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Adaptive control has become a prevalent technique used to achieve a control ob-

jective, such as trajectory tracking, in nonlinear systems subject to model uncertainties.

Typically, an adaptive feedforward term is developed to compensate for model uncer-

tainties, and closed-loop adaptation laws are developed to adjust the feedforward term

in real-time. However, there are limitations in performance as adaptive control results

typically achieve asymptotic convergence rates. Hence there is motivation for adap-

tation designs with faster learning capabilities such as accelerated learning methods.

Accelerated gradient-based optimization methods have gained significant interest due

to their improved transient performance and faster convergence rates. Accelerated

gradient-based methods are discrete-time algorithms that alter their search direction by

using a weighted sum from the previous iteration to add a momentum-based term and

accelerate convergence. Recent results make connections between discrete-time ac-

celerated gradient methods and continuous-time analogues. These connections lead to

new insights on algorithm design based accelerated gradient methods. This dissertation

aims to develop new adaptive control designs based on accelerated gradient methods

using Lyapunov-based methods.

Chapter 2 provides a new data-driven adaption design based on the accelerated

gradient method. Accelerated gradient methods such as Nesterov’s accelerated gradient

in numerical optimization have been shown to yield faster convergence than standard
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gradient methods. However, these results either assume available measurements of

the regression error or do not guarantee convergence of the parameter estimation error

unless the restrictive persistence of excitation condition is satisfied. In this chapter, a

new integral concurrent learning (ICL)-based accelerated gradient adaptive update law

is developed to achieve trajectory tracking and real-time parameter identification for

general uncertain Euler-Lagrange systems. The accelerated gradient adaptation is a

higher-order scheme composed of two coupled adaptation laws. A Lyapunov-based

method is used to guarantee the closed-loop error system yields global exponential

stability under a less restrictive finite excitation condition. A comparative simulation

study is performed on a two-link robot manipulator to demonstrate the efficacy of the

developed method. Results show the higher-order scheme outperforms standard

and ICL-based adaption by 19.6% and 11.1%, respectively, in terms of the root mean

squared parameter estimation errors.

Chapter 3 develops a NN-based adaptation law based on accelerated gradient

methods. In Chapter 2, the system’s uncertainties were assumed to be linear-in-the-

parameters (LIP) and was used to facilitate the analysis. Instead, in this chapter, a

NN is used to approximate non-LIP system uncertainties to a prescribed function

approximation error. This chapter develops a new NN-based accelerated gradient

adaptive controller to achieve trajectory tracking in general nonlinear systems subject

to unstructured uncertainties. Higher-order accelerated gradient-based adaptation laws

are developed to generate real-time estimates of the NN weights. Due to the inherent

nonlinear nested parametrization of NNs and coupling from higher-order adaptation,

mathematical challenges are introduced by the injection of NN-based cross-terms in

the analysis. A nonsmooth Lyapunov-based method is used to guarantee the closed-

loop error system achieves global asymptotic tracking. Simulations are conducted to

demonstrate the improved performance from the developed method. Results show the
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higher-order adaptation outperforms the standard gradient-based NN adaptation by

32.3% in terms of the root mean squared function approximation error.

Chapter 4 provides a real-time deep neural network (DNN) adaptive control archi-

tecture for uncertain control-affine nonlinear systems to track a time-varying desired

trajectory. A nonsmooth Lyapunov-based analysis is used to develop adaptation laws

for the output-layer weights and develop constraints for inner-layer weight adaptation

laws. The developed adaptation laws include a switching mechanism that enables the

weight updates for each layer to be arbitrarily switched on and off. The inclusion of the

switching mechanism enables the user to freely select when to update each layer weight

based on factors such as computational resources. Unlike existing works with DNN-

based control, the developed method establishes a framework to simultaneously update

the weights of multiple layers for a DNN of arbitrary depth in real-time. The real-time

controller and weight update laws enable the system to track a time-varying trajectory

while compensating for unknown drift dynamics and parametric DNN uncertainties.

A nonsmooth Lyapunov-based analysis is used to guarantee semi-global asymptotic

tracking.

Chapter 5 leverages the insights developed from Chapter 4 on the development

and analysis of DNN adaptation to build upon the developments of Chapter 3 and de-

velop a new DNN-based adaptation law based on the accelerated gradient methods. To

compensate for non-LIP uncertainties, the results in Chapter 3 developed a NN-based

accelerated gradient adaptive controller to achieve trajectory tracking for nonlinear

systems; however, the development and analysis only considered single hidden layer

NNs. In Chapter 5, a generalized DNN architecture with an arbitrary number of hidden

layers is considered, and a new DNN-based accelerated gradient adaptation scheme

is developed to generate estimates of all the DNN weights in real-time. A nonsmooth

Lyapunov-based analysis is used to guarantee the developed accelerated gradient-

based DNN adaptation design achieves global asymptotic tracking error convergence for

12



general nonlinear control affine systems subject to unknown (non-LIP) drift dynamics.

Simulations are conducted to demonstrate the improved performance from the devel-

oped method. Results show the developed accelerated gradient-based DNN adaptation

outperforms gradient-based DNN adaptation by 67.41% and 78.82% in terms of the root

mean squared tracking and function approximation errors, respectively.

Chapter 6 concludes the dissertation by highlighting the contributions of the

developments from each chapter. Additionally, future works are discussed in this

chapter.
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CHAPTER 1
INTRODUCTION

1.1 Background

Adaptive control has become a prevalent technique used to achieve a control

objective, such as trajectory tracking, in nonlinear systems subject to model uncer-

tainties [1–3]. An adaptive feedforward model is typically developed to compensate for

system uncertainties, and closed-loop adaptation laws are used to update the feed-

forward model in real-time. However, there are limitations in performance as adaptive

control results typically achieve asymptotic convergence rates. Hence there is motiva-

tion for adaptation designs with faster learning capabilities such as accelerated learning

methods. Accelerated gradient-based optimization methods have gained significant

interest due to their improved transient performance and faster convergence rates; how-

ever, these methods have traditionally been used to design discrete-time update laws.

Accelerated gradient-based methods are discrete-time algorithms that alter their search

direction by using a weighted sum from the previous iteration to add a momentum-based

term and accelerate convergence. Recent results make connections between discrete-

time accelerated gradient methods and continuous-time analogues. These connections

lead to new insights on algorithm design based accelerated gradient methods. This

dissertation focuses on the development and analysis of accelerated gradient-based

adaptive control designs for general uncertain nonlinear systems.

Classical adaptive methods typically achieve a control objective, such as trajec-

tory tracking, but the parameter estimates may not converge. To guarantee parameter

estimates converge to the true parameters, persistence of excitation (PE) is often

required [2–4]. The PE condition is a restrictive assumption that requires sufficient

excitation of the system for all time, and the condition is generally not verifiable online

for a nonlinear system. To eliminate the restrictive PE condition and guarantee con-

vergence of the parameter estimation errors, less restrictive initial excitation conditions
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have been developed in [5–8]. Similarly, results such as [9] and [10] exploit a finite ex-

citation (FE) condition that requires the system to be initially excited for a finite amount

of time. Moreover, the FE condition can be verified online by examining the minimum

singular value of a function of the regressor matrix. Results in [9] and [10] developed a

data-driven method called concurrent learning (CL) that is adopted in this dissertation.

Concurrent to real-time execution, sampled input-output data of the system is collected

and stored. These CL methods require state derivative measurements that are generally

not available and are required to be generated numerically or estimated as in [11]. To

eliminate the dependence on unmeasurable state derivatives, results in [12] developed

an integral form of the CL method (ICL). Before the FE condition is met, the parameter

estimates may not approach the true parameters. Moreover, the parameter estimates

may exhibit poor transient performance characterized by oscillatory behavior and slow

convergence [13,14].

Similarly, first-order methods in numerical optimization algorithms are known to

yield poor transient performance [15].1 To improve transient performance in parameter

estimates in an optimization setting, a higher-order accelerated gradient method was

developed by Nesterov in the seminal work in [16]. Higher-order accelerated gradient-

based optimization methods, such as Nesterov’s method [16] and the Heavy-ball

method [17], have gained significant interest due to the improved transient performance

and faster convergence rates compared to first-order methods [15]. The results in

[18–21] make connections between discrete-time accelerated gradient methods and

continuous-time analogues. Motivated by the improved convergence properties of

1 First-order optimization methods can be characterized by a recursive difference
equation driven by a cost function’s gradient. In higher-order accelerated methods, a
weighted sum from the previous iteration is used to add a momentum-based term and
accelerate convergence.
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accelerated gradient methods, insights from [18–21] lead to the design and analysis of

accelerated gradient algorithms using Lyapunov-based methods [22–25].

The results in [22] develop an accelerated gradient-based adaptation scheme

to estimate a system’s parametric uncertainty in applications for model-reference

adaptive control with linear dynamics. However, the result in [22] only guarantees

asymptotic convergence in the tracking error while the parameter estimation errors are

only guaranteed to remain bounded. Results in [23] develop a data-driven accelerated

gradient-based method to achieve convergence in the parameter estimates, but this

method is only applicable to parameter estimation in linear regression models where a

tracking objective is not considered. Moreover, the result in [23] requires measurements

of the regression error which is typically not measurable in the context of adaptive

control due to the need for higher-order state derivatives. The results in [24] and [25]

generalize the accelerated gradient-based adaptation to uncertain nonlinear systems.

Results in [24], apply the variational framework in [19] to develop accelerated gradient-

based adaptation for general nonlinear systems. Results in [24] also exploit connections

between adaptive control and optimization, which provide insight on adaptation design,

by comparing gradient- and mirror descent-based adaptation with and without the

accelerated gradient method. However, similar to [22], the results in [24] only achieve

asymptotic tracking error convergence. Moreover, it is not clear whether the tracking

error convergence is uniform or exponential.

In Chapter 2, and in [25], a new higher-order ICL-based control and adaptive

update law is developed for a general class of uncertain Euler-Lagrange systems.

The uncertainties in this chapter are assumed to be structured uncertainties, i.e., the

linear-in-the-parameters (LIP) assumption is satisfied. A torque-filtering method is used

to reconstruct a measurable form of the regression error. The torque-filtering method

eliminates the dependency on unknown state derivatives that are required to compute

and store sampled data for ICL. The higher-order adaptation laws are designed as
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two coupled first-order differential equations. Unlike previous ICL results, the coupling

introduces ICL cross-terms in the stability analysis that challenges the ability to obtain

parameter convergence. To compensate for the complexities of higher-order adaptation,

auxiliary estimates and regression errors are introduced into the control input and

adaptation laws. A Lyapunov-based stability analysis guarantees global asymptotic

tracking. Furthermore, if a FE condition is satisfied, the developed higher-order ICL-

based adaptive scheme yields global exponential convergence of the tracking error and

parameter estimation errors. To demonstrate the efficacy of the developed method,

comparative simulations were performed on a two-link robot manipulator. Results show

the higher-order scheme outperforms standard and ICL-based adaption by 19.6% and

11.1%, respectively, in terms of the root mean squared parameter estimation errors.

Although results in [22–25] show improved performance from the accelerated-

gradient based adaptation, the underlying assumption throughout the aforementioned

results require the system’s uncertainty to satisfy the LIP assumption. Hence, scenarios

in which a system’s dynamics exhibits unstructured or unknown (non-LIP) uncertainties

motivates the use of neural network (NN)-based adaptive control techniques. NNs are

universal function approximators that are capable of approximating continuous functions

to a prescribed accuracy [26–28]. Alternative to real-time adaptation methods, numerical

optimization-based methods have been used to train NNs by generating estimates

of the NN weights such that a cost function is minimized over a training data set [29].

Although NN training algorithms provide a method to estimate NN weights, training

is typically performed offline and then employed with open-loop control, which lacks

stability guarantees. Moreover, the offline training often requires an extensive data set

and significant computational resources which may require a long duration of time to

train.

Due to the function approximation capabilities of NNs, NN-based adaptive control

is a useful technique used to achieve control objectives (e.g., trajectory tracking)
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in nonlinear systems subject to non-LIP uncertainties [30]. Results such as [31–

35] approximate model uncertainties with a closed-loop adaptive NN feedforward

component. In these results, Lyapunov-based methods are used to develop real-

time adaptation laws to estimate the weights of a NN while also providing stability

guarantees. However, the NN adaptation schemes in the aforementioned results are

gradient-based, which, as previously mentioned in [13] and [14], may exhibit poor

transient performance with oscillations and slow convergence in the weight estimates.

Motivated by the improved convergence properties of accelerated gradient meth-

ods, Chapter 3 and [36] develop a new higher-order NN-based adaptive controller for

trajectory tracking in nonlinear systems subject to unstructured or unknown (non-LIP)

uncertainties. A NN model is used to approximate the uncertainties in the system.

An accelerated gradient approach is used to develop higher-order adaptation laws

for real-time estimation of the weights of a NN. The higher-order adaptation scheme

is structured as two coupled first-order differential equations; the first adaptation law

is used to generate auxiliary estimates of the NN weights, and these estimates are

coupled to the second adaptation law which generates the true estimate of the NN

weights. Consequently, the coupled structure of the developed higher-order adaptation

laws impose some mathematical challenges in facilitating a Lyapunov-based stability

analysis. To compensate for perturbing effects from cross-terms introduced from higher-

order adaptation, auxiliary estimates are designed into the control input. Additionally,

the switching analysis in [25] is adopted in this chapter to allow for activation functions

with discontinuous gradients, e.g., rectified linear unit (ReLU) activation functions. A

nonsmooth Lyapunov-based analysis is used to guarantee the tracking errors achieve

global asymptotic tracking. Comparative simulations are conducted to demonstrate

the improved performance from the developed method. Results show the higher-order

adaptation outperforms the standard gradient-based NN adaptation by 32.3% in terms

of the root mean squared function approximation error.
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Conventional NNs (i.e., NNs with only a single hidden layer) can approximate func-

tions to a prescribed accuracy [37] and [27]; however, recent evidence indicates deep

neural networks (DNNs) exploit more complex learning features that can potentially

improve function approximation performance [38]. Although DNNs may potentially

approximate the nonlinear dynamics of a system more accurately, it is difficult to derive

real-time adaptation laws for DNNs with multiple layers because the uncertain ideal

weights are nested within a collection of nonlinear activation functions.

Results in [33,39–41] leverage Lyapunov-based analysis to develop multi-timescale

DNN-based controllers containing real-time and offline iterative learning components.

The output-layer weights of the DNN are adjusted online (i.e., in real-time) using

NN-based adaptive control techniques. Concurrent to real-time execution, data is

collected and DNN training algorithms, such as gradient descent and stochastic gradient

descent (see [39–41] and [29, Ch. 8]), are used to iteratively update the inner-layer

DNN weights. Since DNN learning algorithms are performed iteratively, the inner-layer

weights are not updated continuously in real-time. The benefit of iterative learning is

that the system performance improves with the quality of the DNN estimate. However,

improving the quality of the DNN estimate may require a large training data set to

capture the nonlinearities of the dynamics and significant computational resources

to adjust the inner-layer weights. The DNN-based methods in [33, 39–41] also raise

questions regarding the inner-layer weights updates such as: when to collect data, what

is the most efficient way to retrain the inner-layer weights, when should the inner-layer

weights be updated in the implemented adaptation law, etc.

While such open questions are topics for further investigation, Chapter 4 and [34]

investigate general characteristics and structures of inner-layer adaptation laws. Specif-

ically, this chapter develops general constraints on the inner-layer adaptation laws to

update the inner-layer weight estimates in real-time. A Lyapunov-based analysis is used

to develop a continuous adaptation law to estimate the output-layer weights. However,
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unlike previous methods, this chapter provides a first insight into the development of

Lyapunov-based adaptive update laws for both the inner-layer DNN weights as well

as the output-layer weights. Inspired by modular adaptive control designs in [42–45],

general constraints on the inner-layer DNN weight update laws are developed that en-

able modular design and selection of update laws. The developed DNN-based modular

adaptive architecture allows more flexibility when selecting inner-layer DNN weight

update laws.

In arbitrary width and depth DNNs, there may be hundreds or thousands of inner-

layer weights. Simultaneously updating all the inner-layer weights online may be

computationally intractable in real-time or undesired. Hence, the developed method

provides a switched framework that provides design guidelines that can be used in

future research efforts to guide inner-layer weight adaptive update laws. In doing so,

the inner-layer weight update laws may be arbitrarily switched on and off to allocate

computational resources while updating the desired weights. Additionally, inner-layer

weights may dropout, or be selectively turned off to prevent over-fitting and improve

overall function approximation performance [46].

Results such as [32], [33], and [47] develop a robust sliding mode method to

achieve asymptotic tracking with NN feedforward controllers. Like the aforementioned

results, the developed method uses a sliding mode control term to yield asymptotic

tracking in the presence of the NN reconstruction error, but also uses switched adap-

tation laws for the inner-layer weights. Hence, this chapter leverages a nonsmooth

Lyapunov-like analysis [48] to guarantee asymptotic tracking of a desired trajectory.

Unlike existing works, the developed modular adaptive architecture incorporates the

inner-layer weights of an arbitrarily deep DNN into a Lyapunov-based analysis to de-

velop and characterize a general class of suitable inner-layer DNN adaptation laws.

Moreover, sufficient conditions are developed to guarantee the tracking objective is
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achieved, despite the arbitrary number of inner-layers and switched update laws. Com-

parative numerical simulation results are included to demonstrate the efficacy of the

developed method and show the benefits of real-time all-layer DNN weight adaptation.

As previously mentioned, DNNs are universal function approximators that are

capable of approximating continuous functions to a prescribed accuracy [26–28].

Typically, numerical optimization-based methods have been used to train DNNs by

generating estimates of the DNN weights such that a cost function is minimized over a

training data set [29]. Although DNN training algorithms provide a method to estimate

DNN weights, training is typically performed offline and then held constant during

implementation. The resulting controller uses the DNN as a fixed approximate model,

with no guarantees on how close the model approximates the actual model experienced

during real-time implementation nor what effects such a model mismatch may have on

the stability of the controller. Moreover, such offline training often requires a large data

set, which could be expensive or not possible to obtain.

Recent results in [33–35, 39, 40] develop the first DNN-based adaptive controllers

that enable continuous learning based on weight adaptation laws that are derived from a

Lyapunov-based stability analysis. In [33, 39, 40], Lyapunov-based adaptation laws are

developed to adjust the output layer of a fully-connected DNN in real-time while the inner

layers are updated discretely using data-driven offline training algorithms. More recent

results in [34,35,49] develop the first Lyapunov-based adaptation laws that can be used

to enable continuous learning by all the weights of a DNN in real-time. As in Chapter 4,

the results in [34] use a modular approach to develop constraints on the DNN weight

adaptation laws, but this approach lacks constructive insights for the adaptive update

law. Results in [35] provide the first insights on Lyapunov-derived weight adaptation

design for fully-connected DNNs which is then generalized to residual NNs (ResNets)

in [49]. The adaptation laws in [33–35, 39, 40, 49] use gradient-based adaptation laws

that are designed to cancel cross-terms resulting from a first-order Taylor’s series
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approximation. However, as mentioned previously, gradient-based adaptation laws may

exhibit poor transient performance with oscillations and slow convergence in the weight

estimates.

In Chapter 3 and [36], the accelerated gradient strategy is used to develop a NN-

based adaptive controller to compensate for non-LIP model uncertainties. Specifically,

an accelerated gradient-based adaptation law is developed to estimate NN weights in

real-time. However, the NN model considered in Chapter 3 is limited to NNs with only a

single hidden layer. Chapter 5 leverages the insights on the development and analysis

of DNN-based adaptation via Lyapunov-based techniques in Chapter 4 to extend the

accelerated gradient-based NN adaptive control scheme in Chapter 3. Specifically,

Chapter 5 generalizes the NN model to deep architectures with an arbitrary number

of hidden layers. In comparison to Chapter 5, Chapter 3 generalizes the mathematical

development, control design, and stability analysis to account for DNN architectures

and unknown exogenous disturbances in the system dynamics. Additionally, new

comparative simulations are conducted to demonstrate the improved performance from

the developed method in comparison to a baseline DNN adaptive controller. Results

show the developed accelerated gradient-based DNN adaptation outperforms gradient-

based DNN adaptation by 67.41% and 78.82% in terms of the root mean squared

tracking and function approximation errors, respectively.

In Chapter 5, a new DNN-based accelerated gradient adaptive controller is de-

veloped for trajectory tracking for general nonlinear control-affine systems subject to

non-LIP uncertainties. The constructive variational framework in [19] is used to design

higher-order accelerated gradient-based adaptation laws for real-time estimation of

all the weights of the DNN. The higher-order adaptation scheme is structured as two

coupled first-order differential equations. Despite the potential improvements from the

accelerated gradient strategy, the inherent coupled structure poses mathematical chal-

lenges with Lyapunov-based analysis. However, the perturbing effects resulting from the
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DNN-based cross-terms injected into the analysis by the accelerated gradient-based

adaptation strategy are compensated for by the developed control input design. Addi-

tionally, Lyapunov-based analyses of the DNN-based adaptation poses challenges due

to the nested nonlinear parametrization of DNN architectures. However, a recursive

relation of the DNN architecture, similar to [35], is developed to facilitate the analysis

and derivation of a general expression for the adaptation design that accounts for gen-

eral fully-connected DNNs with an arbitrary number of hidden layers. In comparison

to [35], Chapter 5 restructures the analysis and control development to facilitate the

derivation of a general expression to compute the DNN adaptation law. An example

is also provided to show the utility of the generalized adaptation law. A nonsmooth

Lyapunov-based analysis is used to analyze the new accelerated gradient-based DNN

adaptive control design. The tracking errors are guaranteed to achieve global asymptotic

tracking error convergence despite the presence of non-LIP system uncertainties and

exogenous disturbances.

1.2 Notation

Mathematical preliminaries and notation used throughout the dissertation is

summarized in this section. Let R and Z denote the set of real numbers and integers,

respectively. Let R≥0 ≜ [0,∞) and R>0 ≜ (0,∞) denote the set of positive and

strictly positive real numbers, respectively. Similarly, let Z≥0 and Z>0 denote the set

of positive and strictly positive integers, respectively. The Euclidean norm of a vector

x ∈ Rn is denoted by ∥x∥ ≜
√
xTx. The vector space of essentially bounded Lebesgue

measurable functions is denoted by L∞. For n,m ∈ Z>0, let Rn×m and In denote

the space of n × m dimensional matrices and the n × n dimensional identity matrix,

respectively. Let 0n×m denote an n ×m matrix of zeros. The right-to-left matrix product

operator is denoted by
↶∏

, i.e., given suitable matrices Ai for all i = 1, . . . ,m,
↶
m∏
i=1

Ai ≜

Am . . . A2A1 and
↶
m∏
i=a

Ai ≜ I if a > m. Given matrices A ∈ Rp×q and B ∈ Rr×s, the
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Kronecker product is denoted by A ⊗ B ∈ Rpr×qs. Let vec (·) denote the vectorization

operator that transforms a matrix into a column vector, i.e., for a matrix A = [ai,j] ∈

Rn×m, vec (A) ≜ [a1,1, . . . , a1,m, . . . an,1, . . . , an,m]
T ∈ Rnm. Given a square matrix

A ∈ Rn×n, the trace of A is denoted by tr (A). The Frobenius norm of a matrix A ∈ Rn×m

is denoted by ∥A∥F =
√

tr (ATA). The minimum and maximum eigenvalue of a matrix

A ∈ Rn×n is denoted by λmin (A) ∈ R and λmax (A) ∈ R, respectively. Given matrices

A ∈ Rk×l, B ∈ Rl×m, and C ∈ Rm×n, the vectorization operator satisfies the following

property [50, Proposition 7.1.9]

vec (ABC) =
(
CT ⊗ A

)
vec (B) . (1–1)
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CHAPTER 2
INTEGRAL CONCURRENT LEARNING-BASED ACCELERATED GRADIENT

ADAPTIVE CONTROL OF UNCERTAIN EULER-LAGRANGE SYSTEMS

This chapter considers a trajectory tracking problem for general uncertain Euler-

Lagrange system where the model uncertainties are assumed to satisfy the LIP as-

sumption that is standard in adaptive control. Leveraging recent insights on continuous-

time analogues of accelerated gradient methods, this chapter develops a data-driven

ICL-based accelerated gradient adaptive update law to achieve trajectory tracking and

real-time parameter identification for general Euler-Lagrange systems subject to LIP

uncertainties. The accelerated gradient adaptation is a higher-order scheme composed

of two coupled adaptation laws. Other similar results either assume available mea-

surements of the regression error or do not guarantee convergence of the parameter

estimation error unless the restrictive PE condition is satisfied. However, the results in

this chapter guarantees parameter convergence under a less restrictive FE condition.

Additionally, the developments in this chapter use a torque filtering method to recon-

struct a measurable form of the parameter estimation error. A Lyapunov-based method

is used to guarantee the closed-loop error system yields global exponential stability

under a less restrictive finite excitation condition. A comparative simulation study is

performed on a two-link robot manipulator to demonstrate the efficacy of the developed

method. Results show the higher-order scheme outperforms standard and ICL-based

adaption by 19.6% and 11.1%, respectively, in terms of the root mean squared parame-

ter estimation errors.

2.1 Problem Formulation

2.1.1 Dynamic Model

Consider a general uncertain nonlinear Euler-Lagrange system modeled as [51, Ch.

2]

M (q) q̈ + Vm (q, q̇) q̇ +G (q) + F q̇ = τ, (2–1)
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where q, q̇, q̈ : R≥0 → Rn denotes the generalized position, velocity, and acceleration,

respectively, M : Rn → Rn×n denotes a generalized inertia matrix, Vm : Rn × Rn → Rn×n

denotes a generalized centripetal-Coriolis matrix, G : Rn → Rn represents a generalized

vector of potential forces, F ∈ Rn×n represents generalized dissipation effects, and

τ : R≥0 → Rn denotes the control input. The subsequent development is based on

the assumption that q and q̇ are measurable. The dynamic model in (2–1) satisfies the

following properties and assumption [51, Ch. 2].

Property 1. The inertia matrix M (q) for all q ∈ Rn is positive-definite and satisfies

m1 ∥ξ∥2 ≤ ξTM (q) ξ ≤ m2 ∥ξ∥2 for all ξ ∈ Rn, where m1,m2 ∈ R>0 denote known

constants.

Property 2. The inertia and centripetal-Coriolis matrices satisfy the following skew-

symmetric relation ξT
(
Ṁ (q)− 2Vm (q, q̇)

)
ξ = 0 for all q, q̇, ξ ∈ Rn.

Assumption 2.1. The uncertain dynamics in (2–1) are linear-in-the-parameters and can

be expressed as

M (q) q̈ + Vm (q, q̇) q̇ +G (q) + F q̇ = Ψ(q, q̇, q̈) θ∗, (2–2)

for all q, q̇, q̈ ∈ Rn, where Ψ : Rn × Rn × Rn → Rn×m denotes a known regressor matrix,

and θ∗ ∈ Rm denotes a vector of unknown constant parameters.

2.1.2 Control Objective

The control objective is to track a user-defined desired trajectory qd : R≥0 → Rn

despite parametric uncertainties in the dynamic model. The desired trajectory and its

first two time derivatives are assumed to be continuous and bounded, i.e., qd, q̇d, q̈d ∈ L∞

for all t ∈ R≥0. Note that the desired trajectory need not be persistently exciting and can

be set to a constant for the regulation problem.

To quantify the tracking objective, the tracking error e : R≥0 → Rn and auxiliary

tracking error r : R≥0 → Rn are defined as

e ≜ qd − q, (2–3)
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r ≜ ė+ αe, (2–4)

respectively, where α ∈ R≥0 denotes a user-defined parameter. Additionally, the control

objective is to simultaneously perform real-time parameter estimation to compensate

for the parametric model uncertainties in (2–1). To quantify the parameter identification

objective, the parameter estimation error θ̃ : R≥0 → Rm is defined as

θ̃ ≜ θ∗ − θ̂, (2–5)

where θ̂ : R≥0 → Rm denotes the parameter estimate.

2.2 Control Development

2.2.1 Controller and Adaptive Update Law

This section introduces the controller design and higher-order ICL-based adaptive

update laws. To facilitate the subsequent stability analysis, a measurable form of the

parameter estimation error is constructed using the torque-filtering method in [4]. Let the

filtered control input τf : R≥0 → Rn be defined as

τf ≜ f ∗ τ, (2–6)

where the filter f : R≥0 → R is defined as f ≜ βexp (−βt) , β ∈ R>0 denotes a user-

defined parameter, and ∗ denotes the convolution operator. The filtered control input in

(2–6) can be generated by τ̇f + βτf = βτ with τf (0) = 0n [4, Ch. 8.7]. Using (2–1) and

(2–2), the filtered control input in (2–6) can be expressed as

τf = Ψf (q, q̇) θ
∗, (2–7)

where the filtered regressor Ψf : Rn × Rn → Rn×m is defined as Ψf ≜ f ∗ Ψ. The

regressor matrix (q, q̇, q̈) 7→ Ψ(q, q̇, q̈) depends on the unmeasurable acceleration q̈.

To obtain a measurable form of the filtered regressor Ψf that is independent of q̈, the

regressor matrix can be re-written as Ψ = ḣ + g, where (q, q̇, q̈) 7→ ḣ (q, q̇, q̈) and
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(q, q̇) 7→ g (q, q̇) are known functions. Then the filtered regressor can be expressed as

Ψf = f ∗ ḣ+ f ∗ g. (2–8)

To eliminate the dependence on q̈, the following property of convolutions is used [52, Eq.

6.6.7]

f ∗ ḣ = ḟ ∗ h+ f (0)h− fh (0) , (2–9)

where the function (q, q̇) 7→ h (q, q̇) is known and measurable. Let ψf,1 : Rn × Rn → Rn×m

and ψf,2 : Rn × Rn → Rn×m be defined as ψf,1 ≜ ḟ ∗ h and ψf,2 ≜ f ∗ g, respectively.

Using (2–8) and (2–9), the measurable form of the filtered regressor is

Ψf = ψf,1 (t) + ψf,2 (t) + βh (t)− βexp (−βt)h (0) ,

where ψf,1 can be generated by ψ̇f,1 + βψf,1 = −β2h with ψf,1 (0) = 0n×m, and ψf,2 can be

generated by ψ̇f,2 + βψf,2 = βg with ψf,2 (0) = 0n×m.

Based on the subsequent stability analysis, the controller is designed as

τ ≜ kr + Y θ̂ + e− 2Y
(
θ̂ − ν

)
, (2–10)

where k ∈ R>0 denotes a user-defined parameter, ν : R≥0 → Rm denotes an

auxiliary parameter estimate, and Y denotes a known regressor matrix that is defined

subsequently in the closed-loop error development.

Based on the subsequent stability analysis, the higher-order ICL-based adaptive

update laws ν̇ : R≥0 → Rm and ˙̂
θ : R≥0 → Rm are designed as

ν̇ ≜ Γ

(
Y T r + k1

N∑
i=1

ΨT
f,i

(
τf,i −ΨT

f,iν
))

, (2–11)

˙̂
θ ≜ −Γ

(
k2

(
θ̂ − ν

)
− k1

N∑
i=1

ΨT
f,i

(
τf,i −ΨT

f,iν
))

, (2–12)
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where k1, k2 ∈ R>0 are user-defined parameters, and Γ ∈ Rm×m denotes a user-defined

positive definite learning gain matrix. In (2–11) and (2–12), the terms τf,i ≜ τf (ti) and

Ψf,i ≜ Ψf (ti) for all ti ∈ R≥0 are sampled data points at N ∈ Z≥0 discrete time instants

that are collected concurrent to real-time execution.1 The update laws in (2–11) and

(2–12) are the implementable forms. Using (2–7), the adaptive update laws in (2–11)

and (2–12) can also be expressed as

ν̇ = Γ

(
Y T r + k1

N∑
i=1

ΨT
f,iΨf,i (θ

∗ − ν)

)
, (2–13)

˙̂
θ = −Γ

(
k2

(
θ̂ − ν

)
− k1

N∑
i=1

ΨT
f,iΨf,i (θ

∗ − ν)

)
, (2–14)

respectively, which will be used in the subsequent stability analysis.2 In (2–13) and (2–

14),
∑N

i=1 Ψ
T
f,iΨf,i is the ICL term that contains the recorded input-output data generated

by the dynamics.

2.2.2 Closed-Loop Error System

Taking the time derivative of the auxiliary tracking error in (2–4), pre-multiplying by

M (q), and substituting in (2–1), the open-loop error system can be expressed as

M (q) ṙ = Y (q, q̇, qd, q̇d, q̈d) θ
∗ − τ − Vm (q, q̇) r, (2–15)

where the known regressor Y : Rn×Rn×Rn×Rn×Rn → Rn×m and unknown parameters

θ∗ are defined based on the relation Y θ∗ = M (q) (q̈d + αė) + Vm (q, q̇) (q̇d + αe) +G (q) +

F q̇. Substituting the controller in (2–10) into (2–15) yields the closed-loop error system

Mṙ = −kr + Y θ̃ − Vmr − e+ 2Y
(
θ̂ − ν

)
. (2–16)

1 See [12] for discussions on data collection and implementation of ICL.

2 The update laws in (2–13) and (2–14) are used only for the subsequent stability
analysis, whereas the update laws in (2–11) and (2–12) are used in implementation.
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2.3 Stability Analysis

To facilitate the subsequent stability analysis, the following FE condition is as-

sumed.3

Assumption 2.2. [12] There exists a time T ∈ R>0 such that λmin

(∑N
i=1Ψ

T
f,iΨf,i

)
≥ γ,

where γ ∈ R>0 is a user-defined parameter.

Before the FE condition is satisfied, the developed controller and adaptive update

laws are shown to ensure the closed-loop error system remains bounded and achieves

the tracking objective. To verify the FE condition is met, the minimum singular value

of the sum of discrete regression matrices is checked to verify it is positive. After

Assumption 2.2 is satisfied, the tracking and parameter estimation errors are shown to

be contained within an exponentially converging envelope.

To facilitate the subsequent stability analysis, let z : R≥0 → R2n+2m denote a

concatenated state vector defined as z ≜

[
eT , rT , (θ∗ − ν)T ,

(
θ̂ − ν

)T]T
. Consider the

candidate Lyapunov function V : R2n+2m × R≥0 → R≥0 defined as

V (z, t) ≜
1

2
rTMr +

1

2
eT e+

1

2
(θ∗ − ν)T Γ−1 (θ∗ − ν) +

1

2

(
θ̂ − ν

)T
Γ−1

(
θ̂ − ν

)
, (2–17)

which satisfies the inequality

c1 ∥z∥2 ≤ V (z, t) ≤ c2 ∥z∥2 , (2–18)

where the known constants c1, c2 ∈ R>0 are defined as c1 ≜ 1
2
min {1,m1, λmin {Γ−1}}

and c2 ≜ 1
2
max {1,m2, λmax {Γ−1}}, where m1 and m2 were defined in Property 1.

3 To facilitate excitation in the system, a transient dither signal can be added to the
desired trajectory. To satisfy the FE condition and guarantee the parameter estimation
errors converge, the system must only be initially excited for a finite period of time. The
FE condition is far less restrictive as the addition of a dither signal to the desired trajec-
tory may be required for all time to satisfy the PE condition.
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Theorem 1. Consider a system modeled by the dynamics in (2–1) that satisfies

Properties 1 and 2. Let Assumption 2.1 hold. The controller in (2–10) and higher-order

adaptive update laws in (2–13) and (2–14) ensure the closed-loop error system in (2–

16) yields global asymptotic tracking in the sense that lim
t→∞

∥e (t)∥ = 0, lim
t→∞

∥r (t)∥ = 0,

and lim
t→∞

∥∥∥θ̂ (t)− ν (t)
∥∥∥ = 0 for all initial conditions z (0) ∈ R2n+2m.

Proof. Taking the time derivative of (2–17), using (2–4) and (2–5), applying Property

2, and substituting the closed-loop error system in (2–16) and adaptive update laws in

(2–13) and (2–14) yields

V̇ = −krT r − αeT e− k2

(
θ̂ − ν

)T (
θ̂ − ν

)
− k1 (θ

∗ − ν)T
(

N∑
i=1

ΨT
f,iΨf,i

)
(θ∗ − ν) . (2–19)

Since the term
∑N

i=1Ψ
T
f,iΨf,i is positive semi-definite, (2–19) can be upper bounded

as V̇ ≤ −krT r − αeT e − k2

(
θ̂ − ν

)T (
θ̂ − ν

)
. From (2–17) and the fact that V̇ ≤ 0,

V ∈ L∞, which implies z ∈ L∞, and hence, e, r, ν, θ̂ ∈ L∞. Using (2–3)–(2–5) implies

q, q̇, θ̂ ∈ L∞, respectively. Using (2–4), the fact that e, r ∈ L∞ implies ė ∈ L∞. The fact

that q, q̇, qd, q̇d, q̈d ∈ L∞ implies Y ∈ L∞. Using (2–16), the fact that e, r, Y, θ̂, ν ∈ L∞

implies ṙ ∈ L∞. Using (2–10), the fact that e, r, Y, θ̂, ν ∈ L∞ implies the controller τ ∈ L∞

is bounded. Using (2–11), the fact that r, Y, ν ∈ L∞ implies the auxiliary parameter

estimate update law ν̇ ∈ L∞ is bounded. Using (2–12), the fact that θ̂, ν ∈ L∞ implies

the parameter estimate update law ˙̂
θ ∈ L∞ is bounded. Since e, r,

(
θ̂ − ν

)
∈ L∞ and

ė, ṙ,
(
˙̂
θ − ν̇

)
∈ L∞, then e, r,

(
θ̂ − ν

)
are uniformly continuous. Moreover, using (2–19)

implies e, r,
(
θ̂ − ν

)
∈ L2. Then by invoking Barbalat’s Lemma (i.e, Corollary A.7 in [1]),

lim
t→∞

∥e (t)∥ = 0, lim
t→∞

∥r (t)∥ = 0, and lim
t→∞

∥∥∥θ̂ (t)− ν (t)
∥∥∥ = 0.

■

In Theorem 1, the developed controller and adaptive update laws are shown to

ensure the closed-loop error system is bounded and achieves the tracking objective. By

Assumption 2.2, there exists a finite period of time in which the FE condition is satisfied.
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Then exponential convergence bounds on the tracking and parameter estimation errors

can be established as in the following theorem.

Theorem 2. Consider a system modeled by the dynamics in (2–1) that satisfies

Properties 1 and 2. Let Assumptions 2.1 and 2.2 hold. The controller in (2–10) and

higher-order adaptive update laws in (2–13) and (2–14) ensures the equilibrium point

z = 02n+2m of the closed-loop error system in (2–16) is globally exponentially stable.

Proof. Following the proof for Theorem 1, we can obtain (2–19). By Assumption 2.2, the

minimum eigenvalue of λmin

(∑N
i=1Ψ

T
f,iΨf,i

)
≥ γ is strictly positive for all t ∈ [T,∞).

Then (2–19) can be upper bounded as V̇ ≤ −k ∥r∥2−α ∥e∥2−k1γ ∥θ∗ − ν∥2−k2
∥∥∥θ̂ − ν

∥∥∥2
for all t ∈ [T,∞). Then using (2–17) yields

V̇ ≤ −2λV, ∀t ∈ [T,∞) ,

where λ ≜ 1
2c2

min (k, α, k1γ, k2) denotes a known constant. Invoking the Comparison

Lemma in [53, Lemma 3.4] and using (2–18) yields

∥z (t)∥ ≤
√
c2
c1

∥z (T )∥ exp (λT ) exp (−λt) ,∀t ∈ [T,∞) . (2–20)

From (2–18) and the fact that V̇ ≤ 0, V ∈ L∞ implies ∥z (t)∥ ≤
√

c2
c1
∥z (0)∥ for all t ∈ R≥0.

Then upper bounding (2–20) yields the exponential convergence bound

∥z (t)∥ ≤ c2
c1

∥z (0)∥ exp (λT ) exp (−λt) , (2–21)

for all t ∈ R≥0 and initial conditions z (0) ∈ R2n+2m. Hence, the equilibrium point

z = 02n+2m is globally exponentially stable.

■

2.4 Simulation

To demonstrate the performance of the developed method, a simulation study was

conducted on a two-link planar revolute robot with M : R2 → R2×2, Vm : R2 × R2 → R2×2,
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and F ∈ R2×2 modeled as [12]

M (q) =

 p1 + 2p3c2, p2 + p3c2

p2 + p3c2, p2

 , (2–22)

Vm (q, q̇) =

 −p3s2q̇2, −p3s2 (q̇1 + q̇2)

p3s2q̇1, 0

 , (2–23)

F =

 f1, 0

0, f2

 . (2–24)

In (2–22)–(2–24), the angular joint state q : R≥0 → R2 is defined as q ≜ [q1, q2]
T , c2

denotes cos (q2), and s2 denotes sin (q2). The nominal parameters of the two-link robot

model in (2–22)–(2–24) are p1 = 3.473, p2 = 0.196, p3 = 0.242, f1 = 5.3, and f2 = 1.1.

Three simulation experiments were conducted. Each simulation was conducted

for 30 s with initial conditions q (0) = [1.22,−0.52]T rad and q̇ (0) = [0, 0]T rad/sec. The

desired trajectory qd (t) ≜ [qd1, qd2]
T was selected as

qd ≜

 cos (0.5t)

2 cos (t)

 .
The first simulation was performed with a standard gradient-based adaptive design

given by [52]

τ ≜ kr + Y θ̂ + e,

˙̂
θ ≜ ΓY T r.

(2–25)

In the second simulation, the ICL adaptive design in [12] was used. The control input

was the same as in (2–25), and the implementable form of the ICL adaptive update law

was
˙̂
θ ≜ Γ

(
Y T r + k1

N∑
i=1

ΨT
f,i

(
τi −Ψf,iθ̂

))
, (2–26)
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Table 2-1. Simulation Parameters
Adaptation Law Γ k k1 k2 β γ

Standard Adaptive in [52] 20I5×5 - - - - -
ICL Adaptive in [12] 20I5×5 1 0.1 - 0.03 1
Developed Method 20I5×5 1 0.1 0.1 0.03 1

which yields the analytic form ˙̂
θ ≜ Γ

(
Y T r + k1

∑N
i=1Ψ

T
f,iΨf,iθ̃

)
. The developed higher-

order ICL-based adaptive control design in (2–10)–(2–12) was used in the third simula-

tion. In the second and third simulation, data was collected and stored during real-time

execution until the FE condition was satisfied. The FE condition was verified online by

checking if the minimum eigenvalue condition λmin

(∑N
i=1 Ψ

T
f,iΨf,i

)
≥ γ was satisfied,

where γ = 1. The ICL-based terms in the adaptation laws were not executed until the

FE condition was satisfied. To provide a comprehensive comparison between the per-

formance from each adaptive control scheme, the user-defined design constants were

selected equally in each case where applicable. The parameters used in each case are

shown in Table 2-1.

Figure 2-1 illustrates the evolution of the normalized parameter estimation error

trajectories for each case. To compare the performance between the methods, the

root mean square (RMS) of the parameter estimation error was calculated. The RMS

parameter estimation error corresponding to the standard adaptive, ICL adaptive, and

developed method were 3.12, 3.00, and 2.75, respectively. The developed method

had the lowest RMS parameter estimation error and is 11.77% and 8.38% lower

than the standard adaptive and ICL adaptive methods, respectively. The parameter

estimates over the duration of the simulation with the standard adaptive method did not

converge to the true parameters, as expected since only tracking error convergence

is guaranteed. In both simulations for the ICL adaptive and developed method, the

parameter estimates converged to the true parameters at approximately 10 s when

the FE condition was satisfied. However, the developed method exhibited improved

transient performance compared to the ICL adaptive method, which had high oscillatory

34



0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Standard Adaptive

ICL Adaptive

Developed Method

Figure 2-1. Evolution of the normalized parameter estimation error trajectories
∥∥∥θ̃∥∥∥ for

each simulation. The red line represents the simulation using the standard
adaptive method in (2–25). The blue line represents the simulation using the
ICL adaptive method in (2–26). The black line represents the simulation
using the developed method in (2–10)–(2–12).
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Figure 2-2. (top): Parameter estimation error θ̃ using the ICL adaptive method. (bottom):
Parameter estimation error using the developed method.
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Figure 2-3. Evolution of the normalized tracking error trajectory ∥e∥ for each simulation.
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Table 2-2. RMS Errors
RMS Standard Adaptive ICL Adaptive Developed Method
e [deg] 27.06 26.99 26.53

e0−10 [deg] 46.67 46.67 45.93
ess [deg] 3.07 1.99 1.03

θ̃ 3.12 3.00 2.75
θ̃0−10 5.19 5.19 4.76
θ̃ss 1.05 0.19 0.09

behavior. From 0–10 s, the RMS parameter estimation error for the ICL adaptive method

was 5.19, whereas the developed method had a 8.29% decreased RMS error of 4.76.

Additionally, the ICL adaptive simulation exhibited higher parameter estimation error

from approximately 3–6 s than the developed method. To better compare the transient

performance, the parameter estimation errors from the ICL adaptive and the developed

method are shown in Figure 2-2.

Figure 2-3 illustrates the evolution of the normalized tracking error trajectory

for each simulation. To compare the tracking performance, the RMS tracking error

was computed. The RMS tracking errors corresponding to the simulations for the

standard adaptive, ICL adaptive, and developed method are 27.06, 26.99, and 26.53

deg, respectively. The tracking error performance across all simulations were similar.

However, the tracking error trajectories in the simulations with the standard adaptive

and ICL adaptive methods have higher oscillatory behavior. The control input in (2–25)

is dependent on θ̂. Consequently, oscillatory behavior in the parameter estimates may

induce oscillations in the state trajectories, as seen from approximately 3–10 s.

Table 2-2 summarizes the simulations results in this section. In the leftmost column,

e, e0−10, and ess denote the RMS of the tracking error, tracking error from 0–10 s, and

steady-state tracking error, respectively. Additionally, θ̃, θ̃0−10, and θ̃ss denote the RMS of

the total, transient, and steady-state parameter estimation error, respectively.
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2.5 Conclusion

Motivated by the improved transient performance, this chapter developed a new

higher-order ICL-based adaptive update law. A general uncertain Euler-Lagrange dy-

namic system was considered. A Lyapunov-based analysis was used to guarantee the

tracking and parameter estimation objectives were achieved. Under an FE condition,

the closed-loop system yields global exponential stability of the tracking and parameter

identification errors. To demonstrate the efficacy of the developed method, comparative

simulations were performed on a two-link robot manipulator in Section 2.4. The simula-

tion study showed the developed higher-order ICL adaptation outperformed the standard

adaptive and the ICL adaptive schemes by 19.6% and 11.1%, respectively, in terms of

the root mean squared parameter estimation errors.

The model uncertainty in this chapter was assumed to have structure, i.e., the un-

certainty was LIP and assumed Assumption 2.1. Further motivation exists to investigate

scenarios that consider a more general class of non-LIP model uncertainties that are

examined in Chapter 3.
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CHAPTER 3
ACCELERATED GRADIENT APPROACH FOR NEURAL NETWORK-BASED

ADAPTIVE CONTROL OF NONLINEAR SYSTEMS

In Chapter 2, the development assumed the system’s uncertainties were LIP. How-

ever, in many practical scenarios, systems may have uncertainties in which there is no

structure (non-LIP) or the uncertainty is unknown. To compensate for non-LIP system

uncertainty, this chapter develops a new NN-based accelerated gradient adaptive con-

troller to achieve trajectory tracking in general nonlinear control affine systems subject

to non-LIP uncertainties. Higher-order accelerated gradient-based adaptation laws

are developed to generate real-time estimates of both the unknown ideal output- and

hidden-layer weights of a NN. A nonsmooth Lyapunov-based method is used to guar-

antee the closed-loop error system achieves global asymptotic tracking. Simulations

are conducted to demonstrate the improved performance from the developed method.

Results show the higher-order adaptation outperforms the standard gradient-based NN

adaptation by 32.3% in terms of the root mean squared function approximation error.

3.1 Problem Formulation

3.1.1 Dynamic Model and Control Objective

Consider a control-affine nonlinear system modeled as

ẋ = f (x) + u, (3–1)

where x : R≥0 → Rn denotes the state, f : R → Rn denotes the unknown differentiable

drift dynamics, and u : R≥0 → Rn denotes a control input. The control objective is to

track a user-defined desired trajectory xd : R≥0 → Rn despite uncertainty of the drift

dynamics in (3–1). Note that, unlike Chapter 2, the system uncertainties considered

in this chapter are non-LIP and do not satisfy Assumption 2.1. To quantify the control

objective, the tracking error e : R≥0 → Rn is defined as

e ≜ x− xd. (3–2)
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The desired trajectory and its time derivative are assumed to be continuous and

bounded, i.e., xd ∈ Ω and ẋd ∈ L∞, for all t ∈ R≥0, where Ω ⊂ Rn denotes a known

compact set.

3.2 Control Development

3.2.1 Neural Network Function Approximation

NN function approximation methods are well-suited for systems with unknown

or unstructured uncertainties, i.e., the uncertainty does not satisfy the typical LIP

assumption (Assumption 2.1) in adaptive control (cf., [1, 2, 4]). To compensate for the

unknown drift dynamics in (3–1), a NN-based feedforward estimate of the drift dynamics

is introduced in this section. Let the NN architecture Φ : Rn × R(L+1)×n × R(n+1)×L → Rn

be defined as Φ (xd,W, V ) ≜ W Tσ
(
V Txd

)
, where xd ≜

[
xTd , 1

]T ∈ Rn+1 denotes a

concatenated state vector to account for weight biases, W ∈ R(L+1)×n denotes the

output-layer weight matrix, V ∈ R(n+1)×L denotes the hidden-layer weight matrix,

σ : Rn → RL+1 denotes the vector of activation functions, and L ∈ Z>0 denotes the

user-defined number of neurons in the hidden-layer. The vector of activation functions

can be composed of various activation functions, and hence, may be represented as

σ ≜ [ς1, . . . , ςL, 1]
T , where ςi : R → R, for all i ∈ {1, . . . , L}, denotes a piecewise

continuously differentiable activation function. Let C (Ω) denote the space where

f : Ω → Rn is continuous. The universal function approximation theorem in [54, Thm

3.2] states the function space of NNs are dense in C (Ω). Then for any f ∈ C (Ω)

and prescribed ε ∈ R>0, there exists a constant L ∈ Z>0 and ideal weight matrices

W ∗ ∈ R(L+1)×n and V ∗ ∈ R(n+1)×L such that sup
xd∈Ω

∥f (xd)− Φ (xd,W
∗, V ∗)∥ ≤ ε. Then the

unknown drift dynamics in (3–1) is modeled as

f (xd) = W ∗Tσ
(
V ∗Txd

)
+ ε (xd) , ∀xd ∈ Ω, (3–3)
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where ε : Rn → Rn denotes the unknown bounded function approximation error. The

function approximation error is bounded such that sup
xd∈Ω

∥ε (xd)∥ ≤ ε. To facilitate the

subsequent development, the following assumption is made.

Assumption 3.1. [55, Assumption 9.1] The ideal NN weights can be bounded as

∥W ∗∥F ≤ W and ∥V ∗∥F ≤ V , where W,V ∈ R>0 are known constants.

3.2.2 Control Input and Weight Adaptation Laws

This section introduces the design of the controller and the higher-order accelerated

gradient-based NN weight adaptation laws. The higher-order adaptation scheme is

composed of two coupled first-order adaptation laws is used to estimate the NN weights

in real-time. Based on the subsequent stability analysis, the higher-order adaptation

laws for the output-layer weight estimate are designed as

˙̂ω ≜ proj
(
Γωσ

(
V̂ Txd

)
eT
)
, (3–4)

˙̂
W ≜ −proj

(
ΓωΓW W̃

)
, (3–5)

where ω̂ : R≥0 → R(L+1)×n and Ŵ : R≥0 → R(L+1)×n denote an auxiliary and actual

estimate of W ∗, respectively, Γω,ΓW ∈ R(L+1)×(L+1) denote user-defined positive definite

learning gain matrices, and W̃ : R≥0 → R(L+1)×n is defined as

W̃ ≜ Ŵ − ω̂. (3–6)

The operator proj (·) in (3–4) and (3–5) denotes the projection operator as defined in [1,

eq. E.2] and is used to ensure the weight estimates remain bounded, i.e., ω̂ (t) , Ŵ (t) ∈

W for all t ∈ R≥0, where W ≜
{
w ∈ R(L+1)×n : ∥w∥F ≤ W

}
denotes a known convex

set and W is known by Assumption 3.1. The higher-order adaptation laws for the

hidden-layer weight estimate are designed as

˙̂ν ≜ proj
(
Γνxde

T Ŵ Tσ′
(
V̂ Txd

))
, (3–7)
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˙̂
V ≜ −proj

(
ΓνΓV Ṽ

)
, (3–8)

where ν̂ : R≥0 → R(n+1)×L and V̂ : R≥0 → R(n+1)×L denote an auxiliary and actual

estimate of V ∗, respectively, Γν ,ΓV ∈ R(n+1)×(n+1) denote user-defined positive definite

learning gain matrices, and Ṽ : R≥0 → R(n+1)×L is defined as

Ṽ ≜ V̂ − ν̂. (3–9)

Similar to (3–4) and (3–5), the projection operator is used to ensure ν̂ (t) , V̂ (t) ∈ V for

all t ∈ R≥0, where V ≜
{
v ∈ R(n+1)×L : ∥v∥F ≤ V

}
denotes a convex set. Based on the

subsequent stability analysis, the control input is designed as

u ≜ ẋd − kee− kssgn (e)− ρ (∥e∥) e− Ŵ Tσ
(
V̂ Txd

)
+ µ, (3–10)

where ke, ks ∈ R>0 denote user-defined constants, sgn (·) denotes the vector signum

function, and ρ : R≥0 → R≥0 denotes a known strictly increasing function that satisfies

∥f (x)− f (xd)∥ ≤ ρ (∥e∥) ∥e∥ for all x ∈ Rn and xd ∈ Ω [56, Lem. 5]. The auxiliary term

µ : R≥0 → Rn in (3–10) is designed to cancel cross-terms introduced from higher-order

adaptation in the subsequent analysis and is defined as

µ ≜ 2W̃ Tσ
(
V̂ Txd

)
+ 2Ŵ Tσ′

(
V̂ Txd

)
Ṽ Txd. (3–11)

3.2.3 Closed-Loop Error System

To facilitate the subsequent stability analysis, the closed-loop error system is

developed in this section. Let

ω̃∗ ≜ W ∗ − ω̂, (3–12)

W̃ ∗ ≜ W ∗ − Ŵ , (3–13)

ν̃∗ ≜ V ∗ − ν̂, (3–14)
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Ṽ ∗ ≜ V ∗ − V̂ , (3–15)

where ω̃∗ : R≥0 → R(L+1)×n and ν̃∗ : R≥0 → R(n+1)×L denote the weight estimation

errors between the auxiliary weight estimates and ideal weights for the output- and

hidden-layers, respectively, and W̃ ∗ : R≥0 → R(L+1)×n and Ṽ ∗ : R≥0 → R(n+1)×L denote

the weight estimation errors between the actual weight estimates and ideal weights for

the output- and hidden-layers, respectively. Taking the time derivative of (3–2), adding

and subtracting f (xd), and substituting in (3–1) and (3–3), the open-loop error system

can be expressed as

ė = f (x)− f (xd) +W ∗Tσ
(
V ∗Txd

)
+ ε (xd) + u− ẋd. (3–16)

Substituting (3–10) into (3–16) yields the closed-loop error system

ė = f (x)− f (xd) +W ∗Tσ
(
V ∗Txd

)
+ ε (xd)

− Ŵ Tσ
(
V̂ Txd

)
− kee− kssgn (e)− ρ (∥e∥) e+ µ. (3–17)

The first-order Taylor’s series approximation of σ
(
V ∗Txd

)
yields [31, eq. (22)]

σ
(
V ∗Txd

)
= σ

(
V̂ Txd

)
+ σ′

(
V̂ Txd

)
Ṽ ∗Txd +O2

(
Ṽ ∗Txd

)
, (3–18)

where σ′ : RL → R(L+1)×L denotes the gradient of the vector of activation functions (i.e.,

σ′ (y) ≜ ∂σ
∂z

(z) |z=y ∀y ∈ RL), and O2 (·) denotes higher-order terms in the first-order

Taylor series approximation.1 Adding and subtracting the terms W ∗Tσ
(
V̂ Txd

)
and

Ŵ Tσ′
(
V̂ Txd

)
Ṽ ∗Txd in (3–17) and using (3–18) yields the closed-loop error system

ė = χ+ Ŵ Tσ′
(
V̂ Txd

)
Ṽ ∗Txd + W̃ ∗Tσ

(
V̂ Txd

)
− kee− kssgn (e)− ρ (∥e∥) e+ µ, (3–19)

1 Given suitable functions f and g, the notation f (x) = Ok (g (x)) means that there ex-
its constants c, x0 ∈ R>0 such that ∥f (x)∥ ≤ c ∥g (x)∥k for all x ≥ x0.
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where χ : R≥0 → Rn denotes an auxiliary function defined as χ ≜ f (x) − f (xd) +

W̃ ∗Tσ′
(
V̂ Txd

)
Ṽ ∗Txd +W ∗TO2

(
Ṽ ∗Txd

)
+ ε (xd).

3.3 Stability Analysis

The closed-loop control design introduced in Section 3.2 employs a discontinuous

robust sliding mode term and may have potential discontinuities in σ′ depending on the

choice of activation functions (e.g., ReLU activation functions). As a result, the closed-

loop system is nonsmooth and does not admit classical solutions. Hence, a nonsmooth

Lyapunov-based analysis is used to analyze generalized solutions of the resulting

closed-loop system and ensure the tracking objective is achieved [48] (cf., [1, Thm.

A.8] for LaSalle-Yoshizawa invariance principles for smooth nonautonomous systems).

Specifically, the switching analysis in [35] for NN-based adaptive control is adopted

to model the closed-loop system as a state-dependent switched system composed

of a finite collection of smooth functions. To facilitate the subsequent analysis, let

ϱ ∈ P denote a switching index, where P ⊂ Z≥0 denotes a set of possible switching

indices. Then the NN function approximation in (3–3) can be represented as f (xd) =

W ∗Tσϱ
(
V ∗Txd

)
+ εϱ (xd), where xd 7→ σϱ is smooth for each ϱ ∈ P with the corresponding

function reconstruction error εϱ (xd). Additionally, the functions σ′, χ, and µ can be

represented by the switched functions σ′
ϱ, χϱ, and µϱ, respectively, where the switched

functions are continuous for each ϱ ∈ P. Then the closed-loop error system in (3–19)

and the adaptation laws in (3–4) and (3–7) can be represented as

ė = χϱ + Ŵ T σ̂′
ϱṼ

∗Txd + W̃ ∗T σ̂ϱ − kee− kssgn (e)− ρ (∥e∥) e+ µϱ, (3–20)

˙̂ω = proj
(
Γωσ̂ϱe

T
)
, (3–21)

˙̂ν = proj
(
Γνxde

T Ŵ T σ̂′
ϱ

)
, (3–22)
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for all ϱ ∈ P, where the shorthand notation σϱ = σϱ
(
V ∗Txd

)
, σ̂ϱ = σϱ

(
V̂ Txd

)
,

and σ̂′
ϱ = σ′

ϱ

(
V̂ Txd

)
is introduced for notional brevity. It is assumed that the bound

sup
xd∈Ω,ϱ∈P

∥εϱ (xd)∥ ≤ ε is satisfied. By the use of the projection algorithm in (3–5)

and (3–8), the output- and hidden-layer weight estimates can be upper bounded as∥∥∥Ŵ (t)
∥∥∥
F

≤ W and
∥∥∥V̂ (t)

∥∥∥
F

≤ V for all t ∈ R≥0. Hence, using (3–13), (3–15), and

Assumption 3.1, it follows that
∥∥∥W̃ ∗ (t)

∥∥∥
F
≤ 2W and

∥∥∥Ṽ ∗ (t)
∥∥∥
F
≤ 2V , for all t ∈ R≥0.

Moreover, since xd, V̂ ∈ L∞ and the fact that σ′
ϱ and O2

ϱ are continuous, it follows that σ′
ϱ

and O2
ϱ can be upper bounded by known constants for all ϱ ∈ P. Then χϱ can be upper

bounded as

∥χϱ∥ ≤ c1 + c2 ∥e∥+ ρ (∥e∥) ∥e∥ , ∀ϱ ∈ P , (3–23)

where c1, c2 ∈ R>0 are known constants, and ρ (·) was defined previously in (3–10).

For notational brevity, let Ψ ∈ Z>0 be defined as Ψ ≜ n +

2n (L+ 1) + 2L (n+ 1). Let the concatenated state be defined as z ≜[
eT , vec

(
W̃
)T

, vec (ω̃∗)T , vec
(
Ṽ
)T

, vec (ν̃∗)T
]T

∈ RΨ, and let ż = hϱ (z), for all

ϱ ∈ P, denote a collection of subsystems, where hϱ : RΨ → RΨ. Then the corresponding

switched system is represented as

ż = hp(z) (z) , (3–24)

where z : R≥0 → RΨ denotes a Filippov solution to (3–24), p : RΨ → P denotes a

state-dependent switching signal, and hϱ (z) is defined as

hϱ (z) ≜



gcl

vec
(
Γωσ̂ϱe

T + proj
(
ΓωΓW W̃

))
−vec

(
proj

(
Γωσ̂ϱe

T
))

vec
(
Γνxde

T Ŵ T σ̂′
ϱ + proj

(
ΓνΓV Ṽ

))
−vec

(
proj

(
Γνxde

T Ŵ T σ̂′
ϱ

))


,
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for all ϱ ∈ P, where gcl ≜ χϱ+Ŵ
T σ̂′

ϱṼ
∗Txd+W̃

∗T σ̂ϱ−kee−kssgn (e)−ρ (∥e∥) e+µϱ. In the

following theorem, nonsmooth Lyapunov-based analysis techniques developed in [48]

are used to establish invariance properties of (3–24) to ensure the tracking objective is

achieved.

Theorem 3. Consider a system modeled with the dynamics in (3–1) and let Assumption

3.1 hold. Then the control input in (3–10) and higher-order weight adaptation laws

in (3–4), (3–5), (3–7), and (3–8) ensure global asymptotic tracking in the sense that

lim
t→∞

∥e (t)∥ = 0, lim
t→∞

∥∥∥vec
(
W̃
)∥∥∥ = 0, and lim

t→∞

∥∥∥vec
(
Ṽ
)∥∥∥ = 0, provided the following

sufficient gain conditions are satisfied

ks > c1, ke > c2, (3–25)

where c1 and c2 are known constants defined in (3–23).

Proof. Consider a candidate common Lyapunov function VL : RΨ → R≥0 defined as

VL (z) ≜
1

2
eT e+

1

2
vec

(
W̃
)T (

IL+1 ⊗ Γ−1
ω

)
vec

(
W̃
)
+

1

2
vec (ω̃∗)T

(
IL+1 ⊗ Γ−1

ω

)
vec (ω̃∗)

+
1

2
vec

(
Ṽ
)T (

In+1 ⊗ Γ−1
ν

)
vec

(
Ṽ
)
+

1

2
vec (ν̃∗)T

(
In+1 ⊗ Γ−1

ν

)
vec (ν̃∗) , (3–26)

which satisfies the inequality α (∥z∥) ≤ VL (z) ≤ α (∥z∥), where α, α : R≥0 → R≥0

are continuous positive definite functions. Let Fϱ : RΨ ⇒ RΨ denote the Filippov

regularization of (3–24) and be defined as Fϱ ≜ K [hϱ] (z), where the calculus of K [·]

is defined in [57]. Then the generalized time derivative of (3–26) can be computed as

V̇ L ≜ max
p∈∂VL(z)

max
q∈F ′

ϱ(z)
pT q [48, Def. 3], where F ′

ϱ (z) ⊇ Fϱ (z) denotes a bound on the

regularization of (3–24), and ∂VL denotes Clarke’s generalized gradient of VL [58, pp.

39]. Since z 7→ VL is continuously differentiable, ∂VL (z) = {∇VL (z)}. Additionally, the

time derivative of VL exists for almost all time, i.e., V̇L (z (t))
a.e.
∈ V̇ L (z (t)), where the

notation
a.e.
(·) denotes the relation holds for almost all time.
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Taking the generalized time derivative of (3–26), using (3–6), (3–9), and (3–12)–(3–

15), and performing some algebraic manipulation yields2

V̇ L = eTK [ė] + vec
(
−W̃ ∗ − 2W̃

)T
vec

(
Γ−1
ω K

[
˙̂ω
])

+ vec
(
−Ṽ ∗ − 2Ṽ

)T
vec

(
Γ−1
ν K

[
˙̂ν
])

+ vec
(
W̃
)T

vec
(
Γ−1
ω K

[
˙̂
W
])

+ vec
(
Ṽ
)T

vec
(
Γ−1
ν K

[
˙̂
V
])
. (3–27)

Substituting (3–5), (3–8), and (3–20)–(3–22) into (3–27) yields

V̇ L = eT
(

K [χϱ]− kee− ksK [sgn] (e)− ρ (∥e∥) e− 2W̃ TK [σ̂ϱ]− 2Ŵ TK
[
σ̂′
ϱ

]
Ṽ Txd

)
+ eTK [µϱ]− vec

(
W̃
)T

vec
(

K [proj]
(
ΓW W̃

))
− vec

(
Ṽ
)T

vec
(

K [proj]
(
ΓV Ṽ

))
.

(3–28)

Since χϱ, σ̂ϱ, and σ̂′
ϱ for all ϱ ∈ P are continuous functions, K [χϱ] = {χϱ},

K [σ̂ϱ] = {σ̂ϱ}, and K
[
σ̂′
ϱ

]
=
{
σ̂′
ϱ

}
for all ϱ ∈ P. The projection algorithm in (3–4),

(3–5), (3–7), and (3–8) ensures the states in (3–6) and (3–9) can be bounded as∥∥∥W̃ (t)
∥∥∥
F

≤ 2W and
∥∥∥Ṽ (t)

∥∥∥
F

≤ 2V , for all t ∈ R≥0, respectively. Lemma E.1 in [1]

states −
(
θ∗ − θ̂

)T
Mproj (y) ≤ −

(
θ∗ − θ̂

)T
My for all θ∗, θ̂ ∈ Θ ⊂ Rm, M ∈ Rm×m, and

y ∈ Rm, where M denotes a positive definite matrix, and Θ denotes a convex set. Note

that K [proj] (y) computes the set of convex combinations of proj (y) and y at the points

of discontinuity. Therefore −
(
θ∗ − θ̂

)T
MK [proj] (y) ≤ −

(
θ∗ − θ̂

)T
My, and hence, the

terms with the proj (·) operator in (3–28) can be bounded as

−vec
(
W̃
)T

vec
(

K [proj]
(
ΓW W̃

))
≤ −vec

(
W̃
)T

vec
(
ΓW W̃

)
, (3–29)

−vec
(
Ṽ
)T

vec
(

K [proj]
(
ΓV Ṽ

))
≤ −vec

(
Ṽ
)T

vec
(
ΓV Ṽ

)
. (3–30)

2 Given matrices A ∈ Rp×q , B ∈ Rq×r, and C ∈ Rr×s, vec (ABC) =
(
CT ⊗ A

)
vec (B)

[59, Prop. 7.1.9].
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Then substituting µϱ into (3–28), using (3–23), (3–29), (3–30), and the facts that

eTK [sgn (e)] = {∥e∥1} and −ks ∥e∥1 ≤ −ks ∥e∥, (3–28) can be bounded as

V̇ L

a.e.
≤ − (ke − c2) ∥e∥2 − λW

∥∥∥W̃∥∥∥2
F
− λV

∥∥∥Ṽ ∥∥∥2
F
− (ks − c1) ∥e∥ , (3–31)

where λW ∈ R>0 and λV ∈ R>0 denote the known minimum eigenvalues of ΓW and ΓV ,

respectively. Provided the sufficient gain conditions in (3–25) are satisfied, (3–31) can

be upper bounded as V̇ L

a.e.
≤ −λ ∥e∥2 − λW

∥∥∥W̃∥∥∥2
F
− λV

∥∥∥Ṽ ∥∥∥2
F

, where λ ∈ R>0 denotes

a known constant. From (3–26) and the fact that V̇ L ≤ 0, it follows that VL ∈ L∞,

which implies z ∈ L∞, and hence, e, W̃ , ω̃∗, Ṽ , ν̃∗ ∈ L∞. Using (3–2), the fact that

e, xd ∈ L∞ implies x ∈ L∞. Using the projection algorithm in (3–4), (3–5), (3–7), and

(3–8) ensures ω̂, Ŵ , ν̂, V̂ ∈ L∞. Using (3–13) and (3–15), the fact that Ŵ , V̂ ∈ L∞

implies W̃ ∗, Ṽ ∗ ∈ L∞, respectively. Using (3–4), the fact that V̂ , xd, e ∈ L∞ implies

˙̂ω ∈ L∞. Using (3–7), the fact that xd, e, Ŵ , V̂ ∈ L∞ implies ˙̂ν ∈ L∞. Using (3–5) and

(3–8), the fact that W̃ , Ṽ ∈ L∞ implies ˙̂
W,

˙̂
V ∈ L∞, respectively. Using (3–11), the fact

that W̃ , Ŵ , Ṽ , xd ∈ L∞ implies µ ∈ L∞. Using (3–10), the fact that xd, ẋd, e, Ŵ , V̂ , µ ∈ L∞

implies u ∈ L∞. Invoking the LaSalle-Yoshizawa theorem extension for nonsmooth

systems in [48, Thm. 2], lim
t→∞

∥e∥ = 0, lim
t→∞

∥∥∥vec
(
W̃
)∥∥∥ = 0, and lim

t→∞

∥∥∥vec
(
Ṽ
)∥∥∥ = 0.

■

3.4 Simulation

Comparative simulations were conducted on the two-state nonlinear system

described in [60] to demonstrate the performance of the developed method. The

unknown drift dynamics in (3–1) was modeled as

f (x) =

 −x1 + x2

−1
2
x1 − 1

2
x2
(
1− (cos (2x1) + 2)2

)
 , (3–32)

where x ≜ [x1, x2]
T ∈ R2 denotes the system state.
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Two simulation experiments were performed, where each simulation was conducted

for 30 s with initial condition x (0) = [1, 0.5]T . The desired trajectory xd ≜ [xd,1, xd,2]
T was

selected as xd (t) =

 sin (t)

cos (t)

. The NN used in each simulation had L = 20 neurons

in the hidden-layer and contained sigmoid activation functions. The first simulation was

performed with a baseline NN adaptive controller which used a typical gradient-based

adaptive scheme given by

˙̂
W ≜ ΓW σ̂e

T , (3–33)

˙̂
V ≜ ΓV xde

T Ŵ T σ̂′, (3–34)

u ≜ ẋd − Ŵ T σ̂ − kee− kssgn (e) . (3–35)

The second simulation was performed with the developed method in (3–4), (3–5), (3–7),

(3–8), and (3–10). In both simulations, the hidden- and output-layer weight estimates

were initialized randomly from the normal distribution N (0, 1). The parameters used in

each simulation are summarized in Table 3-1.

Table 3-1. Simulation Parameters

Adaptation Law Γω Γν ΓW ΓV ke ks

Standard NN Adaptive - - 50I21 50I3 5 0.5

Developed Method 50I21 50I3 0.9I21 0.9I3 5 0.5
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Table 3-2. RMS Tracking Error, Control Effort, and Function Approximation Error

RMS Standard NN Adaptive Developed Method

e 0.0674 0.0457

u 2.6881 2.5320

f̃ 1.4546 0.9845

eτ 0.3223 0.2169

uτ 6.8375 5.2455

f̃ τ 6.3851 3.4789

Table 3-2 summarizes the performance in each simulation. In the leftmost column,

e, u, and f̃ denote the root mean square (RMS) tracking error, control effort, and

function approximation error, respectively. The subscript (·)τ denotes the transient

period before the tracking errors reach a steady-state. As shown in Figure 3-1, the

tracking errors converge to the origin and reach steady-state after approximately 1.3 s.

The RMS tracking error for the standard NN and developed methods were 0.0674 and

0.0457, respectively. The developed method had a 32.2% decrease in the RMS tracking

error with a 5.8% decrease in the RMS control effort in comparison to the standard NN

adaptive method.

Figure 3-2 illustrates the normalized function approximation error for each sim-

ulation. The simulation with the developed method showed a 32.3% decrease in the

RMS function approximation error in comparison to the simulation with the standard NN

adaptive controller. The improved transient performance from the accelerated gradient

approach in the developed method is evident as the RMS function approximation error is

45.5% lower than the errors with the standard NN adaptation during the transient period

from 0 to approximately 1.3 s. Additionally, the RMS tracking error and control effort

showed a 32.8% and 23.3% decrease, respectively, during the transient period using

the developed method. To better illustrate the improved transient performance from the
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Figure 3-1. Evolution of the normalized tracking errors ∥e∥. The simulation with the
typical gradient-based NN adaptation scheme in (3–33)–(3–35) is shown in
the dashed red line, and the simulation using the developed higher-order
NN-based adaptation scheme in (3–4), (3–5), (3–7), (3–8), and (3–10) is
shown in the solid blue line.

developed higher-order adaptation, Figure 3-3 illustrates the evolution of the output-layer

weight estimates. The weight estimates generated from the standard NN adaptation

and the developed method are shown in Figure 3-3a and Figure 3-3b, respectively.

The output-layer weight estimates from the standard NN adaptation exhibit oscillatory

behavior during the transient period from approximately 0–1.3 s. However, the weight

estimates from the developed method had improved transient performance as seen by
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Figure 3-2. Evolution of the normalized function approximation errors
∥∥∥f (xd)− f̂ (xd)

∥∥∥
for each simulation.

the reduction of the oscillatory components in the weight estimates, and hence, resulting

in improved real-time learning performance from the higher-order NN-based adaptation.

3.5 Conclusion

Recent connections in adaptive control to continuous-time analogues of Nesterov’s

accelerated gradient method have led to the development of new real-time adaptation

laws based on accelerated gradient methods. In Chapter 2, a data-driven accelerated

gradient-based adaptation law was for general uncertain Euler-Lagrange systems. How-

ever, the development and analysis in Chapter 2 assumed the system uncertainties sat-

isfied the LIP assumption in Assumption 2.1. This chapter extended the developments in
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Figure 3-3. (a) Evolution of the output-layer weight estimates using the standard NN
adaptation law in (3–33). (b) Evolution of the output-layer weight estimates
using the developed higher-order adaptation laws in (3–4) and (3–5).
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Chapter 2 by developing an accelerated gradient approach to design a higher-order NN-

based adaptive control scheme for trajectory tracking of general nonlinear control affine

systems subject to non-LIP uncertainties. A nonsmooth Lyapunov-based analysis was

performed to show the developed methods yields global asymptotic tracking. Compar-

ative simulations were conducted on a two-state nonlinear system to demonstrate the

improved performance from higher-order NN weight adaptation laws. The simulations

showed the developed higher-order adaptation outperformed the standard NN gradient

adaptive scheme and had a 32.3% decrease in the RMS function approximation error.
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CHAPTER 4
REAL-TIME MODULAR DEEP NEURAL NETWORK-BASED ADAPTIVE CONTROL OF

NONLINEAR SYSTEMS

In Chapter 3, an accelerated gradient-based NN adaptive controller was developed

for trajectory tracking in general uncertain nonlinear control affine systems. However,

the NN architecture in Chapter 3 is limited to NNs with only a single hidden layer. To

advance the developments of Chapter 3 to DNN architectures, this chapter focuses on

the development and analysis of DNN-based adaptive controller via Lyapunov-based

techniques. Specifically, in this chapter, a real-time DNN adaptive control architecture

is developed for uncertain control-affine nonlinear systems to track a time-varying

desired trajectory. A Lyapunov-based analysis is used to develop adaptation laws for

the output-layer weights and develop constraints for inner-layer weight adaptation laws.

Unlike existing works in neural network and DNN-based control, the developed method

establishes a framework to simultaneously update the weights of multiple layers for a

DNN of arbitrary depth in real-time. The real-time controller and weight update laws

enable the system to track a time-varying trajectory while compensating for unknown

drift dynamics and parametric DNN uncertainties. A nonsmooth Lyapunov-based

analysis is used to guarantee semi-global asymptotic tracking. Comparative numerical

simulation results are included to demonstrate the efficacy of the developed method.

4.1 Problem Formulation

4.1.1 System Dynamics

Consider a control-affine nonlinear dynamic system modeled as

ẋ = f (x) + g (x)u, (4–1)

where x : R≥0 → Rn denotes the state, f : Rn → Rn denotes unknown, locally

Lipschitz drift dynamics, g : Rn → Rn×m denotes the known control effectiveness
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matrix,1 and u : R≥0 → Rm denotes the control input. Similar to Chapter 3, the system

uncertainties considered in this chapter are non-LIP and do not satisfy Assumption

2.1. To facilitate the subsequent control design, the following assumption is made on

the control effectiveness matrix. The control effectiveness matrix g (x) is assumed

to be full-row rank for all x ∈ Rn. The right pseudo inverse of g (x) is denoted by

g+ : Rn → Rm×n, where g+ (·) ≜ gT (·)
(
g (·) gT (·)

)−1 is assumed to be bounded given a

bounded argument.

4.1.2 Control Objective

The control objective is to track a user-defined time-varying trajectory xd : R≥0 → Rn

despite unknown system drift dynamics. The desired trajectory and its time derivative

are assumed to be continuous and bounded, i.e., xd, ẋd ∈ L∞. The tracking objective is

quantified by the tracking error e defined in (3–2).

4.2 Control Design

4.2.1 Feedforward DNN Estimate

As previously discussed in Chapter 3.2.1, NN-based adaptive control architec-

tures are well-suited for uncertain or unstructured models, as in (4–1) where the drift

dynamics f (·) are unknown. In Chapter 3, the NN architecture considered is limited

to NNs with only a single hidden layer. The development and analysis in this chapter

considers fully-connected DNN architectures with an arbitrary number of hidden layers.

Using the universal function approximation property in [27], a DNN-based feedforward

estimate of the drift dynamics is developed in this section. Let Ω ⊂ Rn be a compact

simply connected set and define C (Ω) as the space where f : Ω → Rn is continuous.

The universal function approximation property states there exist ideal weights and basis

1 While the developed method does not account for an uncertain control effectiveness
matrix for simplicity and to better focus the result on the unique specific contributions,
the method in [33] can be used with the developed method to approximate the uncertain
control effectiveness matrix online.
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functions such that the drift dynamics f (x) ∈ C (Ω) can be represented as

f (x) = W ∗Tσ∗ (Φ∗ (x)) + ε (x) , (4–2)

where W ∗ ∈ RL×n denotes the unknown ideal output-layer weight matrix of the DNN,

σ∗ : Rp → RL denotes the unknown vector of ideal activation functions corresponding

to the output-layer of the DNN, L ∈ Z>0 denotes the user-defined number of neurons

used in the output-layer, ε : Rn → Rn denotes the unknown function reconstruction error,

and Φ∗ : Rn → Rp denotes the inner-layers of the DNN containing unknown ideal weight

matrices and activation functions. Specifically, the ideal inner DNN Φ∗ can be expressed

as

Φ∗ (x) ≜
(
V ∗T
k ϕ∗

k ◦ V ∗T
k−1ϕ

∗
k−1 ◦ ... ◦ V ∗T

1 ϕ∗
1

) (
V ∗T
0 x

)
, (4–3)

where k ∈ Z>0 denotes the user-defined number of inner-layers, V ∗
j ∈ RLj×Lj+1 for all

j ∈ {0, . . . , k} denotes the jth inner-layer ideal weight matrix, and ϕ∗
j : RLj → RLj for

all j ∈ {1, . . . , k} denotes the jth inner-layer vector of ideal activation functions, and the

symbol ◦ denotes function composition, e.g., (g ◦ h) (x) = g (h (x)). The user-selected

parameters Lj ∈ Z>0 for all j ∈ {1, . . . , k} denote the number of neurons in the jth

inner-layer. Note that L0 = n and Lk+1 = p.

Based on (4–2), the DNN feedforward estimate of the drift dynamics f̂ : Rn → Rn is

defined as

f̂ (x) ≜ Ŵ T σ̂
(
Φ̂ (x)

)
, (4–4)

where Ŵ : R≥0 → RL×n denotes the output-layer weight matrix estimate, σ̂ : Rp → RL

denotes the user-selected vector of activation functions, and Φ̂ : Rn → Rp denotes the

estimated inner-layers of the DNN. The inner-layer DNN estimate is defined as

Φ̂ (x) ≜
(
V̂ T
k ϕ̂k ◦ V̂ T

k−1ϕ̂k−1 ◦ ... ◦ V̂ T
1 ϕ̂1

)(
V̂ T
0 x
)
, (4–5)
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where V̂j : R≥0 → RLj×Lj+1 for all j ∈ {0, . . . , k} denotes the jth inner-layer estimated

weight matrix, and ϕ̂j : RLj → RLj for all j ∈ {1, . . . , k} denotes the jth inner-layer vector

of activation functions. The design of the update laws on the weight estimates Ŵ and

V̂j are subsequently defined. The weight estimate mismatch of the ideal output-layer

weight W̃ : R≥0 → RL×n and weight estimate mismatch of the ideal inner-layer weights

Ṽj : R≥0 → RLj×Lj+1 for all j ∈ {0, . . . , k} are defined as

W̃ ≜ W ∗ − Ŵ , (4–6)

Ṽj ≜ V ∗
j − V̂j. (4–7)

It is assumed there exist known constants W ∗, V ∗, σ∗, σ̂, ε ∈ R≥0 that upper bound the

unknown ideal weights W ∗, unknown ideal weights V ∗
j , unknown ideal bounded activa-

tion functions2 σ∗ (·), user-selected bounded activation functions σ̂ (·), and the function

reconstruction error ε (·) , respectively, as supx∈Ω ∥W ∗∥F ≤ W ∗, supx∈Ω,∀j
∥∥V ∗

j

∥∥
F
≤ V ∗,

supx∈Ω ∥σ∗ (·)∥ ≤ σ∗, supx∈Ω ∥σ̂ (·)∥ ≤ σ̂, and supx∈Ω ∥ε (·)∥ ≤ ε [37].

4.2.2 Control Development

Based on the subsequent stability analysis, the control input is designed as

u ≜ g+ (x)
(
ẋd − k1e− kssgn (e)− f̂ (x)

)
, (4–8)

where k1, ks ∈ R>0 are user-defined control gains, and sgn (·) denotes the signum

function. Based on the subsequent Lyapunov-based stability analysis, the output-layer

weight estimate update law ˙̂
W : R≥0 → RL×n is designed as

˙̂
W ≜ ΓW σ̂

(
Φ̂ (x)

)
eT , (4–9)

2 For some common activation functions, e.g., hyperbolic tangent functions, sigmoid
functions, radial basis functions, σ∗ = σ̂ = L.
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where ΓW ∈ RL×L denotes a user-defined positive definite gain matrix used to adjust the

learning rate of the output-layer weight matrix estimate.

Taking the time derivative of (3–2) and substituting in (4–1), (4–2), (4–4), and (4–8)

yields the closed-loop error system

ė = W ∗Tσ∗ (Φ∗ (x)) + ε (x)− k1e− kssgn (e)− Ŵ T σ̂
(
Φ̂ (x)

)
. (4–10)

In [33], the inner-layer weights of the DNN were held constant and only updated

discretely with data-driven learning algorithms. Common learning algorithms include

gradient descent variants (see [39, 40, 61] and [29, Ch. 8]). These algorithms often use

training data sets to update DNN weights through an optimization process in which the

algorithms seek to minimize a cost function. However, DNN training algorithms often

require large amounts of training data and high computational costs [38], making real-

time execution intractable. Motivated to execute real-time learning and allow flexibility in

user-selection of training algorithms while maintaining stability guarantees, we develop

modular inner-layer DNN weight estimate update laws (see [62] for single-hidden-layer

NNs).

For all j ∈ {0, . . . , k}, the jth inner-layer weight update law ˙̂
Vj : R≥0 → RLj×Lj+1 is

designed as

˙̂
Vj ≜ pj (t) νj (e, t)1{

V̂j≤∥V̂j∥
F
≤V̂j

}, (4–11)

where pj : R≥0 → {0, 1} denotes a switching signal that indicates the active inner-layer

weight estimate updates, 1{·} is the indicator function, V̂j, V̂j ∈ R are user-defined

constants where V̂j ≤ V ∗, and νj : Rn × R≥0 → RLj×Lj+1 denotes a user-defined function

that satisfies

∥νj∥F ≤ ρ (∥e∥) ∥e∥ , (4–12)

where ρ : Rn → Rn is a positive, globally invertible, and non-decreasing function.
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4.3 Stability Analysis

The stability of the closed-loop tracking error system in (4–10) is analyzed to show

the tracking objective is achieved in the following theorem.

Theorem 4. Consider a system modeled by the dynamics in (4–1) with the initial

condition x (0) ∈ Ω. Then the control input in (4–8), output-layer weight adaptation law

in (4–9), and the family of potential inner-layer weight adaptation laws that satisfy (4–11)

ensure the closed-loop error system in (4–10) yields semi-global asymptotic tracking in

the sense that lim
t→∞

∥e (t)∥ = 0, provided the following sufficient gain condition is satisfied

ks > W ∗
(
σ∗ + σ̂

)
+ ε+ 2V ∗ (k + 1) ρ

(√
α

α
∥z (0)∥

)
, (4–13)

where α, α ∈ R≥0 are known constants.

Proof. Let D ⊂ RΨ be a set containing z = 0Ψ×1 and Ω, where z : R≥0 → RΨ denotes a

concatenated state defined as z ≜

[
eT , vec

(
W̃
)T

, vec
(
Ṽ0

)T
, . . . , vec

(
Ṽk

)T ]T
,

and Ψ ≜ n (L+ 1) +
∑k

j=0 LjLj+1 is defined for notional brevity. Consider the candidate

Lyapunov function VL : D × R≥0 → R≥0 defined as

VL (z, t) ≜
1

2
eT e+

1

2
tr
(
W̃ TΓ−1

W W̃
)
+

1

2

k∑
j=0

tr
(
Ṽ T
j Ṽj

)
, (4–14)

which satisfies the inequality α ∥z∥2 ≤ VL (z, t) ≤ α ∥z∥2, where α, α ∈ R≥0 are

known constants. Let ζ : R≥0 → RΨ be a Filippov solution to the differential inclusion

ζ̇ ∈ K [h] (ζ, t), where ζ (t) = z (t), the calculus of K [·] is used to compute Filip-

pov’s differential inclusion as defined in [57], and h : RΨ × R≥0 → RΨ is defined

as h (ζ, t) ≜

[
ėT , vec

(
˙̃W
)T

, vec
(
˙̃V0

)T
, . . . , vec

(
˙̃Vk

)T ]T
. The general-

ized time-derivative of VL along the Filippov trajectories of ζ̇ = h (ζ, t) is defined by

˙̃VL (ζ, t) ≜
⋂

ζ∈∂VL(ζ,t)

ζT

 K [h] (ζ, t)

1

, where ∂VL (ζ, t) denotes Clarke’s generalized

gradient of VL (ζ, t) [63, Eq. 13]. Since VL (ζ, t) is continuously differentiable in ζ, then

∂VL (ζ, t) = {∇VL (ζ, t)}, where ∇ denotes the gradient operator. Additionally, the time
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derivative of VL exists almost everywhere (a.e.), i.e., V̇L (ζ, t)
a.e.
∈ ˙̃VL (ζ, t) for almost all

t ∈ R≥0.

Taking the generalized time derivative of (4–14), using the trace operator property3 ,

and substituting the closed-loop error system in (4–10), the output-layer adaptive update

law in (4–9), and the inner-layer adaptive update laws in (4–11) yields

˙̃VL ⊆ eT
(
W ∗Tσ∗ (Φ∗ (x)) + ε (x)− k1e− ksK [sgn (e)]− Ŵ TK

[
σ̂
(
Φ̂ (x)

)])
− eT W̃ TK

[
σ̂
(
Φ̂ (x)

)]
−

k∑
j=0

tr
(
K

[
Ṽ T
j pj (t) νj (t)1

{
V̂j≤∥V̂j∥

F
≤V̂j

}]) . (4–15)

Adding and subtracting eT
(
W ∗TK

[
σ̂
(
Φ̂ (x)

)])
in (4–15) yields

˙̃VL ⊆ eTW ∗Tσ∗ (Φ∗ (x)) + eT ε (x)− k1e
T e− kse

TK [sgn (e)]− eTW ∗TK
[
σ̂
(
Φ̂ (x)

)]
−

k∑
j=0

tr
(
K

[
Ṽ T
j pj (t) νj (t)1

{
V̂j≤∥V̂j∥

F
≤V̂j

}]) . (4–16)

By the definition of the calculus K [·], eTK [sgn (e)] = ∥e∥. Using (4–12), (4–16) can be

upper bounded as

V̇L
a.e.
≤ −∥e∥

(
ks −W ∗

(
σ∗ + σ̂

)
− ε− 2 (k + 1)V ∗ρ (∥e∥)

)
− k1 ∥e∥2 . (4–17)

To ensure ks > W ∗
(
σ∗ + σ̂

)
+ ε + 2 (k + 1)V ∗ρ (∥e∥), it is required that

∥e∥ < ρ−1

(
ks−W ∗(σ∗+σ̂)−ε

2(k+1)V ∗

)
, which implies ∥z∥ < ρ−1

(
ks−W ∗(σ∗+σ̂)−ε

2(k+1)V ∗

)
. The inequality in

(4–17) can be upper bounded as

V̇L
a.e.
≤ −k1 ∥e∥2 , ∀z ∈ D, (4–18)

3 For real column vectors a, b ∈ Rn, the trace of the outer product is equivalent to the
inner product, i.e., tr

(
baT
)
= aT b.
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where D ≜

{
z ∈ RΨ : ∥z∥ < ρ−1

(
ks−W ∗(σ∗+σ̂)−ε

2(k+1)V ∗

)}
. Then using (4–14) and (4–

16), VL is positive definite and non-increasing, which implies ∥z (0)∥ ≤
√

VL(0)
α

.

Therefore, it is sufficient to show ∥z (0)∥ <
√

α
α
ρ−1

(
ks−W ∗(σ∗+σ̂)−ε

2(k+1)V ∗

)
, which implies

S ≜

{
z ∈ D :

√
α
α
ρ−1

(
ks−W ∗(σ∗+σ̂)−ε

2(k+1)V ∗

)}
is the region where (4–18) holds, and yields the

sufficient gain condition in (4–13).

From (4–14) and (4–18), VL ∈ L∞, which implies z ∈ L∞, and hence, e, W̃ ∈ L∞.

Using (3–2) and (4–6) implies x ∈ L∞ and Ŵ ∈ L∞, respectively. Using (4–11) and

(4–12), e ∈ L∞ implies νj ∈ L∞, and by the use of the indicator function 1{
V̂j≤∥V̂j∥

F
≤V̂j

},

implies ˙̂
Vj ∈ L∞ for all j ∈ {0, . . . , k}. Using (4–5), the fact that x, V̂j ∈ L∞ implies

Φ̂ ∈ L∞. By design, ẋd, σ̂ ∈ L∞. Using (4–8), the fact that x, e, ẋd, Ŵ , σ̂ ∈ L∞ implies

u ∈ L∞. Using (4–9), the fact that σ̂, e ∈ L∞ implies ˙̂
W ∈ L∞. By the LaSalle-Yoshizawa

theorem extension for nonsmooth systems in [48] and [64], k1 ∥e∥2 → 0, which implies

∥e (t)∥ → 0 as t→ ∞.

■

4.4 Simulation

To demonstrate the performance of the developed method, simulations are per-

formed on the nonlinear system from [65], where the drift dynamics f (x) are modeled

by (3–32) and the control effectiveness is modeled by g (x) = diag [5, 3]. The desired

trajectory is xd = [3 cos (t) , 5 sin (t)]T . The initial condition is x (0) = [3, 0]T . The controller

gains are selected as ks = 0.5 and k = 7.

To illustrate the modularity of the architecture, two simulation studies are conducted

for 60 seconds, each with different inner-layer adaptation laws and structures imple-

mented. During the entire 60 seconds, the output-layer update law in (4–9) is active in

both studies. Due to the large number of weights in this system, only one inner-layer
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weight update law is active at a time.4 However, the selection of switching signals that

dictates when to update each inner-layer DNN may be arbitrarily selected. Computa-

tional resources may be allocated to update a subset of the inner-layer weights, or all

inner-layers may be updated arbitrarily at a time. Additionally, inner-layer weights may

dropout, or be selectively turned off to prevent over-fitting [46].

To reduce the computational load and show the flexibility in selection of the switch-

ing signals to update each inner-layer DNN weight estimate, in both simulation studies,

the switching signal is arbitrarily designed as

pj (t) =


1, t ∈ [10j, 10 (j + 1)] ,

0, else,
(4–19)

for all j ∈ {0, . . . , 5}. Based on the switching signals in (4–19), each inner-layer weight

update law is active for 10 seconds during the duration of the simulation and is activated

in consecutive order, i.e., V̂0 is active from 0 to 10 seconds, V̂1 is active from 10 to 20

seconds, etc. If the update law is not active (i.e., pj (t) = 0), then its associated weights

are not updated.

The DNN is composed of 6 layers and the hyperbolic tangent function is the

activation function for each neuron. Layers 1-6 have 12, 10, 15, 15, 12, and 20 neurons,

respectively. The outer-layer weight learning parameter is set to ΓW = 10 · 1L×L, where

1n×m is an n ×m matrix of ones. The bounds on the inner-layer weights are V̂j = 10−6

and V̂j = 250 for all j ∈ {0, 1, . . . , 5} . The initial conditions for the output-layer weight

4 There are 955 individual weights in the simulation. As guaranteed by the analysis,
the developed method can update each layer separately, i.e., a subset of the total num-
ber of weights are updated at a given time. It may be computationally burdensome for
some systems to update a large number of weights online. One purpose of this simula-
tion is to highlight the developed method’s ability update different DNN layers separately.
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estimate Ŵ and the inner-layer weight estimates V̂j are randomly selected from a

uniform distribution from [−0.5, 0.5].

Various update laws for ˙̂
V0−5 can be selected and designed for learning the inner-

layer DNN weights while guaranteeing tracking performance. The constraints in (4–

12) provide general guidelines and enable the user to select or design update laws

accordingly, such as gradient tuning laws based on back-propagated errors [66] or a

Hebbian tuning law [67].

In the first simulation study (Study 1), the inner-layer weight update laws, which are

heuristically selected and inspired by the methods in [68] and [69], are selected as

νj = ΓVj
e · re

((
tanh ◦ ϕ̂−1

j ◦ V̂ +T
j ϕ̂−1

j+1 ◦ · · · ◦ V̂ +T
5 σ̂−1

)(
Ŵ+T ẋ

))
V̂j, (4–20)

for all j ∈ {0, 1, . . . , 5}, where the inner-layer weight learning parameters are set to ΓVj
=

1000 ·1Lj×2, V̂ +
j is the right-pseudo inverse of V̂j, the re (·) operator outputs element-wise

the real component of each entry in V̂j, and ẋ ∈ Rn denotes the numerically generated

state derivative. Due to the projection bounds V̂j and V̂j, V̂ +
j exists and is bounded. The

selected update law satisfies the modular adaptive control constraint in (4–12).

Figure 4-1 shows the tracking error e ≜ [e1, e2]
T with the inner-layer DNN weight

update law in (4–20). From initialization to approximately 30 seconds, the system ex-

hibits poor tracking performance with oscillatory behavior. Poor controller performance

is likely due to randomly initialized weights which signifies no a priori model knowledge

in the drift dynamic approximation. However, as each subsequent inner-layer weight

matrix V̂0−5 is updated, the tracking performance improves and the amplitude of the

error signals decreases, which indicates the DNNs improved approximation of the drift

dynamics.

Figure 4-2 shows the online adjustment of the inner-layer weights with the inner-

layer DNN weight update law in (4–20). Each set of weights is divided by a set of black
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Figure 4-1. Tracking error e in the system with the inner-layer DNN weight update law in
(4–20). The vertical lines denote when a new inner-layer update law is
activated.

dashed lines. Note that some of the weights are unaffected by the indicator function

since the upper bounds V̂j are sufficiently large. However, the weights of layers 3 and

4 are affected by the indicator function. When layers 3 and 4 are activated, their weight

estimates quickly reach the bounds defined by the indicator function.

To provide a comparison in the selection of inner-layer weight update laws, a

second simulation study (Study 2) is performed where the DNN is structured similarly

as the first simulation study, and each inner-layer update is activated according to the

switching signal in (4–19). To illustrate the modularity in the selection of inner-layer

weight update laws, various inner-layer weight update laws are arbitrarily selected to
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Figure 4-2. Value of the active DNN inner-layer weight estimates V̂0−5 when each
inner-layer update law is active with the inner-layer DNN weight update law
in (4–20). The vertical lines denote when a new inner-layer update law is
activated. Based on the switching signals in (4–19), V̂0 is active from 0 to 10
seconds, V̂1 is active from 10 to 20 seconds, etc.

satisfy (4–12) and are selected as

ν0 = ΓV0e
− e21

2 e− e22
2 ∥e∥ ,

ν1 = ΓV1e
− e21

2 tanh (e2) ∥e∥ ,

ν2 = ΓV2tanh (e1) tanh (e2) ∥e∥ ,

ν3 = ΓV3

1

1 + e−e1
e− e22

2 ∥e∥ ,

ν4 = ΓV4tanh (e1)
1

1 + e−e2
∥e∥ ,

ν5 = ΓV5

1

1 + e−e1
tanh (e2) ∥e∥ , (4–21)
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where the inner-layer weight learning parameters are set to ΓVj
= 1000 · 1Lj×2 for all

j ∈ {0, 1, . . . , 5}.

Figure 4-3 shows the tracking error e with the inner-layer DNN weight update law

in (4–21). Similar to Study 1, the tracking error results in Figure 4-3 show poor tracking

performance at the start of the simulation. However, as the simulation progresses and

each subsequent inner-layer is activated, the tracking performance improves.
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Figure 4-3. Tracking error e in the system with inner-layer DNN weight update law in
(4–21). The vertical lines denote when a new inner-layer update law is
activated.

Table 4-1 shows the root mean squared (RMS) error and standard deviation (SD)

of the tracking error. The leftmost column indicates the active inner-layer weight law,

e.g., the first row is data collected while the V̂0 update law is active. Study 1 uses the
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heuristically selected update law in (4–20), and the RMS error and SD corresponding

to V̂0 are 0.735 and 0.145, respectively. Study 2 uses the update law in (4–21), and the

RMS error and SD are 0.705 and 0.145, respectively. In Study 1, as each subsequent

inner-layer update law is activated, the tracking performance improves and results in an

RMS error and SD of 0.289 and 0.039, respectively. Although a similar trend is seen in

Study 2, the inner-layer update law in Study 1 outperforms Study 2 which indicates the

inner-layer update law yielded better function approximation performance, as expected.

However, the tracking objective is achieved in both studies, despite different inner-layer

update laws, as guaranteed by the analysis.

Table 4-1. RMS and SD Error

Active V̂j
Study 1 Study 2

RMS Error SD Error RMS Error SD Error
V̂0 0.735 0.145 0.705 0.145
V̂1 0.727 0.142 0.700 0.149
V̂2 0.710 0.136 0.651 0.137
V̂3 0.640 0.116 0.612 0.098
V̂4 0.658 0.087 0.591 0.094
V̂5 0.289 0.039 0.327 0.050

4.5 Conclusion

This chapter developed a DNN-based modular adaptive control update laws and

constraints, which was inspired by existing modular adaptive control constraints, to

achieve trajectory tracking objectives. Unlike Chapter 3, which used NN architectures

with only a single hidden layer, this chapter focused on the development and analysis of

DNN-based adaptation laws for general fully-connected DNNs with an arbitrary number

of layers. The modular adaptive control framework provides general constraints and

enables users to design update laws accordingly. The developed method also allows

for different sets of weights to be arbitrarily switched. A simulation study was performed
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to compare the performance of different inner-layer weight update laws selected. Inner-

layer weight update laws were designed and selected that satisfy the developed design

constraints. Despite different inner-layer update laws used and arbitrary switching, the

implemented controllers achieved the tracking objective.
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CHAPTER 5
ACCELERATED GRADIENT APPROACH FOR DEEP NEURAL NETWORK-BASED

ADAPTIVE CONTROL OF UNKNOWN NONLINEAR SYSTEMS

This chapter leverages the insights developed from Chapter 4 on the development

and analysis of DNN adaptation to build upon the developments of Chapter 3 and de-

velop a new DNN-based adaptation law based on the accelerated gradient methods. To

compensate for non-LIP uncertainties, the results in Chapter 3 developed a NN-based

accelerated gradient adaptive controller to achieve trajectory tracking for nonlinear

systems; however, the development and analysis only considered single hidden layer

NNs. In this chapter, a generalized DNN architecture with an arbitrary number of hidden

layers is considered, and a new DNN-based accelerated gradient adaptation scheme

is developed to generate estimates of all the DNN weights in real-time. A nonsmooth

Lyapunov-based analysis is used to guarantee the developed accelerated gradient-

based DNN adaptation design achieves global asymptotic tracking error convergence

for general nonlinear control affine systems subject to unknown (non-LIP) drift dynamics

and exogenous disturbances. Simulations are conducted to demonstrate the improved

performance from the developed method. Results show the developed accelerated

gradient-based DNN adaptation outperforms gradient-based DNN adaptation by 67.41%

and 78.82% in terms of the root mean squared tracking and function approximation

errors, respectively.

5.1 Problem Formulation

5.1.1 Dynamic Model and Control Objective

Consider a control-affine nonlinear system modeled as

ẋ = f (x) + g (x)u+ d (t) , (5–1)

where x : R≥0 → Rn denotes the system state, f : Rn → Rn denotes an unknown

differentiable drift dynamics, g : Rn → Rn×m denotes a known control effectiveness,

d : R≥0 → Rn denotes an unknown exogenous disturbance, and u : R≥0 → Rm denotes
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a control input. To facilitate the subsequent stability analysis, the following assumptions

are made.

Assumption 5.1. The exogenous disturbance d (·) can be bounded as ∥d (t)∥ ≤ d for all

t ∈ R≥0, where d ∈ R>0 denotes a known constant.

Assumption 5.2. The control effectiveness matrix g (x) is full row rank for all x ∈ Rn.

The control objective is to use an accelerated gradient approach to design a DNN-

based adaptive controller to track a user-defined desired trajectory xd : R≥0 → Rn

despite uncertainty of the drift dynamics in (5–1). The desired trajectory and its time

derivative are assumed to be continuous and bounded, i.e., xd (t) ∈ Ω, for all t ∈ R≥0,

and ẋd ∈ L∞ where Ω ⊂ Rn denotes a known compact set. The tracking objective is

quantified by the tracking error e defined in (3–2).

5.1.2 Deep Neural Network Architecture and Function Approximation

NN function approximation methods are well-suited for systems with unknown

or unstructured uncertainties, i.e., the uncertainty does not satisfy the typical LIP

assumption (Assmption 2.1) in adaptive control (cf., [1, 2, 4]). To compensate for the

unknown drift dynamics in (5–1), a fully-connected DNN-based feedforward estimate of

the drift dynamics is introduced in this section. The DNN architecture considered in this

chapter is the same as in (4–2). However, the strategy in Chapter 4 was to develop an

adaptation law for the output-layer weights while modular constraints were developed for

the inner layer weight adaptation laws. The notation for the DNN architecture is slightly

redefined in this section to generalize the architecture with the addition of bias terms,

and to also facilitate the subsequent development which contains adaptation laws for all

the layers of the DNN. Let the DNN architecture Φ : Rn × R
∑k

i=0(Li+1)Li+1 → RLk+1 be

defined as

Φ (s, θ) ≜
(
V T
k σk ◦ . . . ◦ V T

1 σ1
) (
V T
0 s
)
, (5–2)
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where s ≜
[
sT , 1

]T ∈ RL0+1 denotes a concatenated state input that is augmented by 1

to facilitate the inclusion of bias terms, θ ≜
[
vec (Vk)

T , . . . , vec (V0)
T
]T

∈ R
∑k

i=0(Li+1)Li+1

denotes a concatenated vector of the DNN hidden-layer weights Vi ∈ R(Li+1)×Li+1 for all

i ∈ {0, . . . , k}, where k ∈ Z>0 denotes the number of hidden-layers in the DNN, Li ∈ Z>0

for all i ∈ {0, . . . , k + 1} denotes the number of neurons in each hidden layer, and

σi : RLi → RLi+1 for all i ∈ {1, . . . , k} denotes a vector of activation functions. The vector

of activation functions can be composed of various activation functions, and hence, may

be represented as σi = [ςLi
, . . . , ς1, 1]

T for all i ∈ {1, . . . , k}, where ςj : R → R for all

j ∈ {1, . . . , Li} denotes a piecewise continuously differentiable activation function.1

Note that for the subsequent function approximation of the unknown drift dynamics, the

input and output dimensions are defined as L0 ≜ Lk+1 ≜ n.

Let C (Ω) denote the space of continuous functions on the set Ω. By the

universal function approximation theorem in [54, Thm 3.2], the function space

of DNNs is dense in C (Ω). Then for any function f ∈ C (Ω) and prescribed

function reconstruction error bound ε ∈ R>0, there exist ideal DNN weights

θ∗ ≜
[
vec (V ∗

k )
T , . . . , vec (V ∗

0 )
T
]T

∈ R
∑k

i=0(Li+1)Li+1 and activation functions σi for all

i ∈ {1, . . . , k} such that sup
xd∈Ω

∥f (xd)− Φ (xd, θ
∗)∥ ≤ ε. Then, the DNN architecture in

(5–2) models the unknown drift dynamics in (5–1) as

f (xd) = Φ (xd, θ
∗) + ε (xd) , ∀xd ∈ Ω, (5–3)

where ε : Rn → Rn denotes an unknown bounded function approximation error. The

function approximation error is bounded such that sup
xd∈Ω

∥ε (xd)∥ ≤ ε. Since the ideal DNN

weights θ∗ are unknown, real-time adaptive weight estimates θ̂ : R≥0 → R
∑k

i=0(Li+1)Li+1

are generated to develop a DNN-based adaptive feedforward component Φ
(
xd, θ̂

)
,

1 Some common choices in activation functions include the sigmoid, hyperbolic tan-
gent, and ReLu activation functions.
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where θ̂ ≜

[
vec

(
V̂k

)T
, . . . , vec

(
V̂0

)T]T
. For brevity, the following short-hand notations

are introduced

Φ∗ ≜ Φ (xd, θ
∗) , Φ̂ ≜ Φ

(
xd, θ̂

)
. (5–4)

The DNN weight estimation error θ̃ : R≥0 → R
∑k

i=0(Li+1)Li+1 is defined as

θ̃ (t) ≜ θ∗ − θ̂ (t) . (5–5)

To facilitate the subsequent stability analysis, the following assumption is made.

Assumption 5.3. [31, Assumption 1] The ideal DNN weights can be bounded as

∥θ∗∥ ≤ θ, where θ ∈ R>0 denotes a known constant.

5.2 Control Development

This section introduces the DNN-based adaptive control design. Section 5.2.1 intro-

duces the closed-loop error system resulting from the DNN-based adaptive controller.

The DNN Φ̂ in (5–4) is used to develop an adaptive feedforward term that compensates

for the system uncertainty. Then in Section 5.2.2, an accelerated gradient approach is

used to design an adaptation law for θ̂ in (5–4) that generates real-time weight estimates

for fully-connected DNNs with an arbitrary number of hidden-layers.

5.2.1 Closed-Loop Error System

Based on the subsequent stability analysis, the control input is designed as

u ≜ g+ (x)
[
ẋd − kee− kssgn (e)− Φ̂− ρ (∥e∥) e+ 2Φ̂′

(
θ̂ − ν̂

)]
, (5–6)

where ke, ks ∈ R>0 denote user-defined parameters, ν̂ : R≥0 → R
∑k

i=0(Li+1)Li+1 denotes

an auxiliary weight estimate that is subsequently defined, sgn (·) denotes the signum

function, and ρ : R≥0 → R≥0 denotes a known strictly increasing function that satisfies

∥f (x)− f (xd)∥ ≤ ρ (∥e∥) ∥e∥ for all x, xd ∈ Rn [56, Lem. 5]. Taking the time derivative of

(3–2), adding and subtracting f (xd), and substituting in (5–1) and (5–3), the open-loop
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error system can be expressed as

ė = Φ∗ + ε (xd) + f (x)− f (xd) + d (t)− ẋd + g (x)u. (5–7)

Substituting (5–6) into (5–7) yields the closed-loop error system

ė = −kee− kssgn (e) + 2Φ̂′
(
θ̂ − ν̂

)
+ Φ∗ − Φ̂ + ε (xd) + f (x)− f (xd) + d (t)− ρ (∥e∥) e.

(5–8)

The first-order Taylor’s series approximation of Φ∗ yields [31, Eq. (22)]

Φ∗ − Φ̂ = Φ̂′θ̃ +O2
(∥∥∥θ̃∥∥∥) , (5–9)

where O2 (·) denotes higher-order terms resulting from the Taylor’s series approxima-

tion.2 Then substituting (5–9) into (5–8), the closed-loop error system can be expressed

as

ė = −kee− kssgn (e) + Φ̂′θ̃ + 2Φ̂′
(
θ̂ − ν̂

)
− ρ (∥e∥) e+ χ, (5–10)

where χ : Rn × Rn × R
∑k

i=0(Li+1)Li+1 × R≥0 → Rn denotes an auxiliary function defined as

χ ≜ O2
(∥∥∥θ̃∥∥∥)+ ε (xd) + f (x)− f (xd) + d (t).

5.2.2 Accelerated Gradient-Based Adaptation

This section applies the variational framework in [19] to develop an accelerated

higher-order adaptation law which generates real-time weight estimates for the DNN in

(5–6). Unlike previous chapters, this section includes the variational framework in [19] to

provide a constructive approach on accelerated gradient-based adaptation design. The

variational approach in [19] defines a Bregman Lagrangian function and uses principles

from the calculus of variations to generate a class of accelerated gradient update

2 Given suitable functions f and g, the notation f (x) = Ok (g (x)) means that there ex-
ist constants c, x0 ∈ R>0 such that ∥f (x)∥ ≤ c ∥g (x)∥k for all x ≥ x0.
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laws that minimizes a cost functional. Similar to the approach in [19], the Bregman

Lagrangian function L : R
∑k

i=0(Li+1)Li+1 × R
∑k

i=0(Li+1)Li+1 × R≥0 → R is defined as

L
(
θ̂,

˙̂
θ, t
)
= eα(t)+γ(t)

(
Dh

(
θ̂ + e−α(t) ˙̂θ, θ̂

)
− eβ(t)E

(
θ̂
))

, (5–11)

where α, β, γ : R≥0 → R denote arbitrary continuously differentiable scaling

functions, E : R
∑k

i=0(Li+1)Li+1 → R denotes a user-defined loss function, and

Dh : R
∑k

i=0(Li+1)Li+1 × R
∑k

i=0(Li+1)Li+1 → R≥0 denotes the Bregman divergence de-

fined as Dh (p, q) ≜ 1
2
∥q − p∥2.3 The scaling functions in (5–11) are selected as α ≜ 0,

β ≜ ln (γ1γ2), and γ (t) ≜ γ2t, where γ1, γ2 ∈ R>0 are user-defined parameters [22, 24]

(cf., [19]). Then, (5–11) can be expressed as L
(
θ̂,

˙̂
θ, t
)
= eγ2t

(
1
2

˙̂
θT

˙̂
θ − γ1γ2E

(
θ̂
))

. Let

a cost functional J : R
∑k

i=0(Li+1)Li+1 → R≥0 be defined as J
(
θ̂
)
≜
∫

L
(
θ̂,

˙̂
θ, τ
)
dτ . Then

by the calculus of variations, the trajectories t 7→ θ̂ (t) that minimize the cost functional J

are the solutions of the Euler-Lagrange equation d
dt

(
∂L

∂
˙̂
θ

(
θ̂,

˙̂
θ, t
))

− ∂L
∂θ̂

(
θ̂,

˙̂
θ, t
)
= 0 [19,

Eq. 3]. Then computing the terms ∂L

∂
˙̂
θ

, ∂L
∂θ̂

, and d
dt

(
∂L

∂
˙̂
θ

)
in the Euler-Lagrange equation

yields the higher-order adaptation law

¨̂
θ + γ2

˙̂
θ = −γ2γ1

∂

∂θ̂
E
(
θ̂
)
. (5–12)

Based on the subsequent stability analysis, the loss function is defined as E
(
θ̂
)

≜

d
dt

(
1
2
eT e
)
. Using (5–10) yields ∂E

∂θ̂
= Φ̂′T e, where Φ̂′ ≜ ∂Φ̂

∂θ̂
∈ Rn×

∑k
i=0(Li+1)Li+1. To facilitate

the subsequent analysis, let γ1 ≜ γν and γ2 ≜ γνγθ, where γν , γθ ∈ R>0 are user-defined

parameters. Then by defining an auxiliary weight estimate as ν̂ ≜ θ̂ + 1
γ2

˙̂
θ, (5–12) can be

expressed by two first-order differential equations as

3 The formulation in [19] considers a non-Euclidean setting and defines the Bregman
divergence as Dh (p, q) = h (p) − h (q) − ∇h (q)T (p− q), where h : R

∑k
i=0(Li+1)Li+1 → R≥0

denotes a distance generating function. To obtain the Bregman divergence function de-
fined in this chapter, h (x) ≜ 1

2
∥x∥2.

76



˙̂ν ≜ proj
(
γνΦ̂

′T e
)
, (5–13)

˙̂
θ ≜ −proj

(
γνγθ

(
θ̂ − ν̂

))
, (5–14)

where the operator proj (·) is used in (5–13) and (5–14) to ensure the weight estimates

remain bounded in the subsequent stability analysis, i.e., ν̂ (t) , θ̂ (t) ∈ Θ for all t ∈ R≥0,

where Θ ≜
{
θ ∈ R

∑k
i=0(Li+1)Li+1 : ∥θ∥ ≤ θ

}
denotes a known convex set and θ is known

by Assumption 5.3.

The term Φ̂′ in (5–13) can be computed as follows. To facilitate the subsequent

development, let σ̂i : RLi → RLi+1 be defined recursively as

σ̂i ≜


σ1

(
V̂ T
0 xd

)
, i = 1,

σi

(
V̂ T
i−1σ̂i−1

)
, i = 2, . . . , k.

(5–15)

Using (5–4) and the recursive relation in (5–15), the DNN estimate Φ̂ can be expressed

as Φ̂ = V̂ T
k σ̂k. Then recalling θ̂ =

[
vec

(
V̂k

)T
, . . . , vec

(
V̂0

)T]T
, Φ̂′ can be expressed as

Φ̂′ =

 ∂Φ̂

∂vec
(
V̂k

) , . . . , ∂Φ̂

∂vec
(
V̂0

)
 . (5–16)

Using the chain rule, the vectorization property in (1–1), and the facts that ∂σ̂1

∂vec(V̂0)
=

σ̂′
1

(
IL1 ⊗ xTd

)
and ∂σ̂i+1

∂vec(V̂i)
= σ̂′

i+1

(
ILi+1

⊗ σ̂T
i

)
for all i = 1, . . . , k − 1, the terms in (5–16)

can be computed as

∂Φ̂

∂vec
(
V̂i

) =



 ↶
k∏

j=1

V̂ T
j σ̂

′
j

(IL1 ⊗ xTd
)
, i = 0, ↶

k∏
j=i+1

V̂ T
j σ̂

′
j

(ILi+1
⊗ σ̂T

i

)
, i = 1, . . . , k,

(5–17)
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where σ̂′
1 ≜ ∂σ̂1

∂V̂ T
0 xd

and σ̂′
i ≜ ∂σ̂i

∂V̂ T
i−1σ̂i−1

for i = 2, . . . , k. The adaptation law in (5–13),

(5–16), and (5–17) are expressed for fully-connected DNNs with an arbitrary number of

hidden layers. To provide more insight, the following example is provided.

Example 1. Consider the single-hidden-layer NN Φ̂
(
xd, θ̂

)
= V̂ T

1 σ1

(
V̂ T
0 xd

)
(i.e.,

k = 1), where V̂0 ∈ R(n+1)×L, V̂1 ∈ R(L+1)×n, L ∈ Z>0, and θ̂ ≜
[
vec

(
V̂1

)T
, vec

(
V̂0

)T]T
∈

R2Ln+L+n. Then using (5–16) and (5–17), Φ̂′ can be computed as

Φ̂′ =
[(
In ⊗ σ̂T

1

)
, V̂ T

1 σ̂
′
1

(
IL ⊗ xTd

)]
. (5–18)

Using (5–18), the update law in (5–13) yields

˙̂ν = proj

γν
 (

In ⊗ σ̂T
1

)T(
V̂ T
1 σ̂

′
1

(
IL ⊗ xTd

))T
 e
 . (5–19)

Defining ν̂ ≜
[
vec (ν̂1)

T , vec (ν̂0)
T
]T

, using (1–1), and applying some algebraic manipu-

lation, (5–19) can be expressed as

˙̂ν1 = proj
(
γν σ̂1e

T
)
, (5–20)

˙̂ν0 = proj
(
γνxde

T V̂ T
1 σ̂

′
1

)
. (5–21)

Remark 5. The DNN configuration in Example 1 is a special case where there is

only one hidden layer, i.e., k = 1. This example provides insights and shows the

generality of the adaptation law developed in (5–13). Note that, for the special case, the

adaptation laws in (5–20) and (5–21) are equivalent to (3–4) and (3–7), respectively.

The adaptation laws in (5–20) and (5–21) are equivalent to the output- and inner-layer

weight adaptation laws developed in [31] for single-hidden-layer NNs. Hence, the

adaptation law developed in (5–13) can be interpreted as a gradient-based adaptation

law that has been generalized to fully-connected DNNs. However, the fundamental

difference in the developed method is that the adaptation law in (5–13) generates
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auxiliary weight estimates. The auxiliary estimates are coupled to the adaptation law in

(5–14) which alters the search direction of the auxiliary estimates to generate the true

DNN weight estimates.

Remark 6. The adaptation law developed in (5–12) is dependent on the selection of

the loss function. The loss function E = 1
2

d
dt

(
eT e
)
, defined below (5–12), was selected

based on the subsequent stability analysis and yields the higher-order adaptation laws

in (5–13) and (5–14). It is well known that including the weight estimation error θ̃ in the

adaptation law design can improve performance, and hence, including a term such as

1
2
θ̃T θ̃ in the loss function can be beneficial. However, including the weight estimation

error in the adaptation design poses challenges in implementation because the weight

estimation error is unknown; therefore, selections in loss functions that incorporate a

measurable/computable form of the weight estimation error may be a potential avenue

for future works.

5.3 Stability Analysis

The closed-loop control design introduced in Section 5.2 employs a discontinuous

robust sliding mode term and may also have potential discontinuities in Φ̂′ depending

on the choice of activation functions (e.g., ReLU activation functions). As a result, the

closed-loop system is nonsmooth and does not admit classical solutions. Hence, a

nonsmooth Lyapunov-based analysis is used to analyze generalized solutions of the

resulting closed-loop system and ensure the tracking objective is achieved [48] (cf., [1,

Thm. A.8] for LaSalle-Yoshizawa invariance principles for smooth nonautonomous

systems). Specifically, the switching analysis in [35] for DNN-based adaptive control

is adopted to model the closed-loop system as a state-dependent switched system

composed of a finite collection of smooth functions.

To facilitate the subsequent analysis, let ϱ ∈ P denote a switching index, where

P ⊂ Z denotes a finite set of possible switching indices. Then the DNN function

approximation in (5–3) can be represented as f (xd) = Φ∗
ϱ + εϱ (xd), where xd 7→ Φ∗

ϱ
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is smooth for each ϱ ∈ P with the corresponding function reconstruction error εϱ (xd).

Similarly, the function χ defined below (5–10) can be represented by the switched

function

χϱ ≜ O2
ϱ

(∥∥∥θ̃∥∥∥)+ εϱ (xd) + f (x)− f (xd) + d (t) , (5–22)

which is continuous for each ϱ ∈ P. By the use of the projection algorithm in (5–14),

the DNN weight estimates can be upper bounded as
∥∥∥θ̂ (t)∥∥∥ ≤ θ for all t ∈ R≥0. Hence,

by Assumption 5.3 and using (5–5), the DNN weight estimation error can be bounded

as
∥∥∥θ̃ (t)∥∥∥ ≤ 2θ for all t ∈ R≥0. Moreover, since θ̃ ∈ L∞ and O2

ϱ is continuous in each

ϱ ∈ P, it follows that O2
ϱ can be upper bounded by a known constant for all ϱ ∈ P. The

exogenous disturbance t 7→ d (t) is upper bounded by a known constant by Assumption

5.1. Then χϱ can be upper bounded as

∥χϱ∥ ≤ c+ ρ (∥e∥) ∥e∥ , ∀ϱ ∈ P , (5–23)

where c ∈ R>0 denotes a known constant and ρ (·) was defined below (5–6).

Based on the development introduced above, the adaptation law in (5–13) and the

closed-loop error system in (5–10) can be represented as

˙̂ν = proj
(
γνΦ̂

′T
ϱ e
)
, ∀ϱ ∈ P , (5–24)

ė = −kee− kssgn (e) + Φ̂′
ϱθ̃ + 2Φ̂′

ϱ

(
θ̂ − ν̂

)
− ρ (∥e∥) e+ χϱ, ∀ϱ ∈ P . (5–25)

For notational brevity, let Ψ ∈ Z>0 be defined as Ψ ≜ n + 2
∑k

i=0 (Li + 1)Li+1. Let

z ≜

[
eT ,
(
θ̂ − ν̂

)T
, (θ∗ − ν̂)T

]T
∈ RΨ denote a concatenated state, and let ż = hϱ (z, t)

for all ϱ ∈ P denote a collection of subsystems, where hϱ : RΨ × R≥0 → RΨ. Then the

corresponding switched system is represented as

ż = hp(z) (z, t) , (5–26)
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where z : R≥0 → RΨ denotes a Filippov solution to (5–26), p : RΨ → P denotes a

state-dependent switching signal, and hϱ (z, t) is defined as

hϱ (z, t) =


f cl
ϱ (z, t)

−proj
(
γνγθ

(
θ̂ − ν̂

))
− proj

(
γνΦ̂

′T
ϱ e
)

−proj
(
γνΦ̂

′T
ϱ e
)

 , (5–27)

for all ϱ ∈ P, where f cl
ϱ : RΨ × R≥0 → Rn is defined as f cl

ϱ (z, t) ≜ −kee − kssgn (e) +

Φ̂′
ϱθ̃+ 2Φ̂′

ϱ

(
θ̂ − ν̂

)
− ρ (∥e∥) e+ χϱ. In the following theorem, nonsmooth Lyapunov-based

analysis techniques developed in [48] are used to establish invariance properties of

(5–26) to ensure the tracking objective is achieved.

Theorem 7. Consider a system modeled as in (5–1) and let Assumptions 5.1–5.3 hold.

Then the control input in (5–6) and higher-order DNN weight adaptation laws in (5–13)

and (5–14) ensure global asymptotic tracking in the sense that lim
t→∞

∥e (t)∥ = 0 and

lim
t→∞

∥∥∥θ̂ (t)− ν̂ (t)
∥∥∥ = 0, provided the following sufficient gain condition is satisfied

ks > c, (5–28)

where c is a known constant defined in (5–23).

Proof. Consider a candidate common Lyapunov function VL : RΨ → R≥0 defined as

VL (z) ≜
1

2
eT e+

1

2γν

(
θ̂ − ν̂

)T (
θ̂ − ν̂

)
+

1

2γν
(θ∗ − ν̂)T (θ∗ − ν̂) , (5–29)

which satisfies the inequality α (∥z∥) ≤ VL (z) ≤ α (∥z∥), where α, α : R≥0 → R≥0

are continuous positive definite functions. Let Fϱ : RΨ ⇒ RΨ denote the Filippov

regularization of (5–26) and be defined as Fϱ ≜ K [hϱ] (z, t), where the calculus of K [·] is

defined in [57] and the notation ⇒ denotes a set-valued mapping. Then the generalized

time derivative of (5–29) can be computed as V̇ L ≜ max
p∈∂VL(z)

max
q∈F ′

ϱ(z)
pT q [48, Def. 3], where

F ′
ϱ (z, t) ⊇ Fϱ (z, t) denotes a bound on the regularization of (5–26), and ∂VL denotes

Clarke’s generalized gradient of VL [58, pp. 39]. Since z 7→ VL (z) for all z ∈ RΨ is

81



continuously differentiable, ∂VL (z) = {∇VL (z)}, where {·} denotes a singleton set and

∇ denotes the gradient. Additionally, the time derivative of VL exists for almost all time,

i.e., V̇L (z (t))
a.e.
∈ V̇ L (z (t)), where the notation

a.e.
(·) denotes that the relation holds for

almost all time.

Taking the generalized time derivative of (5–29), using (5–5), adding and subtract-

ing θ̂T 1
γν

K
[
˙̂ν
]
, and performing some algebraic manipulation yields

V̇ L = eTK [ė] +
(
θ̂ − ν̂

)T 1

γν
K
[
˙̂
θ
]
−
(
θ̃ + 2θ̂ − 2ν̂

)T 1

γν
K
[
˙̂ν
]
. (5–30)

Substituting (5–14), (5–24), and (5–25) into (5–30) yields

V̇ L = eT
(
−kee− ksK [sgn] (e)− ρ (∥e∥) e+ K [χϱ] + K

[
Φ̂′

ϱ

]
θ̃ + 2K

[
Φ̂′

ϱ

] (
θ̂ − ν̂

))
−
(
θ̂ − ν̂

)T
K [proj]

(
γθ

(
θ̂ − ν̂

))
−
(
θ̃ + 2θ̂ − 2ν̂

)T
K [proj]

(
Φ̂′T

ϱ e
)
. (5–31)

Since χϱ and Φ̂ϱ are continuous functions for each ϱ ∈ P, K [χϱ] = {χϱ} and K
[
Φ̂′

ϱ

]
={

Φ̂′
ϱ

}
for all ϱ ∈ P. To bound the terms that involve proj (·) in (5–31), Lemma E.1.IV

in [1] is invoked which states −rTΓproj (τ) ≤ −rΓτ for all r ∈ R ⊂ Rm, Γ ∈ Rm×m,

and τ ∈ Rm, where Γ denotes a positive definite matrix and R denotes a convex set.

By the use of the projection algorithm in (5–13) and (5–14), the trajectories of ν̂ (t) and

θ̂ (t), for all t ∈ R≥0, remain in the convex set Θ defined below (5–14). By Assumption

5.3, the ideal DNN weights can be bounded as ∥θ∗∥ ≤ θ. Moreover, note that K [proj] (τ)

computes the set of convex combinations of proj (τ) and τ at the points of discontinuity.

Therefore −rTΓK [proj] (τ) ≤ −rTΓτ , and hence, the terms with the proj (·) operator in

(5–31) can be upper bounded as

−
(
θ̂ − ν̂

)T
K [proj]

(
γθ

(
θ̂ − ν̂

))
≤ −γθ

(
θ̂ − ν̂

)T (
θ̂ − ν̂

)
, (5–32)

−
(
θ̃ + 2θ̂ − 2ν̂

)T
K [proj]

(
Φ̂′

ϱe
)
≤ −

(
θ̃ + 2θ̂ − 2ν̂

)T
Φ̂′T

ϱ e

= −eT
(
Φ̂′

ϱθ̃ + 2Φ̂′
ϱ

(
θ̂ − ν̂

))
. (5–33)
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Then using (5–23), (5–32), (5–33), and the facts that eTK [sgn] (e) = {∥e∥1} and

−ks ∥e∥1 ≤ −ks ∥e∥, (5–31) can be upper bounded as

V̇ L

a.e.
≤ −ke ∥e∥2 − (ks − c) ∥e∥ − γθ

∥∥∥θ̂ − ν̂
∥∥∥2 . (5–34)

Provided the sufficient gain condition in (5–28) is satisfied, (5–34) can be upper

bounded as V̇ L

a.e.
≤ −ke ∥e∥2 − γθ

∥∥∥θ̂ − ν̂
∥∥∥2. From (5–29) and the fact that V̇ L

a.e.
≤ 0, it

follows that VL ∈ L∞, which implies z ∈ L∞, and hence e, ν̂, θ̂ ∈ L∞. Using (3–2), the fact

that e, xd ∈ L∞ implies x ∈ L∞. Using (5–5), the fact that θ∗, θ̂ ∈ L∞ implies θ̃ ∈ L∞. The

fact that xd, θ̂ ∈ L∞ implies Φ̂, Φ̂′ ∈ L∞. Using (5–6), the fact that x, ẋd, e, Φ̂, Φ̂′, θ̂, ν̂ ∈ L∞

implies u ∈ L∞. Using (5–13), the fact that Φ̂′, e ∈ L∞ implies ˙̂ν ∈ L∞. Using (5–14), the

fact that θ̂, ν̂ ∈ L∞ implies ˙̂
θ ∈ L∞. Invoking the LaSalle-Yoshizawa theorem extension

for nonsmooth systems in [48, Thm. 2] yields lim
t→∞

∥e (t)∥ = 0 and lim
t→∞

∥∥∥θ̂ (t)− ν̂ (t)
∥∥∥ = 0.

■

5.4 Simulations

Two comparative simulations were conducted on a two-state nonlinear system to

demonstrate the performance of the developed method. The unknown drift dynamics

f (x) in (5–1) was modeled by (3–32) where x ≜ [x1, x2]
T ∈ R2 denotes the system state.

The control effectiveness was modeled as g = I2. The exogenous disturbance in (5–1)

was modeled as random noise drawn from the distribution N (0, 1). Each simulation

was conducted for 30 s with initial condition x (0) = [5.0, 7.0]T . The desired trajectory

xd ≜ [xd,1, xd,2]
T was selected as xd (t) =

 sin (t)

cos (t)

 for all t ∈ R≥0. The DNN used

in both simulations was configured with L = 10 neurons in each of the k = 5 hidden

layers. The hyperbolic tangent activation function was used across all layers. The first

simulation was performed with a baseline DNN adaptive controller which used a typical

gradient-based scheme given by [35]

u ≜ ẋd − kee− kssgn (e)− Φ̂− ρ (∥e∥) e, (5–35)
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˙̂
θ ≜ proj

(
γθΦ̂

′T e
)
, (5–36)

where e ≜ [e1, e2]
T , θ̂ ≜

[
vec

(
V̂5

)T
, . . . , vec

(
V̂0

)T]T
, and Φ̂′ was computed using (5–

16) and (5–17). The second simulation was performed with the developed method in (5–

6), (5–13), and (5–14). The bound for the projection operator was selected as θ = 1, 000.

The robust state feedback term ρ (∥e∥) in (5–6) was designed as 0.1
(
∥e∥+ ∥e∥2

)
in

both simulations were omitted to better focus on the performance resulting from the

DNN-based adaptive terms. The DNN weight estimates θ̂ (0) (and also ν̂ (0) in the

second simulation) were initialized randomly from the normal distribution N (0, 1). The

controllers in each simulation were configured similarly and are summarized in Table

5-1.

Table 5-1. Controller Configuration

Parameters DNN Adaptive [35] Developed Method

Hidden layers, k 5 5

Neurons, L 5 5

Activation function Hyperbolic tangent Hyperbolic tangent

γν - 40

γθ 40 0.6

ks 0.1 0.1

ke 5 5

Table 5-2. RMS Tracking Error, Control Effort, and Function Approximation Error

RMS DNN Adaptive Developed Method

e 0.0851 0.0277

u 4.2761 2.6033

f̃ 2.9878 0.6029
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Figure 5-1. Evolution of the normalized tracking errors ∥e∥. The simulation with the
gradient-based DNN adaptation scheme in (5–35) and (5–36) is shown as a
dashed red line, and the simulation using the developed higher-order
DNN-based adaptation scheme in (5–13) and (5–14) is shown as a solid
blue line. The tracking errors are shown over a 10 second window rather
than the entirety of the simulation to better exhibit the transient performance.
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Table 5-2 summarizes the performance in each simulation. In the leftmost col-

umn, e, u, and f̃ denote the root mean square (RMS) tracking error, control effort, and

function approximation error, respectively. As shown in Figure 5-1, the tracking errors

converge towards the origin. The tracking errors using the baseline DNN adaptive

controller in the first simulation converged to a neighborhood of the origin after ap-

proximately 5.4 s, whereas the tracking errors using the developed method converged

after approximately 0.7 s. The RMS tracking error for the baseline DNN and developed

methods were 0.0851 and 0.0277, respectively. The developed method had a 67.41%

decrease in the RMS tracking error with a 39.12% decrease in the RMS control effort in

comparison to the baseline DNN adaptive method.

Figure 5-2 illustrates the normalized function approximation error for each simula-

tion. The simulation with the developed method showed a 78.82% decrease in the RMS

function approximation error in comparison to the simulation with the baseline DNN

adaptive controller. To better illustrate the improved transient performance from the de-

veloped higher-order adaptation, Figure 5-3 illustrates the evolution of the DNN weight

estimates. The weight estimates from the baseline DNN adaptation exhibited oscillatory

behavior which degraded the tracking and function approximation performance. As seen

at approximately 3.9 s, and many other instances throughout the simulation, many of

the weights in the baseline simulation had oscillations which resulted in increases to the

tracking and function approximation errors shown in Figures 5-1 and 5-2, respectively.

In comparison, the weight estimates from the developed method had improved transient

performance as seen by the rapid convergence in the weight estimates and function

approximation error after approximately 1.1 s.

5.5 Conclusion

Motivated by the potential improvements in transient performance, an accelerated

gradient approach was used to design an accelerated gradient-based DNN adaptive

control scheme for trajectory tracking of uncertain nonlinear systems. This chapter
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Figure 5-2. Evolution of the normalized function approximation errors
∥∥∥f (xd)− f̂ (xd)

∥∥∥
for each simulation.
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Figure 5-3. Evolution of the DNN weight estimates in each simulation. Each of the
corresponding weights were initialized at the same initial condition. To better
exhibit the performance in the weight estimates, for both simulations, only 15
of the DNN weight estimates are shown over a 10 second window rather
than the entirety of the simulation.
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leverages the insights on the development and analysis of DNN-based adaptation via

Lyapunov-based techniques in Chapter 4 to extend the accelerated gradient-based NN

adaptive control scheme in Chapter 3. Specifically, the NN architectures in Chapter

3 are generalized to account for fully-connected DNN architectures with an arbitrary

number of hidden layers. The generalized development was analyzed in this chapter

with a nonsmooth Lyapunov-based analysis to show the developed methods yields

global asymptotic tracking. Comparative simulations were conducted on a two-state

nonlinear system to demonstrate the improved performance from the developed

accelerated gradient-based adaptation design. The simulations showed the developed

accelerated gradient-based adaptation outperformed the DNN gradient adaptive scheme

in [35] and had a 67.41% and 78.82% decrease in the RMS tracking and function

approximation errors, respectively.

Future work may involve analyzing new adaptation designs from the selection of

the loss function in (5–12). As discussed in Remark 6, selecting a loss function that

incorporates computable versions of the function approximation error in the adaptation

design may improve performance. However, there are challenges in the analysis and

implementation of such adaptation laws due to the unknown nature of the ideal DNN

weights.
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CHAPTER 6
CONCLUSION

Adaptive control is a common technique used in nonlinear systems to achieve

a control objective, such as trajectory tracking, while also learning parametric model

uncertainties in real-time. Accelerated gradient-based optimization methods have

gained significant interest due to their improved transient performance and faster

convergence rates. Accelerated gradient-based methods are discrete-time algorithms

that alter their search direction by using a weighted sum from the previous iteration to

add a momentum-based term and accelerate convergence. Recent results have made

connections between discrete-time accelerated gradient methods and continuous-time

analogues. These connections have led to new insights on continuous-time algorithm

design based on accelerated gradient methods. This dissertation developed new

accelerated gradient-based adaptive control schemes via Lyapunov-based techniques to

achieve trajectory tracking in general uncertain nonlinear dynamical systems.

First, in Chapter 2, an ICL-based accelerated gradient adaptive update law was

developed to achieve trajectory tracking and real-time parameter identification for

general uncertain Euler-Lagrange systems. The system uncertainties in this chapter

were assumed to be LIP. The data-driven ICL method used samples data and injects a

measurable form of the parameter estimation error into the adaptation law. To eliminate

the need for direct measurements of the parameter estimation error, a torque-filtering

method was used to reconstruct a measurable form of the parameter estimation

error. A Lyapunov-based method was used to guarantee the closed-loop error system

achieves global exponential stability under a less restrictive finite excitation condition.

A comparative simulation study was performed on a two-link robot which showed the

higher-order scheme outperformed standard and ICL-based adaption by 19.6% and

11.1%, respectively, in terms of the root mean squared parameter estimation errors.
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Then to eliminate the restrictive LIP assumption, Chapter 3 generalized the devel-

opment in Chapter 2 to account for general nonlinear systems subject to unstructured

or unknown (non-LIP) uncertainty. To compensate for the non-LIP uncertainties, NN-

based adaptive control techniques were used to approximate the uncertainty with a

real-time adaptive NN-based feedforward term. Specifically, Chapter 3 developed an

accelerated gradient-based NN adaptation scheme to achieve trajectory tracking in

general nonlinear control affine systems subject to non-LIP uncertainties. The higher-

order accelerated gradient-based adaptation laws were developed to generate real-time

estimates of both the unknown ideal output- and hidden-layer weights of a NN. A non-

smooth Lyapunov-based method was used to analyze and guarantee the closed-loop

error system achieves global asymptotic tracking. Comparative simulations were con-

ducted, and the results showed the higher-order adaptation outperformed the standard

gradient-based NN adaptation by 32.3% in terms of the root mean squared function

approximation error.

The development in Chapter 3 was limited to NN architectures that contain only

a single hidden layer. DNN architectures have improved function approximation ca-

pabilities. However, in the context of Lyapunov-based methods, DNN-based adaptive

control have been challenged by the nested nonlinear parametrized structure inherent

to DNNs. Hence to focus on the unique challenges of DNN-based adaptive control,

Chapter 4 used a modular approach to develop general constraints on the DNN weight

adaptation laws for general nonlinear control affine systems. The modular adaptive

constraints provided design guidelines for real-time DNN adaptation while also ensuring

stability in the tracking objective. A nonsmooth Lyapunov-based analysis was used to

guarantee semi-global asymptotic tracking. Additionally, simulations were conducted to

demonstrate the improved performance and utility from DNN adaptation. However, the

development in Chapter 4 did not provide a constructive method to design DNN-based

adaptation laws.
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Hence, Chapter 5 leveraged the insights developed from Chapter 4 on the devel-

opment and analysis of DNN adaptation to build on the accelerated gradient approach

in Chapter 3 to develop a new accelerated gradient-based DNN adaptation law. A

generalized DNN architecture with an arbitrary number of hidden layers was consid-

ered, and the new accelerated gradient-based DNN adaptation scheme was used to

generate real-time estimates of all the DNN weights. A nonsmooth Lyapunov-based

analysis was used to guarantee the developed accelerated gradient-based DNN

adaptation design achieves global asymptotic tracking error convergence for general

nonlinear control-affine systems subject to non-LIP drift dynamics and exogenous

disturbances. Simulations were conducted, and the results showed the developed

accelerated gradient-based DNN adaptation outperformed gradient-based DNN adap-

tation by 67.41% and 78.82% in terms of the root mean squared tracking and function

approximation errors, respectively.

Future work may involve analyzing new adaptation designs based on the selection

of the loss function in (5–12). As discussed in Remark 6, selecting a loss function that

incorporates the function approximation error in the adaptation design may improve per-

formance. Due to the unknown nature of the ideal DNN weights, direct measurements

of the function approximation error are typically not available. Hence, the torque filtering

method in Chapter 3 could be used to generate a measurable/computable form of the

function approximation error. However, there are challenges to using the torque filtering

method as this method relies on the structured uncertainty from Assumption 2.1 to

leverage algebraic relations and reconstruct the parameter estimation error. Moreover,

it is not clear on how to select the loss function, and changes in the loss function yield

new adaptation laws that require analysis to ensure the stability result is maintained.

Hence, future works may also include using the modular approach from Chapter 4 to

analyze the accelerated adaptation design in (5–12) for a broad class of loss functions

that include the function approximation error.
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