# Planning Not to Talk:Multiagent Systems that areRobust to Communication Loss

Mustafa O. Karabag & Cyrus Neary



# autonologies systems group



# The need of communication robust strategies in multi-agent systems



High success is achievable with high dependencies, but communication loss leads to catastrophe.

# **Need high success with low dependencies!**









**Performance Guarantees under Communication Loss** 

## Value<sup>*full*</sup> – Value<sup>*loss*</sup> $\geq g$ (Dependencies)





**Performance Guarantees under Communication Loss** 

## Value<sup>*full*</sup> – Value<sup>*loss*</sup> $\geq g$ (Dependencies)





**Performance Guarantees under Communication Loss** 

## Value<sup>*full*</sup> – Value<sup>*loss*</sup> $\geq g$ (Dependencies)



## N agents with independent dynamics.





# N agents with independent dynamics.Markov decision process $\mathcal{M}^i = (S^i, A^i, P^i, s^i_0)$ <br/>(MDP)<br/>for Agent iStatesActions





## N agents with independent dynamics. Markov decision process (MDP) for Agent i States





**Team task:** Eventually reach a target set  $S_T$ . The reachability probability is v.



**Team task:** Eventually reach a target set  $S_T$ . The reachability probability is v.

Joint policy  $\pi_{joint}(s) \in \Delta(A)$ 

Action distribution given the state

### **Full coordination**

**Better performance** 

High dependencies

No coordination

Worse performance

No dependencies



## **Full coordination**

**Better performance** 

**High dependencies** 



**Fully centralized:** 

Share *s* Jointly decide on *a*  No coordination

Worse performance

No dependencies



## **Full coordination**

**Better performance** 

**High dependencies** 



**Fully centralized:** 

Share *s* Jointly decide on *a*  No coordination

Worse performance

No dependencies



0 0

#### **Fully decentralized:**

Share nothing



## **Full coordination**

**Better performance** 

**High dependencies** 



**Fully centralized:** 

#### **Fixed communication graph:**

Share *s* Jointly decide on *a*  Share *s* with few others Jointly decide on *a* with few others No coordination

Worse performance

No dependencies





#### **Fully decentralized:**

Share nothing



# What is done? What is needed?

or restricted to explicit communication graphs.

We want performant policies that are robust to communication losses.

# Existing methods are either oblivious to dependencies



# Imaginary play














### Policy execution under permanent or intermittent communication loss





### Policy execution under permanent or intermittent communication loss



### **Intermittent communication loss**



State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure:  $\mu$ 

Individual measures:  $\mu^1, \ldots, \mu^N$ 

Product measure:  $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$ 



State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure:  $\mu$ 

Individual measures:  $\mu^1, \ldots, \mu^N$ 

Product measure:  $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$ 



**Entropy** =  $H(X^i) = \sum_{i=1}^{i} \mu^i(x)\log_{i=1}^{i}$  $\mu^{i}(x)$  $x \in Support(X^i)$ 

State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure:  $\mu$ 

Individual measures:  $\mu^1, \ldots, \mu^N$ 

Product measure:  $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$ 



Entropy = Information

State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure:  $\mu$ 

Individual measures:  $\mu^1, \ldots, \mu^N$ 

Product measure:  $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$ 



### Entropy = H(X) =

### Entropy = Information

 $\mu(x)\log\left(\frac{1}{-1}\right)$  $\mu(x)$  $x \in Support(\mathbf{X})$ 

State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure:  $\mu$ 

Individual measures:  $\mu^1, \ldots, \mu^N$ 

Product measure:  $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$ 



State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure:  $\mu$ 

Individual measures:  $\mu^1, \ldots, \mu^N$ 

Product measure:  $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$ 

# 

### **Total correlation** = $C(X^1$



### Total correlation = Shared Information

$$,...,X^{N}$$
) =  $\left(\sum_{i=1}^{N} H(X^{i})\right) - H(\mathbf{X})$ 

State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure:  $\mu$ 

Individual measures:  $\mu^1, \ldots, \mu^N$ 

Product measure:  $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$ 

 $X^{\mathsf{J}}$ 



Total correlation **Shared Information** 

Dissimilarity between the joint and product measures

**Total correlation** =  $C(X^1, ..., X^N) = KL(\mu | | \mu^{prod})$ 

# Total correlation is the difference between full communication and fully imaginary play

# **Total correlation** = $C_{\pi^{joint}}$ =

 $t_{loss}$ : when the communication loss starts

 $\mu_{t_{loss}}^{img}$ : the probability measure induced by imaginary play

### Joint measure $\mu$ = Full communication $\mu^{full}$

**Product measure**  $\mu^{prod} = No$  communication (imaginary play)  $\mu_0^{img}$ 

$$\left(\sum_{i=1}^{N} H(X^{i})\right) - H(\mathbf{X}) = KL\left(\mu \mid \mid \mu^{prod}\right)$$

### Roadmap to theoretical guarantees

### Lemma:



### **Property:**

Total Correlation

### Roadmap to theoretical guarantees

### Lemma:



### **Property:**

### Total Correlation

some communication

- Behavior difference under full communication
  - and
  - **no** communication
- Behavior difference under full communication and

### Roadmap to theoretical guarantees

### Lemma:



### **Property:**

### Total Correlation

Behavior difference under **Theorem:** full communication Performance difference under and full communication **no** communication and some communication Behavior difference under full communication and some communication



### Lemma: Any extra communication at the beginning does not hurt.

 $C_{\pi^{joint}} = KL\left(\mu^{full} \mid \mid \mu_0^{img}\right) \ge KL\left(\mu^{full} \mid \mid \mu_{t_{loss}}^{img}\right)$ 

$$C_{\pi^{joint}} = KL\left(\mu^{full} \mid \right)$$

### Stronger lemma: Any extra communication does not hurt.

 $\Lambda$ : a binary sequence of communication availability

$$C_{\pi^{full}} = KL\left(\mu^{full} \mid \mu_0^{img}\right) \ge KL\left(\mu^{full} \mid \mu_\Lambda^{int}\right)$$

Lemma: Any extra communication at the beginning does not hurt.  $|\mu_0^{img}\rangle \ge KL\left(\mu^{full}||\mu_{t_{loss}}^{img}\right)$ 

 $\mu_{\Lambda}^{int}$ : the probability measure induced by intermittent play

$$C_{\pi^{joint}} = KL\left(\mu^{full} \mid \right)$$

### Stronger lemma: Any extra communication does not hurt.

 $\Lambda$ : a binary sequence of communication availability

$$C_{\pi^{full}} = KL\left(\mu^{full} \mid \mu_0^{img}\right) \ge KL\left(\mu^{full} \mid \mu_\Lambda^{int}\right)$$

### **Even stronger lemma: Frequent communication is better.**

 $\Lambda$ : a Bernoulli(q) process of communication availability

$$C_{\pi^{full}} = KL\left(\mu^{full} | | \mu_0^{img}\right) \ge KL\left(\mu^{full} | | \mu_\Lambda^{int}\right)/q.$$

Lemma: Any extra communication at the beginning does not hurt.  $|\mu_0^{img}\rangle \ge KL\left(\mu^{full}||\mu_{t_{loss}}^{img}\right)$ 

 $\mu_{\Lambda}^{int}$ : the probability measure induced by intermittent play

# Performance guarantees: Imaginary play with adversarial communication loss

**Theorem:** f is an arbitrary function that determines the communication availability based on the team's joint history.

Communication loss does not affect much if total correlation is low:

 $v^{img}$ 

>

Reachability probability of imaginary play under f

Reachability probability of full communication

$$-\sqrt{1-\exp\left(-C_{\pi^{joint}}\right)}$$

Total correlation

# Performance guarantees: Imaginary play with structured communication loss

**Theorem:** Consider a communication system that permanently fails with probability p at every time step.

Reachability

probability of

imaginary play

 $v^{img} \geq \max\left(v^{full}\right)$ 

Reachability probability of full communication

$$1-\exp\left(-C_{\pi^{joint}}\right),\,$$

Total correlation

 $v^{full}(1-p)^{\frac{\nu}{\nu^{full}}}.$ 

**Function of** expected path length *l<sup>full</sup>* under full communication

# Performance guarantees: Intermittent communication with structured communication loss

**Theorem:** Communication system that fails

with a probability q at any communication step

 $v^{img} \ge \max\left( v^{full} - \sqrt{1 - \exp\left(-qC_{\pi^{joint}}\right)}, v^{full}(1-q)^{\frac{l^{full}}{v^{full}}} \right)$ Beachability

Reachability probability of imaginary play

Reachability probability of full communication

Effective total correlation

Function of expected path length  $l^{full}$ under full communication



Until this point,  $\pi_{joint}$  is given.

Now, find a good  $\pi_{joint}$ , i.e., a minimum-dependency policy.

Ideally maximize

 $\max\left(v^{full} - \sqrt{1 - ex}\right)$ 

Until this point,  $\pi_{joint}$  is given.

Now, find a good  $\pi_{joint}$ , i.e., a minimum-dependency policy.

$$\exp\left(-C_{\pi^{joint}}\right), v^{full}(1-p)^{\frac{l^{full}}{v^{full}}}$$

Ideally maximize

 $\max\left(v^{full} - \sqrt{1 - ex}\right)$ 

Until this point,  $\pi_{joint}$  is given.

Now, find a good  $\pi_{joint}$ , i.e., a minimum-dependency policy.

$$\exp\left(-C_{\pi^{joint}}\right), v^{full}(1-p)^{\frac{l^{full}}{v^{full}}}$$

**Too ugly to optimize!** 

Monotone in all variables.



Ideally maximize

$$\max\left(v^{full} - \sqrt{1 - \exp\left(-C_{\pi^{joint}}\right)}, v^{full}(1-p)^{\frac{l^{full}}{v^{full}}}\right)$$

Until this point,  $\pi_{joint}$  is given.

Now, find a good  $\pi_{joint}$ , i.e., a minimum-dependency policy.

**Too ugly to optimize!** 

Monotone in all variables.

Instead maximize  $v^{full} - \delta C_{\pi^{joint}} - \beta l^{full}$  where  $\delta > 0$  and  $\beta > 0$  are constants.



Occupation measure = The expected number of times that a state-action pair is used

$$v^{full} - \delta$$

 $C_{\pi^{joint}} - \beta l^{full}$ 

Occupation measure = The expected number of times that a state-action pair is used

can be represented with occupancy measures

 $v^{full} - \delta C_{\pi^{joint}} - \beta l^{full}$ 

can be represented with occupancy measures

Occupation measure = The expected number of times that a state-action pair is used

can be represented with occupancy measures



entropy of a hidden Markov model has no analytical form due to non-stationarity

 $\bar{X}^i$  = the stationary process that shares the same occupancy measures with  $X^i$ 

Fact: 
$$\bar{C}_{\pi^{joint}} := \left(\sum_{i=1}^{N} H(\bar{X}^{i})\right) - H(\mathbf{X}) \ge C_{\pi^{joint}} = \left(\sum_{i=1}^{N} H(X^{i})\right) - H(\mathbf{X})$$

 $\bar{X}^i$  = the stationary process that shares the same occupancy measures with  $X^i$ 

Fact: 
$$\bar{C}_{\pi^{joint}} := \left(\sum_{i=1}^{N} H(\bar{X}^{i})\right) - H(\mathbf{X}) \ge C_{\pi^{joint}} = \left(\sum_{i=1}^{N} H(X^{i})\right) - H(\mathbf{X})$$

can be represented with occupancy measures



can be represented with occupancy measures

$$v^{full} - \delta \ \bar{C}_{\pi^{joint}} - \beta \ l^{full}_{\text{can be represented with occupancy measures}}$$

$$\left(\sum_{i=1}^{N} H(\bar{X}^{i})\right) - H(\mathbf{X})_{\text{can be represented with occupancy measures}}_{\text{if } \pi_{joint}} \text{ is stationary}$$

# Improving the performance: Synthesize via non-convex optimization



### Use convex-concave procedure for synthesis.

$$H(\bar{X}^{i}) + \delta H(X) - \beta l^{full}$$

subject to dynamics

# Back to the valley example: Optimal centralized policy (baseline) with full communication

# Back to the valley example: Optimal centralized policy (baseline) with full communication

# Back to the valley example: Optimal centralized policy (baseline) with no communication

# Back to the valley example: Optimal centralized policy (baseline) with no communication

# Back to the valley example: Minimum-dependency policy (ours) with no communication

# Back to the valley example: Minimum-dependency policy (ours) with no communication

# Performance loss under full communication loss


# Performance loss under full communication loss



### Low total correlation for minimum-dependency policy

# Performance loss under full communication loss



Low total correlation for minimum-dependency policy

**Consistent performance for minimum-dependency policy** 

# Performance loss under full communication loss



### Low total correlation for minimum-dependency policy

**Consistent performance for** minimum-dependency policy

20% performance drop for **baseline policy** 

### Performance loss under intermittent communication loss



### **Policy Execution Algorithm**



### **Policy Optimization**

$$\max v^{full} - \delta \left( \sum_{i=1}^{N} H(\bar{X}^{i}) \right) + \delta H(\mathbf{X}) - \beta l^{full}$$

subject to dynamics

Mustafa O. Karabag (karabag@utexas.edu) & Cyrus Neary (cneary@utexas.edu)

#### **Performance Guarantees**

$$v^{img} \ge v^{full} - \sqrt{1 - \exp\left(-C_{\pi^{joint}}\right)}$$

**Resulting Behavior** 



### **Policy Execution Algorithm**



### **Policy Optimization**

$$\max v^{full} - \delta \left( \sum_{i=1}^{N} H(\bar{X}^{i}) \right) + \delta H(\mathbf{X}) - \beta l^{full}$$

subject to dynamics

Mustafa O. Karabag (karabag@utexas.edu) & Cyrus Neary (cneary@utexas.edu)

#### **Performance Guarantees**

$$v^{img} \ge v^{full} - \sqrt{1 - \exp\left(-C_{\pi^{joint}}\right)}$$

**Resulting Behavior** 

