signal
and reference leader agent localizes (LOC) asset once
measurements are fused

» Each agent’s clock drifts independently and variance of
clock signals increase with time

» Agents can synchronize (SYNCH) clocks at expense of
not being able to measure ToFs during that time
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Model-Free Localization for general 3D space

> Let coordinates of asset and sensor i in interval k be
(Xk.a, Yk 2 Zk,2) and (x;, yi, z;)
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Model-Free Localization for general 3D space

> Let coordinates of asset and sensor i in interval k be
(Xk,25 Yk,25 Zk,a) and (xi, i, zi)
» Using sensor m — 1 as a reference, form linear equations

A-v.=03
» Here vy = [xk,a,yk,a,zk,a]T, A is a matrix with row 7 given
by

Ai = [2(Xi - Xm—l)? 2(.yl - .ym—l)7 2(Zi - Zm—l)]7
ie{0,1,...,m-2),

and 3, is a column vector with component

Bi=c (?;3,,- - ?Ig,mfl) - (X,2 - Xﬁyfl) - (ylz - y,f,,l)

—(zf —2%4), i€{0,1,...,m—2}

m—1
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Localization Solution

» The linear least squares solution is
[Xk.25 Yi.as ?k,a]T = A3, where AT is the Moore-Penrose
pseduo-inverse of A

» Not always solvable, depending on sensor topology — can
also solve constrained least squares problem
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Optimal Coordination of Localization and
Synchronization

» Pure localization generally not good enough because of
noisy clocks

» Does not inform system of when SYNC is needed
» Resolve both problems by treating tracking problem as

HMM and treating choice of SYNC/LOC as control
problem
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Optimal Coordination of Localization and
Synchronization

» Pure localization generally not good enough because of
noisy clocks

» Does not inform system of when SYNC is needed

» Resolve both problems by treating tracking problem as
HMM and treating choice of SYNC/LOC as control
problem

» Since true state of asset not directly observable, this
results in a Partially Observable Markov Decision
Process (POMDP)
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POMDP

1. State space M x T, tuples of movement state M and
time since last sync 7 = Z*

2. Two controls U = {uy, us}, corresponding to localize or
synchronize

3. Continuous set of noisy observations from ToF
measurements, O

4. State-to-state transition function:
pii(u) = Pr(Myy1 = jIMy =i, Uy = u) V i,j € M based
on Markov movement model
(Note time since last sync is deterministic given previous
state and control
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POMDP - cont.

5. State-to-observation density function:
Gjo(U) = f(Oky1 = o|Myy1 =j, Uk =u)VjeEM, Voe
O from ToF noise

6. Cost function: MMSE of position estimate
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Belief States, Observation Sequences and Control
Sequences

» Given:

» oy: vector of observations up to interval k
» uy_1: vector of controls leading up to interval k — 1
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Belief States, Observation Sequences and Control
Sequences

» Given:

» oy: vector of observations up to interval k
» uy_1: vector of controls leading up to interval k — 1

» Belief state at interval k is by:
bk(m) = Pr(Mx = m|ox, ux_1)

» the maximum a posteriori (MAP) estimate of the asset
state is R
M, = arg max by (m).
k gmeM K (m)
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Belief Update

» Continuous observation space (localization results) —
most papers consider only a finite observation space

f(okp1, m u
bua(men) = HGE )

where
f(Oky1, Miy1|uk) = Fokg1 [mMiy1) Z Pr(my1 [my, uk)

mgeM

- ok, my Juk—1)
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Localization Density in Belief Update

» the conditional distribution of o, given m, and T,Es) is
modeled as multi-variate Gaussian with mean determined
by My and covariances determined by ToF variance, oy

> Relation between oy and covariances is determined
empirically:

» position estimate variances are proportional to 0,2\, (input
ToF Variance)

» different coordinates are approximately uncorrelated and
are thus treated as independent
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Beleif Updates During Sync

» If the control is sync, then no measurement oy, is
available from localization;

» Update the belief by applying the Markov model
transitions probabilities

b1 =P - by
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Simulation Model: 3D Sensing Model
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3D Sensing Model and Asset Ground Station
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3D Sensing and Asset Movement Model
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3D Sensing and Asset Movement Model
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3D Sensing and Asset Movement Model
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3D Sensing and Asset Movement Model
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Belief State Evolution
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Belief State Evolution Detailed View
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Belief State

» Belief state is a sufficient statistic for deciding the control
uy at stage k
» However: state space has | M| continuous dimensions

» To apply Q-learning, need to do some form of
approximation:
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Approximate Q-Learning

Two fundamental approaches
» @Q-function Approximation:

» Linear function of beliefs: replicated Q (RQ)-learning
» Nonlinear: Deep Q-learning
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Approximate Q-Learning

Two fundamental approaches
» @Q-function Approximation:

» Linear function of beliefs: replicated Q (RQ)-learning
» Nonlinear: Deep Q-learning

> Belief State Approximation:

» Approximate belief distribution by parameterized
distribution (e.g., Gaussian) and quantize parameters:
our triple Q (TQ)-learning

» Belief uncertainty can be represented by universal

measures (entropy) or application-specific measures
(EMSE)
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Belief State Compression

» Compress beliefs and syncing information into triple of
discrete values
I T(S) .
m, = [fnka k s Vk]-
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Belief State Compression

» Compress beliefs and syncing information into triple of
discrete values
m, = [I’/T\'lk, T}Es)’ Vk]l
» M. ML estimate for movement state

> T,ES): is the number of time since last sync
» v,: Quantized EMSE

» Called: Triple Q-Learning (TQ-Learning)
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TQ-Learning Update

» Use tabular Q-learning with usual update rule:

Q(m, u)+ = a|c +ymin Q(g(m, v), v) — Q(m, u) .
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TQ-Learning Update

» Use tabular Q-learning with usual update rule:

Q(m, u)+ = a|c +ymin Q(g(m, v), v) — Q(m, u) .

» Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
function, and ¢’ is the control that minimizes the cost in

the next interval.
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» Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
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» The other constants affect how learning progresses:
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TQ-Learning Update

» Use tabular Q-learning with usual update rule:

Q(m, u)+ = a|c +ymin Q(g(m, v), v) — Q(m, u) .

» Here, c is the cost of performing u from whatever true

state the asset actually is in, g is a generic state update
function, and ¢’ is the control that minimizes the cost in

the next interval.
» The other constants affect how learning progresses:

> «: learning rate
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TQ-Learning Update

» Use tabular Q-learning with usual update rule:

Q(m, u)+ = a|c +ymin Q(g(m, v), v) — Q(m, u) .

» Here, c is the cost of performing u from whatever true
state the asset actually is in, g is a generic state update
function, and ¢’ is the control that minimizes the cost in
the next interval.

» The other constants affect how learning progresses:

> «: learning rate
» ~: discount factor
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Replicated Q-learning (RQ-learning)

» Replicated Q-learning uses one vector q, for each control
u € U and approximates the value of the Q-function for
belief state b as Q,(u) = q, - b.

» Because our POMDP state contains both motion state
M and time since last sync, T,ES),

» The q, vector's elements are updated by

qu(x) = qu(x)+ab(x) |c+~ rTLI/n Qu(u)—qu(x)| Vx € X.
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Replicated Q-learning (RQ-learning)

» Replicated Q-learning uses one vector q, for each control
u € U and approximates the value of the Q-function for
belief state b as Q,(u) = q, - b.

» Because our POMDP state contains both motion state
M and time since last sync, T(S),
» The q, vector's elements are updated by

qu(x) = qu(x)+ab(x) |c+~ rTLI/n Qu(u)—qu(x)| Vx € X.

» Exploit deterministic part of state to represent as 2T«
vectors of dimensions | M|
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Fixed-Rate Deterministic Policies (Model-Free)

» Fixed-rate deterministic (FRD) is the standard approach
used in most of the sensing literature that addresses
timing synchronization

» FRD syncs every k intervals, where the value of k is
optimzied to minimize the MSE
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TQ-learning Training Curve:

Average cost ¢

TQ-learning Training Curve
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TQ-learning Optimal Sync Times
High Input ToF Variance

Optimal Sync Times N, for m=4, oy=16ns
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» Note that for the highest input ToF variance, the higher
levels of the quantized MSE are reached.
» Also, note that generally the network can optimally wait

longer periods of time to resync at the lowest MSE level.
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RQ-learning Training Curve:

RQ-learning Training Curve
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RQ-learning Approximate Sync Times (ML state)

» RQ-learning uses the entire belief vector, so no simple

visualization of optimal sync times

» Below we show the sync times if all the belief was
concentrated on the ML state:
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Performance: Localization MSE

Average Test Cost ¢
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Performance: Average Sync Rates
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Conclusion

» Formulated problem of optimizing synchronization times
for system of distributed sensors tracking a mobile asset
as a POMDP

» Applied dimensionality reduction techniques to perform
Q-learning on that POMDP:

» TQ-learning replaces belief distribution with ML
estimate for motion state, time since last sync, and
(quantized) expected MSE

» “old" RQ-learning uses one g vector for each control of
size |[M].

> “new”’ RQ-learning uses one g vector for each control
and stage number of size |M]|.

» (Q-learning approaches outperform best FRD policies

» Deep Q-learning techniques are a good match for
POMDP problems because they can accept the

continuous belief state info — currently investigating
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Conclusion

» Develop approaches for distributed decision making in
sensor networks (partially observable MAMDPs)

» Want to deploy and test these ideas using our AFOSR
DURIP-funded testbed

» Work torwards general framework for joint optimization of
stochastic controls and networks
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