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The need of communication robust strategies in multi-agent systems

High success is achievable with high dependencies, 

but communication loss leads to catastrophe.

Need high success with low dependencies!
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Minimally Dependent Behavior
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ℳi = (Si, Ai, Pi, si
0)

Actions

Joint MDP

S = S1 × … × SN A = A1 × … × AN P(s, a, q) =
N

∏
i=1

Pi(si, ai, qi)
sI = (s1

I , …, sN
I )

ℳ = (S, A, P, s0)

 agents with independent dynamics. N

Joint policy  πjoint(s) ∈ Δ(A) Action distribution given the state

Team task: Eventually reach a target set . The reachability probability is .ST v
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Spectrum of coordination in multi-agent systems

Fully centralized: 

Share 

Jointly decide on 

s
a

Fully decentralized: 

Share nothing

Fixed communication graph: 

Share  with few others

Jointly decide on  with few others

s
a

Full coordination 
Better performance 

High dependencies

No coordination 
Worse performance 

No dependencies
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Existing methods are either oblivious to dependencies 
or restricted to explicit communication graphs.


We want performant policies that are robust to 
communication losses.

What is done? What is needed?
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X = (X1, …, XN)
Joint measure: 


Individual measures: 


Product measure: 

μ

μ1, …, μN

μprod = μ1 × … × μN

Total correlation = C(X1, …, XN) = KL (μ | |μprod)

Measuring intrinsic dependencies between agents

10

X1 X2

X3

Total correlation

= 


Shared Information
= 


Dissimilarity 
between the joint 

and product 
measures

State-action 
processes of agents



Total correlation is the difference between  
full communication and fully imaginary play
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Total correlation = Cπ joint = (
N

∑
i=1

H(Xi)) − H(X) = KL (μ | |μprod)

 : when the communication loss startstloss

: the probability measure induced by imaginary playμimg
tloss

Product measure   = No communication (imaginary play) μprod μimg
0

Joint measure  = Full communication μ μfull
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Lemma: Any extra communication at the beginning does not hurt.  

Cπ joint = KL (μfull | |μimg
0 ) ≥ KL (μfull | |μimg

tloss )

Stronger lemma: Any extra communication does not hurt. 

 : a binary sequence of communication availability


: the probability measure induced by intermittent play


Λ

μint
Λ

Cπ full = KL (μfull | |μimg
0 ) ≥ KL (μfull | |μint

Λ )

Even stronger lemma: Frequent communication is better. 
 : a Bernoulli( ) process of communication availability
Λ q

Cπ full = KL (μfull | |μimg
0 ) ≥ KL (μfull | |μint

Λ )/q .



Performance guarantees: 
Imaginary play with adversarial communication loss
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Theorem:  is an arbitrary function that determines the communication availability 

based on the team’s joint history. 


Communication loss does not affect much if total correlation is low:
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Theorem: Consider a communication system that permanently fails 
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Theorem: Communication system that fails 

with a probability  at any communication step


 

q

vimg ≥ max ( vfull − 1 − exp (−qCπ joint), vfull(1 − q)
l full

v full)

Performance guarantees: 
Intermittent communication with structured communication loss
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Effective 
total 

correlation 

Reachability 
probability of 
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Reachability 
probability of 


full communication 

Function of

expected path length 
under full communication

lfull
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Occupation measure = The expected number of times that a state-action pair is used 

 vfull − δ Cπ joint − β lfull
can be represented with 

occupancy measures 
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occupancy measures 

(
N

∑
i=1

H(Xi)) − H(X)

entropy of a hidden Markov model

has no analytical form due to non-stationarity

can be represented with 

occupancy measures 

if  is stationary πjoint
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 = the stationary process that shares the same occupancy measures with X̄i Xi



Improving the performance:  
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ConvexConcaveLinear

Use convex-concave procedure for synthesis.

  


subject to dynamics

max vfull − δ (
N

∑
i=1

H(X̄i)) + δ H(X) − β lfull
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Performance loss under full communication loss

Consistent performance for 
minimum-dependency policy

20% performance drop for 
baseline policy

Low total correlation for 
minimum-dependency policy
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Performance loss under intermittent communication loss

Full communication No communication



vimg ≥ vfull − 1 − exp (−Cπ joint)
Policy Execution Algorithm

Policy Optimization

Performance Guarantees

Mustafa O. Karabag (karabag@utexas.edu) & Cyrus Neary (cneary@utexas.edu) 

Resulting Behavior



vimg ≥ vfull − 1 − exp (−Cπ joint)
Policy Execution Algorithm

Policy Optimization

Performance Guarantees

Mustafa O. Karabag (karabag@utexas.edu) & Cyrus Neary (cneary@utexas.edu) 

Resulting Behavior


