Planning Not to Talk: Multiagent Systems that are Robust to Communication Loss

Mustafa O. Karabag \& Cyrus Neary

autonomous
 SYSTEMS GROUP

The need of communication robust strategies in multi-agent systems

High success is achievable with high dependencies, but communication loss leads to catastrophe.

Need high success with low dependencies!

By the end of this talk

(De)centralized Policy Execution

By the end of this talk

(De)centralized Policy Execution

Performance Guarantees under Communication Loss
Value ${ }^{\text {full }}-$ Value $^{\text {loss }} \geq g$ (Dependencies)

By the end of this talk

(De)centralized Policy Execution

Performance Guarantees under Communication Loss
Value ${ }^{\text {full }}-$ Value $^{\text {loss }} \geq g$ (Dependencies)

Policy Optimization for Communication Loss

max Value ${ }^{\text {loss }}$
π

By the end of this talk

(De)centralized Policy Execution

Policy Optimization for Communication Loss

max Value ${ }^{\text {loss }}$
π

Performance Guarantees under Communication Loss
Value ${ }^{\text {full }}-$ Value $^{\text {loss }} \geq g$ (Dependencies)

Minimally Dependent Behavior

Modeling of multi-agent systems

N agents with independent dynamics.

Modeling of multi-agent systems

N agents with independent dynamics.
Markov decision process $\quad M^{i}=\left(S^{i}, A^{i}, P^{i}, s_{0}^{i}\right)$
(MDP)
for Agent i

States Actions

Modeling of multi-agent systems

N agents with independent dynamics.
Markov decision process $\quad M^{i}=\left(S^{i}, A^{i}, P^{i}, s_{0}^{i}\right)$
(MDP)
for Agent i
States Actions
Transition
probability
Initial
state

Modeling of multi-agent systems

N agents with independent dynamics.
Markov decision process $\quad M^{i}=\left(S^{i}, A^{i}, P^{i}, s_{0}^{i}\right)$ (MDP)
for Agent i
States Actions
Transition probability function

Joint MDP $\quad \mathscr{M}=\left(S, A, P, S_{0}\right)$
$P(s, a, q)=\prod_{l=1}^{N}{ }^{p}\left(s^{\prime}, q, q q^{\prime} s^{\prime} \quad s_{1}=\left(s_{l}^{1}, \ldots, s_{1}^{s_{1}^{n}}\right)\right.$

Initial state

Team task: Eventually reach a target set S_{T}. The reachability probability is v.

Modeling of multi-agent systems

N agents with independent dynamics.
Markov decision process $\quad M^{i}=\left(S^{i}, A^{i}, P^{i}, s_{0}^{i}\right)$ (MDP)
for Agent i

States Actions

Transition probability function

Joint MDP $\quad \mathscr{M}=\left(S, A, P, S_{0}\right)$
$P(s, a q)=\prod_{l=1}^{N} P^{p}\left(s, a^{\prime}, q^{\prime}\right) \quad s_{l}=\left(s_{l}^{1}, \ldots, s_{l}^{\left.v_{1}^{\prime}\right)}\right.$

Initial state

Team task: Eventually reach a target set S_{T}. The reachability probability is v. Joint policy $\pi_{\text {joint }}(s) \in \Delta(A)$ Action distribution given the state

Spectrum of coordination in multi-agent systems

Full coordination

No coordination

Better performance
Worse performance

High dependencies
No dependencies

Spectrum of coordination in multi-agent systems

Full coordination

Better performance
High dependencies

Fully centralized:
Share s
Jointly decide on a

Spectrum of coordination in multi-agent systems

Full coordination

Better performance
No coordination

Worse performance
High dependencies
No dependencies

Fully centralized:
Share s
Jointly decide on a
\square
o
○ O

Fully decentralized:
Share nothing

Spectrum of coordination in multi-agent systems

Full coordination

No coordination
Better performance
Worse performance
High dependencies
No dependencies

Fully centralized:
Share s
Jointly decide on a

Fixed communication graph:
Share s with few others Jointly decide on a with few others

$$
0^{\circ}{ }_{0}^{0}
$$

Fully decentralized:
Share nothing

What is done? What is needed?

Existing methods are either oblivious to dependencies or restricted to explicit communication graphs.

We want performant policies that are robust to communication losses.

What if agents cannot communicate?

\mathscr{T}
S_{t}^{2}

What if agents cannot communicate?

S_{t}^{2}

What if agents cannot communicate?

Imaginary play

Policy execution under permanent or intermittent communication loss

Policy execution under permanent or intermittent communication loss

Policy execution under permanent or intermittent communication loss

Policy execution under permanent or intermittent communication loss

Policy execution under permanent or intermittent communication loss

Policy execution under permanent or intermittent communication loss

Measuring intrinsic dependencies between agents

State-action
processes of agents

$$
\mathbf{X}=\left(X^{1}, \ldots, X^{N}\right)
$$

Joint measure: μ
Individual measures: μ^{1}, \ldots, μ^{N}
Product measure: $\mu^{\text {prod }}=\mu^{1} \times \ldots \times \mu^{N}$

Measuring intrinsic dependencies between agents

State-action
processes of agents

$$
\mathbf{X}=\left(X^{1}, \ldots, X^{N}\right)
$$

Joint measure: μ
Individual measures: μ^{1}, \ldots, μ^{N}
Product measure: $\mu^{\text {prod }}=\mu^{1} \times \ldots \times \mu^{N}$

Entropy
=
Information

$$
\text { Entropy }=H\left(X^{i}\right)=\sum_{x \in \operatorname{Support}\left(X^{i}\right)} \mu^{i}(x) \log \left(\frac{1}{\mu^{i}(x)}\right)
$$

Measuring intrinsic dependencies between agents

State-action
processes of agents

$$
\mathbf{X}=\left(X^{1}, \ldots, X^{N}\right)
$$

Joint measure: μ
Individual measures: μ^{1}, \ldots, μ^{N}
Product measure: $\mu^{\text {prod }}=\mu^{1} \times \ldots \times \mu^{N}$

Entropy
=
Information

Measuring intrinsic dependencies between agents

```
                                    State-action
            processes of agents
        X = ( }\mp@subsup{X}{}{1},\ldots,\mp@subsup{X}{}{N}
        Joint measure: }
        Individual measures: }\mp@subsup{\mu}{}{1},\ldots,\mp@subsup{\mu}{}{N
Product measure: }\mp@subsup{\mu}{}{\mathrm{ prod }}=\mp@subsup{\mu}{}{1}\times\ldots\times\mp@subsup{\mu}{}{N
```


Entropy
=
Information

$$
\text { Entropy }=H(\mathbf{X})=\sum_{x \in \operatorname{Support}(\mathbf{X})} \mu(x) \log \left(\frac{1}{\mu(x)}\right)
$$

Measuring intrinsic dependencies between agents

State-action
processes of agents

$$
\mathbf{X}=\left(X^{1}, \ldots, X^{N}\right)
$$

Joint measure: μ
Individual measures: μ^{1}, \ldots, μ^{N}
Product measure: $\mu^{\text {prod }}=\mu^{1} \times \ldots \times \mu^{N}$

Measuring intrinsic dependencies between agents

State-action
processes of agents

$$
\mathbf{X}=\left(X^{1}, \ldots, X^{N}\right)
$$

Joint measure: μ
Individual measures: μ^{1}, \ldots, μ^{N}
Product measure: $\mu^{\text {prod }}=\mu^{1} \times \ldots \times \mu^{N}$

Total correlation
=
Shared Information

Total correlation $=C\left(X^{1}, \ldots, X^{N}\right)=\left(\sum_{i=1}^{N} H\left(X^{i}\right)\right)-H(\mathbf{X})$

Measuring intrinsic dependencies between agents

State-action
processes of agents

$$
\mathbf{X}=\left(X^{1}, \ldots, X^{N}\right)
$$

Joint measure: μ
Individual measures: μ^{1}, \ldots, μ^{N}
Product measure: $\mu^{\text {prod }}=\mu^{1} \times \ldots \times \mu^{N}$

Total correlation
=
Shared Information
\qquad
Dissimilarity
between the joint and product measures

Total correlation $=C\left(X^{1}, \ldots, X^{N}\right)=K L\left(\mu \| \mu^{\text {prod }}\right)$

Total correlation is the difference between full communication and fully imaginary play

$$
\text { Total correlation }=C_{\pi^{j o i n t}}=\left(\sum_{i=1}^{N} H\left(X^{i}\right)\right)-H(\mathbf{X})=K L\left(\mu \| \mu^{\text {prod }}\right)
$$

$$
t_{l o s s}: \text { when the communication loss starts }
$$

$\mu_{t_{\text {loss }}}^{\text {img }}$: the probability measure induced by imaginary play

$$
\text { Joint measure } \mu=\text { Full communication } \mu^{\text {full }}
$$

Product measure $\mu^{\text {prod }}=$ No communication (imaginary play) $\mu_{0}^{\text {img }}$

Roadmap to theoretical guarantees

Lemma:
Behavior difference under
Property:
Total
Correlation
full communication
and
no communication

Roadmap to theoretical guarantees

Roadmap to theoretical guarantees

Lemma: Any extra communication at the beginning does not hurt.

$$
C_{\pi^{j o i n t}}=K L\left(\mu^{f u l l} \| \mu_{0}^{i m g}\right) \geq K L\left(\mu^{f u l l}| | \mu_{t_{l o s s}}^{i m g}\right)
$$

Lemma: Any extra communication at the beginning does not hurt.

$$
C_{\pi^{j o i n t}}=K L\left(\mu^{\text {full }} \| \mu_{0}^{i m g}\right) \geq K L\left(\mu^{\text {full }} \| \mu_{t_{\text {loss }}^{i m g}}^{i}\right)
$$

Stronger lemma: Any extra communication does not hurt.

$$
\begin{gathered}
\Lambda: \text { a binary sequence of communication availability } \\
\mu_{\Lambda}^{\text {int: }} \text { the probability measure induced by intermittent play } \\
C_{\pi^{f u l l}}=K L\left(\mu^{\text {full }} \| \mu_{0}^{i m g}\right) \geq K L\left(\mu^{\text {full }} \| \mu_{\Lambda}^{i n t}\right)
\end{gathered}
$$

Lemma: Any extra communication at the beginning does not hurt.

$$
C_{\pi j \text { jint }}=K L\left(\mu^{\text {full }} \| \mu_{0}^{i m g}\right) \geq K L\left(\mu^{\text {full }} \| \mu_{t_{\text {loss }}}^{i m g}\right)
$$

Stronger lemma: Any extra communication does not hurt.

$$
\begin{gathered}
\Lambda: \text { a binary sequence of communication availability } \\
\mu_{\Lambda}^{\text {int. the probability measure induced by intermittent play }} \\
C_{\pi_{\text {full }}}=K L\left(\mu^{\text {full }}| | \mu_{0}^{i m g}\right) \geq K L\left(\mu^{\text {full }} \| \mu_{\Lambda}^{i n t}\right)
\end{gathered}
$$

Even stronger lemma: Frequent communication is better.

$$
\begin{gathered}
\Lambda: \text { a Bernoulli }(q) \text { process of communication availability } \\
C_{\pi^{f u l l}}=K L\left(\mu^{\text {full }} \| \mu_{0}^{i m g}\right) \geq K L\left(\mu^{\text {full }} \| \mu_{\Lambda}^{\text {int }}\right) / q
\end{gathered}
$$

Performance guarantees: Imaginary play with adversarial communication loss

Theorem: f is an arbitrary function that determines the communication availability based on the team's joint history.

Communication loss does not affect much if total correlation is low:

$$
\begin{array}{ccc}
v^{\text {img }} & \geq v^{\text {Reachability }} \begin{array}{c}
\text { Reachability } \\
\text { probability of } \\
\text { ginary play under } f
\end{array} & -\sqrt{1-\exp \left(-C_{\pi^{j o i n t}}\right)} . \\
\begin{array}{c}
\text { Rotal } \\
\text { probability of } \\
\text { full communication }
\end{array}
\end{array}
$$

imaginary play under f

Performance guarantees: Imaginary play with structured communication loss

Theorem: Consider a communication system that permanently fails with probability p at every time step.

Performance guarantees: Intermittent communication with structured communication loss

Theorem: Communication system that fails
with a probability q at any communication step

$$
\begin{aligned}
& v^{i m g} \geq \max \left(v^{\text {full }}-\sqrt{1-\exp \left(-q C_{\pi^{j o i n t}}\right)}, \quad v^{f u l l}(1-q)_{v^{f u l l}}^{\left.\frac{l^{f u l l}}{f}\right)}\right. \\
& \text { Reachability } \\
& \text { probability of } \\
& \text { full communication } \\
& \text { Effective } \\
& \text { total } \\
& \text { correlation } \\
& \text { Function of } \\
& \text { expected path length } l^{\text {full }} \\
& \text { under full communication }
\end{aligned}
$$

Improving the performance: How to synthesize minimum-dependency policies?

Until this point, $\pi_{j o i n t}$ is given.
Now, find a good $\pi_{j o i n t}$, i.e., a minimum-dependency policy.

Improving the performance: How to synthesize minimum-dependency policies?

Until this point, $\pi_{j o i n t}$ is given.
Now, find a good $\pi_{\text {joint }}$, i.e., a minimum-dependency policy.

Ideally maximize

$$
\max \left(v^{\text {full }}-\sqrt{1-\exp \left(-C_{\pi j^{j o i n t}}\right)}, v^{\text {full }}(1-p)^{\frac{f^{\text {fulu }}}{\text { fulu }}}\right)
$$

Improving the performance: How to synthesize minimum-dependency policies?

Until this point, $\pi_{j o i n t}$ is given.
Now, find a good $\pi_{j o i n t}$, i.e., a minimum-dependency policy.

Ideally maximize

$$
\max \left(v^{\text {full }}-\sqrt{1-\exp \left(-C_{\pi j o i n t}\right)}, v^{\text {full }}(1-p)^{\frac{l^{\text {full }}}{v^{\text {full }}}}\right)
$$

Too ugly to optimize!

Monotone in all variables.

Improving the performance: How to synthesize minimum-dependency policies?

Until this point, $\pi_{j o i n t}$ is given.

Now, find a good $\pi_{\text {joint }}$, i.e., a minimum-dependency policy.

Ideally maximize

$$
\max \left(v^{\text {full }}-\sqrt{1-\exp \left(-C_{\pi^{j o i n t}}\right)}, v^{\text {full }}(1-p)^{\frac{v^{\text {full }}}{v^{\text {full }}}}\right)
$$

Improving the performance: How to synthesize minimum-dependency policies?

Occupation measure $=$ The expected number of times that a state-action pair is used

$$
v^{f u l l}-\delta C_{\pi j o i n t}-\beta l^{\text {full }}
$$

Improving the performance: How to synthesize minimum-dependency policies?

Occupation measure $=$ The expected number of times that a state-action pair is used

[^0]
Improving the performance: How to synthesize minimum-dependency policies?

Occupation measure $=$ The expected number of times that a state-action pair is used

Improving the performance: How to synthesize minimum-dependency policies?

$\bar{X}^{i}=$ the stationary process that shares the same occupancy measures with X^{i}

$$
\text { Fact: } \bar{C}_{\pi^{j o i n t}}:=\left(\sum_{i=1}^{N} H\left(\bar{X}^{i}\right)\right)-H(\mathbf{X}) \geq C_{\pi^{j o i n t}}=\left(\sum_{i=1}^{N} H\left(X^{i}\right)\right)-H(\mathbf{X})
$$

Improving the performance: How to synthesize minimum-dependency policies?

$\bar{X}^{i}=$ the stationary process that shares the same occupancy measures with X^{i}

$$
\text { Fact: } \bar{C}_{\pi^{j o i n t}}:=\left(\sum_{i=1}^{N} H\left(\bar{X}^{i}\right)\right)-H(\mathbf{X}) \geq C_{\pi j j^{\text {oint }}}=\left(\sum_{i=1}^{N} H\left(X^{i}\right)\right)-H(\mathbf{X})
$$

Improving the performance: Synthesize via non-convex optimization

$$
\begin{gathered}
\max v^{\text {full }}-\delta\left(\sum_{i=1}^{N} H\left(\bar{X}^{i}\right)\right)+\delta H(\mathbf{X})-\beta l^{\text {full }} \\
\text { subject to dynamics }
\end{gathered}
$$

Use convex-concave procedure for synthesis.

Back to the valley example: Optimal centralized policy (baseline) with full communication

Back to the valley example: Optimal centralized policy (baseline) with full communication

Back to the valley example:
 Optimal centralized policy (baseline) with no communication

Back to the valley example:
 Optimal centralized policy (baseline) with no communication

Back to the valley example:
 Minimum-dependency policy (ours) with no communication

Back to the valley example:
 Minimum-dependency policy (ours) with no communication

Performance loss under full communication loss

Performance loss under full communication loss

Low total correlation for minimum-dependency policy

Performance loss under full communication loss

Low total correlation for minimum-dependency policy

Consistent performance for minimum-dependency policy

Performance loss under full communication loss

Low total correlation for minimum-dependency policy

Consistent performance for minimum-dependency policy

20\% performance drop for baseline policy

Performance loss under intermittent communication loss

Policy Execution Algorithm

Performance Guarantees

$$
v^{i m g} \geq v^{f u l l}-\sqrt{1-\exp \left(-C_{\pi j \text { int }}\right)}
$$

Resulting Behavior

Policy Optimization

$$
\begin{gathered}
\max v^{\text {full }}-\delta\left(\sum_{i=1}^{N} H\left(\bar{X}^{i}\right)\right)+\delta H(\mathbf{X})-\beta v^{\text {full }} \\
\text { subject to dynamics }
\end{gathered}
$$

Policy Execution Algorithm

Performance Guarantees

$$
v^{i m g} \geq v^{f u l l}-\sqrt{1-\exp \left(-C_{\pi j \text { int }}\right)}
$$

Resulting Behavior

Policy Optimization

$$
\begin{gathered}
\max v^{\text {full }}-\delta\left(\sum_{i=1}^{N} H\left(\bar{X}^{i}\right)\right)+\delta H(\mathbf{X})-\beta v^{\text {full }} \\
\text { subject to dynamics }
\end{gathered}
$$

[^0]: $v^{\text {full }}-\delta C_{\pi j o i n t}-\beta l^{\text {full }}$
 occupancy measures
 can be represented with
 occupancy measures

