Planning Not to Talk:Multiagent Systems that areRobust to Communication Loss

Mustafa O. Karabag & Cyrus Neary

autonologies systems group

The need of communication robust strategies in multi-agent systems

High success is achievable with high dependencies, but communication loss leads to catastrophe.

Need high success with low dependencies!

Performance Guarantees under Communication Loss

Value^{*full*} – Value^{*loss*} $\geq g$ (Dependencies)

Performance Guarantees under Communication Loss

Value^{*full*} – Value^{*loss*} $\geq g$ (Dependencies)

Performance Guarantees under Communication Loss

Value^{*full*} – Value^{*loss*} $\geq g$ (Dependencies)

N agents with independent dynamics.

N agents with independent dynamics.Markov decision process $\mathcal{M}^i = (S^i, A^i, P^i, s^i_0)$
(MDP)
for Agent iStatesActions

N agents with independent dynamics. Markov decision process (MDP) for Agent i States

Team task: Eventually reach a target set S_T . The reachability probability is v.

Team task: Eventually reach a target set S_T . The reachability probability is v.

Joint policy $\pi_{joint}(s) \in \Delta(A)$

Action distribution given the state

Full coordination

Better performance

High dependencies

No coordination

Worse performance

No dependencies

Full coordination

Better performance

High dependencies

Fully centralized:

Share *s* Jointly decide on *a* No coordination

Worse performance

No dependencies

Full coordination

Better performance

High dependencies

Fully centralized:

Share *s* Jointly decide on *a* No coordination

Worse performance

No dependencies

0 0

Fully decentralized:

Share nothing

Full coordination

Better performance

High dependencies

Fully centralized:

Fixed communication graph:

Share *s* Jointly decide on *a* Share *s* with few others Jointly decide on *a* with few others No coordination

Worse performance

No dependencies

Fully decentralized:

Share nothing

What is done? What is needed?

or restricted to explicit communication graphs.

We want performant policies that are robust to communication losses.

Existing methods are either oblivious to dependencies

Imaginary play

Policy execution under permanent or intermittent communication loss

Policy execution under permanent or intermittent communication loss

Intermittent communication loss

State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure: μ

Individual measures: μ^1, \ldots, μ^N

Product measure: $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$

State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure: μ

Individual measures: μ^1, \ldots, μ^N

Product measure: $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$

Entropy = $H(X^i) = \sum_{i=1}^{i} \mu^i(x)\log_{i=1}^{i}$ $\mu^{i}(x)$ $x \in Support(X^i)$

State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure: μ

Individual measures: μ^1, \ldots, μ^N

Product measure: $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$

Entropy = Information

State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure: μ

Individual measures: μ^1, \ldots, μ^N

Product measure: $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$

Entropy = H(X) =

Entropy = Information

 $\mu(x)\log\left(\frac{1}{-1}\right)$ $\mu(x)$ $x \in Support(\mathbf{X})$

State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure: μ

Individual measures: μ^1, \ldots, μ^N

Product measure: $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$

State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure: μ

Individual measures: μ^1, \ldots, μ^N

Product measure: $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$

Total correlation = $C(X^1$

Total correlation = Shared Information

$$,...,X^{N}$$
) = $\left(\sum_{i=1}^{N} H(X^{i})\right) - H(\mathbf{X})$

State-action processes of agents

$$\mathbf{X} = (X^1, \dots, X^N)$$

Joint measure: μ

Individual measures: μ^1, \ldots, μ^N

Product measure: $\mu^{prod} = \mu^1 \times \ldots \times \mu^N$

 X^{J}

Total correlation **Shared Information**

Dissimilarity between the joint and product measures

Total correlation = $C(X^1, ..., X^N) = KL(\mu | | \mu^{prod})$

Total correlation is the difference between full communication and fully imaginary play

Total correlation = $C_{\pi^{joint}}$ =

 t_{loss} : when the communication loss starts

 $\mu_{t_{loss}}^{img}$: the probability measure induced by imaginary play

Joint measure μ = Full communication μ^{full}

Product measure $\mu^{prod} = No$ communication (imaginary play) μ_0^{img}

$$\left(\sum_{i=1}^{N} H(X^{i})\right) - H(\mathbf{X}) = KL\left(\mu \mid \mid \mu^{prod}\right)$$

Roadmap to theoretical guarantees

Lemma:

Property:

Total Correlation

Roadmap to theoretical guarantees

Lemma:

Property:

Total Correlation

some communication

- Behavior difference under full communication
 - and
 - **no** communication
- Behavior difference under full communication and

Roadmap to theoretical guarantees

Lemma:

Property:

Total Correlation

Behavior difference under **Theorem:** full communication Performance difference under and full communication **no** communication and some communication Behavior difference under full communication and some communication

Lemma: Any extra communication at the beginning does not hurt.

 $C_{\pi^{joint}} = KL\left(\mu^{full} \mid \mid \mu_0^{img}\right) \ge KL\left(\mu^{full} \mid \mid \mu_{t_{loss}}^{img}\right)$

$$C_{\pi^{joint}} = KL\left(\mu^{full} \mid \right)$$

Stronger lemma: Any extra communication does not hurt.

 Λ : a binary sequence of communication availability

$$C_{\pi^{full}} = KL\left(\mu^{full} \mid \mu_0^{img}\right) \ge KL\left(\mu^{full} \mid \mu_\Lambda^{int}\right)$$

Lemma: Any extra communication at the beginning does not hurt. $|\mu_0^{img}\rangle \ge KL\left(\mu^{full}||\mu_{t_{loss}}^{img}\right)$

 μ_{Λ}^{int} : the probability measure induced by intermittent play

$$C_{\pi^{joint}} = KL\left(\mu^{full} \mid \right)$$

Stronger lemma: Any extra communication does not hurt.

 Λ : a binary sequence of communication availability

$$C_{\pi^{full}} = KL\left(\mu^{full} \mid \mu_0^{img}\right) \ge KL\left(\mu^{full} \mid \mu_\Lambda^{int}\right)$$

Even stronger lemma: Frequent communication is better.

 Λ : a Bernoulli(q) process of communication availability

$$C_{\pi^{full}} = KL\left(\mu^{full} | | \mu_0^{img}\right) \ge KL\left(\mu^{full} | | \mu_\Lambda^{int}\right)/q.$$

Lemma: Any extra communication at the beginning does not hurt. $|\mu_0^{img}\rangle \ge KL\left(\mu^{full}||\mu_{t_{loss}}^{img}\right)$

 μ_{Λ}^{int} : the probability measure induced by intermittent play

Performance guarantees: Imaginary play with adversarial communication loss

Theorem: f is an arbitrary function that determines the communication availability based on the team's joint history.

Communication loss does not affect much if total correlation is low:

 v^{img}

>

Reachability probability of imaginary play under f

Reachability probability of full communication

$$-\sqrt{1-\exp\left(-C_{\pi^{joint}}\right)}$$

Total correlation

Performance guarantees: Imaginary play with structured communication loss

Theorem: Consider a communication system that permanently fails with probability p at every time step.

Reachability

probability of

imaginary play

 $v^{img} \geq \max\left(v^{full}\right)$

Reachability probability of full communication

$$1-\exp\left(-C_{\pi^{joint}}\right),\,$$

Total correlation

 $v^{full}(1-p)^{\frac{\nu}{\nu^{full}}}.$

Function of expected path length *l^{full}* under full communication

Performance guarantees: Intermittent communication with structured communication loss

Theorem: Communication system that fails

with a probability q at any communication step

 $v^{img} \ge \max\left(v^{full} - \sqrt{1 - \exp\left(-qC_{\pi^{joint}}\right)}, v^{full}(1-q)^{\frac{l^{full}}{v^{full}}} \right)$ Beachability

Reachability probability of imaginary play

Reachability probability of full communication

Effective total correlation

Function of expected path length l^{full} under full communication

Until this point, π_{joint} is given.

Now, find a good π_{joint} , i.e., a minimum-dependency policy.

Ideally maximize

 $\max\left(v^{full} - \sqrt{1 - ex}\right)$

Until this point, π_{joint} is given.

Now, find a good π_{joint} , i.e., a minimum-dependency policy.

$$\exp\left(-C_{\pi^{joint}}\right), v^{full}(1-p)^{\frac{l^{full}}{v^{full}}}$$

Ideally maximize

 $\max\left(v^{full} - \sqrt{1 - ex}\right)$

Until this point, π_{joint} is given.

Now, find a good π_{joint} , i.e., a minimum-dependency policy.

$$\exp\left(-C_{\pi^{joint}}\right), v^{full}(1-p)^{\frac{l^{full}}{v^{full}}}$$

Too ugly to optimize!

Monotone in all variables.

Ideally maximize

$$\max\left(v^{full} - \sqrt{1 - \exp\left(-C_{\pi^{joint}}\right)}, v^{full}(1-p)^{\frac{l^{full}}{v^{full}}}\right)$$

Until this point, π_{joint} is given.

Now, find a good π_{joint} , i.e., a minimum-dependency policy.

Too ugly to optimize!

Monotone in all variables.

Instead maximize $v^{full} - \delta C_{\pi^{joint}} - \beta l^{full}$ where $\delta > 0$ and $\beta > 0$ are constants.

Occupation measure = The expected number of times that a state-action pair is used

$$v^{full} - \delta$$

 $C_{\pi^{joint}} - \beta l^{full}$

Occupation measure = The expected number of times that a state-action pair is used

can be represented with occupancy measures

 $v^{full} - \delta C_{\pi^{joint}} - \beta l^{full}$

can be represented with occupancy measures

Occupation measure = The expected number of times that a state-action pair is used

can be represented with occupancy measures

entropy of a hidden Markov model has no analytical form due to non-stationarity

 \bar{X}^i = the stationary process that shares the same occupancy measures with X^i

Fact:
$$\bar{C}_{\pi^{joint}} := \left(\sum_{i=1}^{N} H(\bar{X}^{i})\right) - H(\mathbf{X}) \ge C_{\pi^{joint}} = \left(\sum_{i=1}^{N} H(X^{i})\right) - H(\mathbf{X})$$

 \bar{X}^i = the stationary process that shares the same occupancy measures with X^i

Fact:
$$\bar{C}_{\pi^{joint}} := \left(\sum_{i=1}^{N} H(\bar{X}^{i})\right) - H(\mathbf{X}) \ge C_{\pi^{joint}} = \left(\sum_{i=1}^{N} H(X^{i})\right) - H(\mathbf{X})$$

can be represented with occupancy measures

can be represented with occupancy measures

$$v^{full} - \delta \ \bar{C}_{\pi^{joint}} - \beta \ l^{full}_{\text{can be represented with occupancy measures}}$$

$$\left(\sum_{i=1}^{N} H(\bar{X}^{i})\right) - H(\mathbf{X})_{\text{can be represented with occupancy measures}}_{\text{if } \pi_{joint}} \text{ is stationary}$$

Improving the performance: Synthesize via non-convex optimization

Use convex-concave procedure for synthesis.

$$H(\bar{X}^{i}) + \delta H(X) - \beta l^{full}$$

subject to dynamics

Back to the valley example: Optimal centralized policy (baseline) with full communication

Back to the valley example: Optimal centralized policy (baseline) with full communication

Back to the valley example: Optimal centralized policy (baseline) with no communication

Back to the valley example: Optimal centralized policy (baseline) with no communication

Back to the valley example: Minimum-dependency policy (ours) with no communication

Back to the valley example: Minimum-dependency policy (ours) with no communication

Performance loss under full communication loss

Performance loss under full communication loss

Low total correlation for minimum-dependency policy

Performance loss under full communication loss

Low total correlation for minimum-dependency policy

Consistent performance for minimum-dependency policy

Performance loss under full communication loss

Low total correlation for minimum-dependency policy

Consistent performance for minimum-dependency policy

20% performance drop for **baseline policy**

Performance loss under intermittent communication loss

Policy Execution Algorithm

Policy Optimization

$$\max v^{full} - \delta \left(\sum_{i=1}^{N} H(\bar{X}^{i}) \right) + \delta H(\mathbf{X}) - \beta l^{full}$$

subject to dynamics

Mustafa O. Karabag (karabag@utexas.edu) & Cyrus Neary (cneary@utexas.edu)

Performance Guarantees

$$v^{img} \ge v^{full} - \sqrt{1 - \exp\left(-C_{\pi^{joint}}\right)}$$

Resulting Behavior

Policy Execution Algorithm

Policy Optimization

$$\max v^{full} - \delta \left(\sum_{i=1}^{N} H(\bar{X}^{i}) \right) + \delta H(\mathbf{X}) - \beta l^{full}$$

subject to dynamics

Mustafa O. Karabag (karabag@utexas.edu) & Cyrus Neary (cneary@utexas.edu)

Performance Guarantees

$$v^{img} \ge v^{full} - \sqrt{1 - \exp\left(-C_{\pi^{joint}}\right)}$$

Resulting Behavior

