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Autonomous systems are often constrained by time-critical mission constraints and

limited power. Such constraints motivate optimality in mission execution. Reinforcement

learning (RL) has become a tool to facilitate learning of a desired optimal control

policies online, which achieve a desired objective. Approximate dynamic programming

(ADP) is a RL-based techniques that generates a forward-in-time approximation of the

optimal optimal value function (and in-turn the control policy) for dynamical systems

with continuous state and action spaces. Developments in regional model-based RL

(R-MBRL) facilitate improved online approximation of the value function. R-MBRL

approximates the value function over a compact set of the state space and facilitates

learning by approximating and evaluating the optimal value function at multiple points

on this compact set. This dissertation investigates numerous modifications to R-

MBRL ADP to improve computational efficiency, for application to a broader class of

dynamical systems, and to incorporate different function approximation techniques.

These modifications introduce discontinuities into the otherwise smooth signals, which

are analyzed via Lyapunov-based techniques.

Chapter 3 presents a technique to reduce the computational expense of performing

R-MBRL across an arbitrarily large number of points in the state space. Without

modification, existing R-MBRL algorithms evaluate the quality of the value function

approximation at many user-defined points on the state space using a conventional
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neural network (NN). The method presented in Chapter 3 improves on the existing

techniques by segmenting the state space and using sparse neural networks (SNNs)

to facilitate learning. By segmenting the state space, the cognitive agent can switch

between different subsets of the state space over which to evaluate the optimal policy.

Furthermore, using a SNN reduces the overall number of operations needed to evaluate

the optimal policy. Combined, these two modifications improve the computational

efficiency of R-MBRL.

Chapter 4 builds upon the result in Chapter 3 by modifying the state space with

barrier function (BF) transformations. The BFs, which are described by invariant

sets, transform the dynamics and cost of the state space. The system is penalized

significantly more as the state moves closer to the boundary of the user-defined

invariant set(s). This technique develops safety certificates for R-MBRL, i.e., formal

guarantees that the state will not leave the user-defined invariant set.

Chapter 5 investigates the application of R-MBRL ADP to a finite family of switched

systems with a countably infinite number of arbitrary switches. This chapter outlines

additional constraints that must be imposed on the system to guarantee stability of the

overall switching sequence. In doing so, a minimum dwell-time condition is developed.

The dwell-time condition is a conservative condition that dictates the minimum time that

one subsystem must be active before switching to another subsystem. The technique

developed in Chapter 5 enables the application of ADP onto a larger class of systems,

such as path planning in static, but unknown, environments, and functional electrical

stimulation (FES) control.

Existing results show that, despite having no knowledge (or uncertainty) of a

system’s dynamics a priori, online system identifiers can be used to approximate the

model of a system, which can be used in conjunction with ADP to approximate the

optimal control policy. Chapter 6 leverages an online deep neural network (DNN)-based

system identifier to simultaneously approximate the system dynamics and optimal
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control policy. The DNN identifier updates in two timescales. The output-layer weights

update in real-time, and the inner-layer features update discretely via batch updates.

While existing results propose a multi-timescale DNN system identifier, convergence of

the output-layer weights is not guaranteed. This chapter modifies the output-layer weight

update policy with a concurrent learning (CL)-based term, which enables convergence

of the overall ADP algorithm, i.e., approximately optimal trajectory tracking is achieved.
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CHAPTER 1
INTRODUCTION

1.1 Background

RL is a technique that facilitates learning in many computational problems, including

robotics, video game playing, supply chain management, and automatic control. Gener-

ally, RL-based techniques interact with an environment, sense the state of the system,

and perform an action that seeks to minimize or maximize a cost function [1]. The cost

depends on the environment, state, and previous action(s) of the system. RL, unlike

other supervised learning methods, can evaluate the performance of a particular action

without a teacher. This makes RL well-posed to determine policies in which examples,

or models, of desired behavior do not exist. Leveraging function approximation archi-

tectures, RL-based techniques have been developed to approximately solve optimal

control problems for continuous-time and discrete-time deterministic systems with finite

state-spaces and stationary environments by computing the optimal control policy based

on an approximation of the optimal cost-to-go function, i.e., the value function [2–13].

Optimal control problems can be solved via the Hamilton-Jacobi-Bellman (HJB)

equation; the solution is the optimal value function, which is used to determine the

optimal control policy [14]. However, the HJB equation is a nonlinear partial differential

equation that lacks a general solution. To combat the difficulty of solving the HJB for

the optimal value function, ADP is used to approximate the value function online [15]

and [16]. If the value function is successfully approximated, then a stabilizing optimal

control policy can be determined. ADP uses parametric methods, such as NNs, to

approximate the solution of the HJB, i.e., the value function.

In RL-based online approximate optimal control, the HJB equation, along with an

estimate of the state derivative [7] and [10], or an integral form of the HJB [17] and [18],

is used to measure the quality of the value function approximation evaluated at each
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visited state along the system trajectory. This measurement is called the Bellman error

(BE).

In online RL-based techniques, approximations of the uncertain parameters in

the value function are updated using the BE as a performance metric. Hence, the

approximated value function parameters are updated based on the evaluation of the

BE along the system trajectory. Online RL-based techniques can be implemented in

either model-based or model-free form. Generally speaking, both approaches have

their respective advantages and disadvantages. Model-free approaches learn optimal

actions without requiring knowledge of the system [19]. Model-based RL approaches

improve data efficiency by observing that if the system dynamics are known, then

the state derivative, and hence the BE, can be evaluated at any desired point in the

state-space [19].

Methods that seek online solutions to optimal control problems are comparable

to adaptive control (see [3, 8, 10, 12, 20, 21] and the references therein), in which the

approximations of the uncertain parameters in the plant model are updated using

the tracking error as a performance metric. Similarly, in ADP the BE is used as a

performance metric. Parameter convergence has long been a focus of research in

adaptive control.

Least-squares and gradient-based update laws are used in RL-based techniques

to solve optimal control problems online [19] and [22]. Such update laws generally

require the persistence of excitation (PE) condition in the system state to guarantee

convergence (i.e., value function approximation), which cannot be generally verified

for nonlinear systems. Hence, a challenge exists that that the update law must be

persistently exciting so that the system trajectory sufficiently explores the state-space

to sufficiently approximate the optimal value function over the domain of operation.

However, excessive exploration of the state space prohibits a cognitive agent from

completing its desired task. This challenge, referred to as the exploration versus
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exploitation problem, is often addressed in the related literature [5, 8, 10, 23–29] by

adding an exploration signal to the control input. However, no analytical methods exist to

compute the appropriate exploration signal for a nonlinear dynamical system. Existing

ADP literature [19] proposes a method that simultaneously evaluates the BE at on- and

off-trajectory points in the state space. This process is called BE extrapolation. R-MBRL

uses BE extrapolation on user-defined regions of the state space. BE extrapolation can

be used to relax the PE condition and circumvent the need for an exploration signal.

However, the benefits of R-MBRL come at a significant computational expense.

Dynamic programming-based methods suffer from the curse of dimensionality (i.e.,

exponential growth of computational complexity with the increased number of states).

This curse is necessitated by the need to explore the state space to obtain a sufficiently

accurate approximation over the state space. Parametric methods, such as NNs, ap-

proximate functions over a compact set of the state space. Increasing the size of this

compact set may require additional neurons in the value function approximation. Fur-

thermore, neurons must be placed with appropriate density to sufficiently approximate

the value function. Without knowledge of the system, a large number of neurons must

be used to approximate the value function. In the aforementioned BE extrapolation tech-

nique, a large number of extrapolation points must be used to facilitate learning over the

desired region of the state space. Hence, it is computationally demanding to use a large

number of neurons for value function approximation in tandem with BE extrapolation.

While R-MBRL has advantages over PE-based ADP methods, there are computational

issues that limit its deployment.

SNNs are a tool to facilitate learning in uncertain systems [30–33]. SNNs have

been used to reduce computational complexity in NNs by decreasing the number of

active neurons. By reducing the number of active neurons, then the number of overall

computations is also reduced. SNN-based adaptive controllers have been developed to

activate a smaller number of neurons in certain locations of the state space [32]. Making
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a NN more sparse, i.e., sparsification, encourages local learning through intelligently

segmenting the state space [31]. Sparsification enables local approximation within each

segment, which characterizes regions with significantly varying dynamics or unknown

uncertainties. Furthermore, SNNs yield computational benefits due to activating fewer

active neurons in comparison to traditional NNs. Motivated by the method in [31], the

developed method simultaneously uses a segmented state space and SNNs to reduce

computational loads due to intelligent switching, segmentation, and sparsification.

A longstanding problem in the development of machine learning-based algorithms

is the difficulty to guarantee system performance. Notably, in uncertain environments,

BFs have been used to generate safety certificates for control systems [34] and [35].

Such certificates guarantee safety in implementation by proving that they will not leave

an invariant set, i.e., they will stay within a region defined by the BF(s). BFs have a

natural relationship with Lyapunov-like functions, set invariance, and multi-objective

control. BFs have been previously used with ADP [36], but not always in the context of

safety certificates. The results in [37] and [38] provide a united framework for solving

the optimal control problem online while providing formal performance guarantees.

However, these existing results rely on the PE condition to guarantee convergence,

which may be undesirable in practice.

At a high level, optimal control solutions guarantee system convergence and

provide varying performance (e.g., rise time, overshoot, etc.). Gain scheduling is

a method in which different classes of controllers are used to govern a dynamical

system in different scenarios (potentially with differing dynamics) [39] and [40]. For

example, an aircraft may use different controllers (or control gains) depending on its

speed, angle of attack, and altitude. The controller associated with a certain state is

active when the aircraft visits that state. It may be impossible to design controllers

for unknown or uncertain environments. Or, in the case of gain scheduling, it may be

impossible to design a family of controllers for unknown or uncertain environments.
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Existing ADP results, such as [19, 22, 41], generate stabilizing control policies in

unknown environments; however, these methods lack the ability to switch between

different optimal control policies. The inability to switch between different optimal control

policies may be due to the inability to account for switching between multiple dynamic

models and cost parameters. Previous results such as [42–46] use optimal control

methods to minimize cost function(s) of a switched system. These methods use a

fixed mode sequence (see [42, 45–47]) or fixed switching instances [44]. In unknown

environments, switching may occur arbitrarily – either by the user’s design or from

environmental effects. The aforementioned methods do not account for an arbitrary

switching sequence.

Existing ADP methods have accounted for uncertain dynamics (e.g., [19]) or com-

pletely unknown dynamics (e.g., [48]). In [48] an additional NN is used to characterize

the unknown model of the dynamic system online, which facilitates approximation of the

value function. However, this online system identification method uses a single hidden-

layer NN. Recent advancements in adaptive control [49–52] use DNNs instead of single

or double hidden-layer NNs to approximate the dynamics online. DNN function approxi-

mation methods empirically show improved performance, but these methods often lack

performance guarantees. Hence, DNN-based methods may have limited adoption for

safety-critical applications. Results in [49] and [50] leverage a multi-timescale deep

model reference adaptive controller. The method in [52] uses a multi-timescale DNN to

estimate the unknown system dynamics, which facilitates a trajectory tracking objec-

tive. Specifically, in [52], the output-layer weights of the DNN are estimated using an

unsupervised learning algorithm to provide responsiveness and guaranteed tracking

performance with real-time feedback. The inner-layer features of the DNN are trained

with collected data sets, which are collected in real-time, to increase performance. The

inner-layer features are updated once a large amount of data is collected. The output-

layer weights are updated with a gradient-based adaptation policy in real-time. Hence,
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simultaneous to real-time execution, input-output data is stored and used to iteratively

update the inner-layer features using traditional offline DNN function approximation

methods. In ADP, the ideal NN weights of the system identifier must be exactly learned.

However, the method in [52] does not guarantee convergence of the weight approxima-

tions to their ideal values. Hence, the technique in [52] cannot be trivially extended to

ADP.

1.2 Outline of the Dissertation

In Chapter 2, the infinite-horizon optimal control problem and the value function

approximation technique are introduced.

Chapter 3 presents a framework for improving the computational efficiency of

R-MBRL methods by using SNNs to facilitate BE extrapolation. The BE is used as a

performance metric in ADP. BE indirectly measures the quality of the estimation of the

value function along the system trajectory. Previous works (e.g., [19] and [48]) show

that if the system dynamics are successfully estimated, then the BE can be evaluated

at an arbitrary number of points in a system’s state space. This process is called BE

extrapolation. Results such as [22] and [53] perform BE extrapolation in a neighborhood

of the current state, which facilitates value function approximation in that neighborhood.

Since a value function approximation is sought over a large region of the state space,

BE extrapolation is sometimes performed over large regions of the state space, which is

computationally expensive. Increasing the number of basis functions may improve value

function approximation; however, this comes at a high computational cost. Together,

BE extrapolation and a high-dimension basis functions for value function approximation

place a significant computational load on the computing resource.

The contribution of Chapter 3 is to analyze the stability of using a sparse, switched

BE term with a NN-based estimator within the existing R-MBRL ADP framework. This

chapter extends beyond previous results by considering the optimal tracking problem

with completely unknown drift dynamics and by quantifying the benefit of using SNNs in
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R-MBRL via simulations. There are two simulations in Chapter 3 . The first simulation

study demonstrates the ability to simultaneously estimate the system dynamics and

optimal control policy. The second simulation assumes knowledge of the system

dynamics to isolate the benefit of using sparse BE extrapolation; numerous simulation

cases are studied to quantify the benefit of using sparse BE extrapolation compared

existing results.

Chapter 4 leverages the BF transformation developed for the ADP controller in [38]

in the development of an R-MBRL ADP controller. The model-free result in [38] evalu-

ates the BE only along the system trajectory, resulting in the typical exploration versus

exploitation tradeoff. A contribution of Chapter 4 is the development of a framework

for sparse BE extrapolation (motivated by [19, 53, 54]) for off-trajectory learning of the

value function, while also adhering to BF constraints (unlike [19, 53, 54]). Specifically,

Chapter 4 provides an investigation of sparse BE extrapolation using a state-constraint

BF transform. The unique combination of BE extrapolation with the use of a BF raises

new questions such as – which states should be transformed? Is there a computa-

tional penalty for each state transformation? Should the BF transformation be applied

before or after the BE extrapolation (i.e., in which space should the extrapolation be

performed)? What are the implications of extrapolation stack updates in the transformed

state-space? The subsequent design and Lyapunov-based stability analysis provides

the first exploration of such questions in a manner that yields uniformly ultimately

bounded (UUB) convergence of the transformed states and approximation of the optimal

control policy. Simulation results are presented for a two-state dynamical system to

compare the developed method to existing model-free and model-based ADP methods.

Specifically, the developed R-MBRL approach with BFs, segmentation, and sparse BE

extrapolation can be applied to systems to achieve online approximate optimal control

with additional safety guarantees.
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In Chapter 5 a switched ADP method is developed. ADP-based controllers directly

tune system performance by assigning costs to the state and control variables. Altering

the parameters of the cost function in an ADP-based controller affects system perfor-

mance by modifying the reward gained from the system trajectory. Chapter 5 proposes

a method by which the parameters of the cost function and the system dynamics can

be discretely varied, and the corresponding optimal controllers can be simultaneously

learned and implemented in a way that maintains closed-loop stability during the learn-

ing phase. That is, different controller properties can be achieved by varying the cost of

the states.

Previous ADP results consider fixed state and control cost matrices within the

reward function, such as [19, 22, 41]. Works such as [55] and [56] examine the use of

ADP-based methods for switched discrete-time nonlinear systems. Previous results

such as [42–46] use optimal control methods to minimize cost function(s) of a switched

system. These methods use a fixed mode sequence (see [42,45–47]) or fixed switching

instances (see [44]). In comparison, the developed method considers an arbitrary

switching sequence that satisfies a dwell-time condition to approximate the value

functions of a finite number of continuous-time subsystems. Unlike the aforementioned

methods, Chapter 5 develops a Lyapunov-based framework to prove convergence of

a control policy to the neighborhood of an optimal policy while maintaining closed-loop

stability. While Chapter 5 focuses on a framework for switching between multiple ADP-

based controllers and modifying control system performance by using different rewards

and dynamical models, it does not address the optimality of the overall switched system.

A complication in Lyapunov-based analyses for switched systems is the growth

and discontinuity of Lyapunov functions at switching instances. To overcome this issue,

a dwell-time analysis is performed to prove stability of the overall switching sequence.

The included dwell-time analysis accounts for the worst-case growth and discontinuity

between multiple Lyapunov-like functions during switching instances by explicitly
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determining the minimum time required before the system can switch to a different

subsystem. Overall stability of the system for an arbitrary switching sequence of UUB

stable subsystems is established using the developed technique.

Chapter 6 develops a DNN-based system identifier for ADP. Results in [49] and [50]

leverage a multi-timescale deep model reference adaptive controller. Similarly, the

method in [52] uses a multi-timescale DNN to estimate the unknown system dynamics,

which facilitates a trajectory tracking objective. In [52], a gradient-based adaptation

policy is used to estimate the output layer weights of the DNN in real-time. Simultaneous

to real-time execution, input-output data is stored and used to update the inner-layer

weights using traditional offline DNN function approximation methods.

However, the adaptive update policy in [52] cannot be trivially extended to system

identification within the ADP framework. To prove stability of the overall system with an

ADP controller, the adaptive update policy of the output-layer DNN weights must include

the CL modification from [57], which complicates the stability analysis (cf., model-based

ADP analyses in [19] and [48]). Furthermore, iteratively updating the DNN introduces

nonsmooth signals, meaning that a more rigorous Lyapunov-like analysis must be

performed [58].

The primary contribution of Chapter 6 is to analyze the stability of the ADP tracking

problem while using the multi-timescale DNN system identification approach. Simu-

lation results are included to illustrate the effectiveness of the developed technique in

comparison to existing optimal control and ADP-based results.

Chapter 7 concludes the dissertation by highlighting the contributions of each

chapter and proposing future extensions of the work in this dissertation.
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CHAPTER 2
PRELIMINARIES

2.1 Notation

Let R, Z, and N denote the set of real numbers, integers, and natural numbers,

respectively. Furthermore, let R≥0 ≜ [0,∞) , R>0 ≜ (0,∞) , Z≥0 ≜ R≥0∩Z, Z>0 ≜ R>0∩Z,

N≥0 ≜ R≥0 ∩ N, N>0 ≜ R>0 ∩ N. Generally, let a matrix A ∈ Rp×q be a real-valued p × q

matrix where p, q ∈ Z>0. If p = q and A has real eigenvalues, then the maximum and

minimum eigenvalues of A are denoted by λmax {A} ∈ R and λmin {A} ∈ R, respectively.

The positive definite (PD) and positive semi-definite (PSD) square matrices A,B ∈ Rp×p

are denoted by A > 0 and B ≥ 0, respectively. Negative definite and negative semi-

definite matrices are denoted similarly.

Unless otherwise noted, the domain of all functions is assumed to be R≥0.

Functions with the domain R≥0 are defined with abuse of notation using only their

image, e.g., x : R≥0 → Rn is instead defined as x ∈ Rn. Generally, the gradient[
∂f(x,y)
∂x1

T
, . . . , ∂f(x,y)

∂xn

T
]T

is denoted by ∇xf (x, y) .

The Euclidean norm of a vector r ∈ Rp is denoted by ∥r∥ ≜
√
rT r. The Frobenius

norm of a matrix A ∈ Rn×m is denoted by ∥A∥ ≜
√
tr (ATA). ∥·∥ denotes both the

Euclidean norm for vectors and Frobenius norm for matrices. tr (·) denotes the trace

operator.

The diagonal matrix whose entries consist of x ≜ [x1, x2, ..., xp] ∈ Rp is denoted by

diag (x1, x2, ..., xp) ∈ Rp×p.

The Moore-Penrose pseudoinverse of A ∈ Rp×q is denoted by A+ ∈ Rq×p.

The p × q zero matrix and the p × 1 zero vector are denoted by 0p×q and 0p,

respectively. Let 1p ∈ Rp denote a column vector with all entries being 1. The p × p

identity matrix is denoted by Ip.

23



2.2 Approximate Dynamic Programming

This dissertation focuses on obtaining online approximate solutions to infinite-

horizon optimal control problems. Consider a class of nonlinear control-affine systems

ẋ = f (x) + g (x)u, (2–1)

where x ∈ Rn denotes the system state, u ∈ Rm denotes the control input, f : Rn → Rn

denotes the drift dynamics, and g : Rn → Rm×n denotes the control effectiveness matrix,

where n > m and the pseudoinverse of g (x) exists.

The assumptions in this section facilitate the formulation of the approximate optimal

controller and stability analyses in Chapters 3-6.

Assumption 2.1. The function f is locally Lipschitz and f (0) = 0. Furthermore,

∇xf : Rn → Rn×n is continuous.

Assumption 2.2. The function g is a locally Lipschitz function, has full column rank for

all x ∈ Rn, and is bounded such that ∥g (x)∥ ≤ g, where g ∈ R>0 is the maximum singular

value of g (x).

The control objective is to solve the infinite-horizon optimal regulation problem for

each subsystem, i.e., determine a control policy u that minimizes the infinite horizon cost

functional, J : Rn × Rm → R≥0, defined as

J (x, u) ≜
ˆ ∞

t0

r (x (τ) , u (τ)) dτ, (2–2)

subject to (2–1) while regulating the system states to the origin (i.e., ∥x∥ = 0), where

r : Rn × Rm → R≥0 is the instantaneous cost defined as r (x, u) ≜ Q (x) + uTRu, where

Q : Rn → R≥0 is a user-defined PD function, and R ∈ Rm×m is a constant user-defined

PD symmetric matrix.

Property 1. The function Q satisfies q (∥x∥) ≤ Q (x) ≤ q (∥x∥) for q, q : R≥0 → R≥0.
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The infinite horizon value function (i.e., the cost to go) is denoted by V ∗ : Rn → R≥0

and given by

V ∗ (x) = min
u(τ)∈U, τ∈R≥t

ˆ ∞

t

r (x (τ) , u (τ)) dτ, (2–3)

where U ⊆ Rm denotes the action space. Provided an optimal control policy exists, the

value function is characterized by the corresponding HJB equation

0 = ∇xV
∗ (x) (f (x) + g (x)u∗) + r (x, u∗) , (2–4)

with the boundary condition V ∗ (0) = 0. Generally, the HJB equation cannot be solved

analytically, with the exception of a few special cases, specifically, linear and scalar

systems.

Assumption 2.3. The value function V ∗ is continuously differentiable.

Provided the HJB in (2–4) admits a continuously differentiable PD solution, then the

optimal closed-loop control policy u∗ : Rn → Rm is

u∗ (x) = −1

2
R−1g (x)T (∇xV

∗ (x))T . (2–5)

Remark 2.1. Under Assumptions 2.1-2.3, the optimal value function can be shown to

be the unique PD solution of the HJB equations. Approximation of the PD solution to

the HJB equation is guaranteed by appropriately selecting initial weight estimates and

Lyapunov-based update laws [59].

The HJB equation in (2–4) requires knowledge of the optimal value function, which,

generally, is an unknown function for nonlinear systems. Parametric methods can be

used to approximate the value function over a compact domain. To facilitate the solution

of (2–4), let Ω ⊂ Rn be a compact set containing the origin. The universal function

approximation property of single-layer NNs is used to represent the value function V ∗ for

all x ∈ Ω as

V ∗ (x) = W ∗Tσ (x) + ϵ (x) , (2–6)
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where W ∗ ∈ RL is an unknown bounded vector of weights, σ : Rn → RL is a user-

defined vector of basis functions, and ϵ : Rn → R is the bounded function approximation

error. Substituting (2–6) into (2–5), the optimal control policy u∗ can be expressed in

terms of the optimal value function V ∗ gradient as

u∗ (x) = −1

2
R−1g (x)

(
∇xσ (x)T W ∗ +∇xϵ (x)

T
)
. (2–7)

Property 2. There exists a set of constants that bound the unknown ideal weight

vector W ∗, the user-defined activation function σ, and function reconstruction error ϵ,

from above such that ∥W ∗∥ ≤ W ∗, supx∈Ω ∥σ (x)∥ ≤ σ, supx∈Ω ∥∇xσ (x)∥ ≤ ∇xσ,

supx∈Ω ∥ϵ (x)∥ ≤ ϵ, supx∈Ω ∥∇xϵ (x)∥ ≤ ∇xϵ, where W ∗, σ, ∇xσ, ϵ, ∇xϵ ∈ R≥0 [60].

2.2.1 Value Function Approximation

Since the ideal weights W ∗ are unknown, a parametric estimate, called the critic

weight vector Ŵc ∈ RL, is substituted to approximate the optimal value function in (2–6)

to yield V̂ : Rn × RL → R, where

V̂
(
x, Ŵc

)
= Ŵ T

c σ (x) . (2–8)

An actor weight vector Ŵa ∈ RL, is used to provide an approximate version of (2–7), the

approximate optimal control policy û : Rn × RL → R is given by

û
(
x, Ŵa

)
= −1

2
R−1g (x)T

(
∇xσ (x)T Ŵa

)
. (2–9)

2.2.2 Bellman Error

The HJB equation in (2–4) is equal to zero under optimal conditions; however,

substituting (2–8) and (2–9) into (2–4) results in a residual term δ : Rn × RL × RL → R,

which is referred to as the BE, defined as

δ
(
x, Ŵc, Ŵa

)
≜ ∇xV̂

(
x, Ŵc

)(
f (x) + g (x) û

(
x, Ŵa

))
+ û

(
x, Ŵa

)T
Rû
(
x, Ŵa

)
+Q (x) ,

(2–10)
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where ∇xV̂
(
x, Ŵc

)
= Ŵ T

c ∇xσ (x) . The BE is indicative of how close the actor and

critic weight estimates are to the ideal weights. By defining the mismatch between the

estimates and the ideal values as W̃c ≜ W ∗ − Ŵc and W̃a ≜ W ∗ − Ŵa, substituting (2–6)

and (2–7) in (2–4), and subtracting from (2–10) yields

δ =
1

4
W̃ T

a GσW̃a − ωT W̃c +O (x) , (2–11)

where ω : Rn × RL → Rn is defined as

ω
(
x, Ŵa

)
≜ ∇xσ (x)

(
f (x) + g (x) û

(
x, Ŵa

))
, (2–12)

and O (x) ≜ 1
2
W ∗T∇xσ (x)G∇xϵ

T + 1
4
Gϵ − ∇xϵf (x) . G, Gσ, and Gϵ are defined

as G = G (x) ≜ g (x)R−1g (x)T , Gσ = Gσ (x) ≜ ∇xσ (x)G (x)∇xσ (x)T , and

Gϵ = Gϵ (x) ≜ ∇xϵ (x) g (x)∇xϵ (x)
T , respectively.

Remark 2.2. The expressions in (2–10) and (2–11) are equivalent for the BE. However,

(2–10) is used in implementation, while (2–11) is used in the Lyapunov-based stability

analysis.

2.3 Extension to Tracking Problems

Following the development in [61], the following section modifies the above ADP

problem formulation to facilitate a trajectory tracking objective. The control objective is

to track a time-varying continuously differentiable signal xd ∈ Rn bounded such that

supt∈R≥0
∥xd (t)∥ ≤ xd. To quantify the tracking objective, the tracking error is defined as

e ≜ x− xd.

Assumption 2.4. The desired trajectory is bounded from above by an positive constant

xd ∈ R≥0 such that supt∈R≥0
∥xd∥ ≤ xd.

Assumption 2.5. There exists a locally Lipschitz function hd : Rn → Rn, such that

hd (xd) ≜ ẋd and g (xd) g
+ (xd) (hd (xd)− f (xd)) = hd (xd) − f (xd) , ∀t ∈ R≥0, where

g+ : Rn → Rm×n is defined as g+ (x) ≜
(
gT (x) g (x)

)−1
gT (x) .
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Based on Assumptions 2.1-2.5, the control policy ud : Rn → Rm, which tracks

the desired trajectory (i.e., trajectory tracking component of the controller), is ud (xd) ≜

g+ (xd) (hd (xd)− f (xd)) .

Define the transient portion of the controller as µ ≜ u − ud (xd) . Following the

development in [61] and [48], the concatenated state dynamics are written as

ζ̇ = F (ζ) +G (ζ)µ, (2–13)

where ζ ∈ R2n is the concatenated state vector ζ ≜
[
eT , xT

d

]T
, F : R2n → R2n is defined

as

F (ζ) ≜
[
f (e+ xd)

T − hd (xd)
T + ud (xd)

T g (e+ xd)
T , hd (xd)

T
]T

, (2–14)

and G : R2n → R2n×m is defined as

G (ζ) ≜
[
g (e+ xd)

T ,0m×n

]T
, (2–15)

where 0m×n is a matrix of zeros with m rows and n columns.

The control objective is to solve the infinite-horizon optimal tracking problem, i.e. to

find a control policy u that minimizes the cost functional

J (ζ, µ) =

∞̂

0

r (ζ (τ) , µ (τ)) dτ, (2–16)

subject to (2–13) while eliminating tracking error, where r : R2n × Rm → R is the

instantaneous cost, which is defined as r (ζ, µ) ≜ Q (ζ) + µTRµ , where Q ∈ R2n → R≥0

is defined as Q (ζ) ≜ Q (e) ,where Q : Rn → R≥0 is a user-defined PD function and

R ∈ Rm×m is a constant user-defined PD symmetric matrix.

Property 3. The function Q satisfies q (∥e∥) ≤ Q (ζ) ≤ q (∥e∥), where q, q : R≥0 → R≥0.
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The scalar infinite-horizon value function for the optimal solution, i.e. the cost-to-go,

denoted by V ∗ : R2n → R≥0, is given by

V ∗ (ζ) = min
µ(τ)∈U, τ∈R≥0

∞̂

t

r (ζ (τ) , µ (τ)) dτ, (2–17)

where U ⊆ Rm denotes the action space. If the optimal value function is continuously

differentiable, then the optimal control policy µ∗ : R2n → Rm is the unique solution to the

corresponding HJB equation

0 = ∇ζV
∗ (ζ) (F (ζ) +G (ζ)µ∗) +Q (ζ) + µ∗ (ζ)T Rµ∗ (ζ) , (2–18)

which has the boundary condition V ∗ (0) = 0.

Value Function Approximation

The HJB equation in (2–18) requires knowledge of the optimal value function. To

facilitate the solution of (2–18), let Ω ⊂ R2n be a compact set. The universal function

approximation property of NNs is used to represent the optimal value function as

V ∗ (ζ) = W ∗Tσ (ζ) + ϵ (ζ) , (2–19)

where W ∗ ∈ RL is an unknown bounded weight vector, σ : R2n → RL is a user-defined

vector of basis functions, and ε : R2n → R is the bounded function approximation error.

Like the regulation case, the optimal control policy µ∗ can be expressed in terms of the

optimal value function V ∗ gradient as

µ∗ (ζ) = −1

2
R−1G (ζ)

(
∇ζσ (ζ)T W ∗ +∇ζϵ (ζ)

T
)
. (2–20)

Remark 2.3. Like ADP for state regulation, under Assumptions 2.1-2.5, the optimal

value function can be shown to be the unique PD solution of the HJB equations.

Approximation of the PD solution to the HJB equation is guaranteed by appropriately

selecting initial weight estimates and Lyapunov-based update laws [59].
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The ideal weights W ∗ in (2–19) and (2–20) are unknown, hence, an approximation

of W ∗ is sought. Specifically, the critic estimate, Ŵc ∈ RL is substituted to estimate the

value function V̂ : R2n × RL → R denoted as

V̂
(
ζ, Ŵc

)
= Ŵ T

c σ (ζ) . (2–21)

Using an actor-critic approach [16, 62, 63], an actor estimate, Ŵa ∈ RL is substituted to

estimate the optimal control policy µ̂ : R2n × RL → R defined by

µ̂
(
ζ, Ŵa

)
≜ −1

2
R−1G (ζ)T

(
∇ζσ (ζ)T Ŵa

)
. (2–22)

The omitted development of the BE follows that of (2–10) but the notation used to

facilitate the optimal tracking problem formulation. Similarly, Property 6 holds for the NN

parameterization in (2–19).
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CHAPTER 3
REINFORCEMENT LEARNING WITH SPARSE BELLMAN ERROR EXTRAPOLATION

FOR INFINITE HORIZON APPROXIMATE OPTIMAL CONTROL

This chapter and the work in [64] and [65] provide an approximate online adaptive

solution to the infinite-horizon optimal tracking problem for control-affine continuous-

time nonlinear systems with uncertain drift dynamics; computational demands are

reduced through the use of state space segmentation and SNNs. A model-based ADP

approach, which is facilitated by the use of a CL-based system identifier, is used to relax

the PE condition. To reduce computational complexity the state space is segmented

into a user-defined number of segments. In addition, within each segment a SNN

can be used instead of a conventional NN for BE extrapolation. Off-policy trajectories

are selected over each segment to facilitate learning of the value function weight

estimates. SNNs enable a framework for switching and state space segmentation as

well as computational benefits due to the a smaller number of neurons being activated.

Within each sparse segment, off-policy trajectories are used to extrapolate the BE

across their respective segments to provide an optimal policy for each segment.

Discontinuities occur in the weight update laws since different groupings of extrapolated

BEs are active in certain regions of the state space. A Lyapunov-like stability analysis is

presented to prove boundedness of the overall system in the presence of discontinuities.

Three simulation results are included to demonstrate the performance and validity of

the developed method. An additional simulation result shows that using the sparse,

switched BE extrapolation method developed in this chapter reduces the computation

time by 85.6% when compared to traditional BE extrapolation.

3.1 Online System Identification

On any compact set C ⊂ Rn, the tracking drift dynamics f can be represented

using a NN as f (x) = θTσθ

(
Y Txθ (x)

)
+ ϵθ (x) , where xθ : Rn → Rn+1 is defined

as xθ (x) ≜
[
1, xT

]T
, θ ∈ R(p+1)×n is a constant, unknown output-layer weight matrix,

Y ∈ R(n+1)×p denotes a hidden-layer weight matrix, σθ : Rp → Rp+1 is a NN basis
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function, ϵθ : Rn → Rn is the NN reconstruction error, and p ∈ N is the user-defined

number of neurons in the NN. Using the universal function approximation property of

single layer NNs there exists constant weights θ and known finite constants θ, ϵθ, and

∇xϵ ∈ R≥0, such that ∥θ∥ ≤ θ, sup
x∈C

∥ϵθ (x)∥ ≤ ϵθ, and sup
x∈C

∥∇xϵθ (x)∥ ≤ ∇xϵθ [60].

Let θ̂ ∈ R(p+1)×n be an estimate of the ideal weight matrix θ. The drift dynamics

f are approximated by the function f̂ : Rn × R(p+1)×n → Rn defined as f̂
(
x, θ̂
)

≜

θ̂Tσθ

(
Y Txθ (x)

)
. Hence, a state estimator can be developed as

˙̂x = f̂
(
x, θ̂
)
+ g (x)u+ kx̃, (3–1)

where x̃ ≜ x − x̂ and k ∈ R>0 is a user-selected estimator learning gain. The update

law of the system identification NN weight estimates are updated using the CL-based

update law

˙̂
θ = Γθσθ

(
Y Txθ (xj)

)
x̃T + kθΓθ

M∑
j=1

σθj

(
ẋj − g (xj)uj − θ̂Tσθj

)T
, (3–2)

where Γθ ∈ R(p+1)×(p+1) and kθ ∈ R>0 are constant user-selected adaptation gains.

Assumption 3.1. A history stack of input-output data pairs {xj, uj}Mj=1 and history stack

of numerically-computed state derivatives
{
ẋj

}M
j=1

which satisfies λmin

{∑M
j=1 σθjσ

T
θj

}
>

0 and
∥∥ẋj − ẋj

∥∥ < d ∀j are available a priori, where d ∈ R>0 is a known constant,

ẋj = f (xj) + g (xj)uj, σθj ≜ σθ

(
Y Txθ (xj)

)
[66].

Remark 3.1. The availability of the system identification history stack a priori is not

necessary [48]. Assumption 3.1 is used to focus the scope of this chapter and simplify

the stability analysis.

3.2 Bellman Error

Recall, the HJB equation in (2–18) is equal to zero under optimal conditions;

however, substituting (2–21), (2–22), and the approximated drift dynamics F̂
(
x, θ̂
)

as

F (x) in (2–18) results in a residual term, δ̂ : R2n × R(p+1)×n × RL × RL → R, which is
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referred to as the BE, defined as

δ̂
(
ζ, θ̂, Ŵc, Ŵa

)
≜ µ̂

(
ζ, Ŵa

)T
Rµ̂
(
ζ, Ŵa

)
+Q (ζ)

+∇ζ V̂
(
ζ, Ŵc

)(
Fθ

(
ζ, θ̂
)
+ F1 (ζ) +G (ζ) µ̂

(
ζ, Ŵa

))
, (3–3)

where Fθ : R2n × R(p+1)×n → R2n is defined as

Fθ

(
ζ, θ̂
)
≜
[
f̂
(
x, θ̂
)
− g (x) g+ (xd) f̂

(
xd, θ̂

)
, 0n×1

]
, (3–4)

and F1 : R2n → R2n is defined as

F1 (ζ) ≜
[(
−hd (xd) + g (x) g+ (xd (t))hd (xd)

)T
, hd (xd)

T
]T

. (3–5)

The BE in (3–3) indicates how close the actor and critic weight estimates are to their

respective ideal weights. The mismatch between the estimates and their ideal values

are defined as W̃c ≜ W ∗ − Ŵc and W̃a ≜ W ∗ − Ŵa. Substituting (2–21) and (2–22) into

(3–3), and subtracting from (3–3) yields the analytical form of the BE, given by

δ̂
(
ζ, θ̂, Ŵc, Ŵa

)
= −W ∗T∇ζσ

(
Fθ (ζ, θ)− Fθ

(
ζ, θ̂
))

− ωT W̃c +
1

4
W̃ T

a GσW̃a +O (ζ) ,

(3–6)

where ω : R2n × RL × R(p+1)×n → RL is defined as ω
(
ζ, Ŵa, θ̂

)
≜ ∇ζσ (ζ)Fθ

(
ζ, θ̂
)
+

∇ζσ (ζ)F1 (ζ) + ∇ζσ (ζ)G (ζ) µ̂
(
ζ, Ŵa

)
, and O (ζ) ≜ 1

2
∇ζϵ (ζ)GR∇ζσ

T (ζ)W ∗ + 1
4
Gϵ −

W ∗T∇ζσ (ζ) ϵθ (ζ) − ∇ζϵ (ζ)Fθ (ζ, θ) − ∇ζϵ (ζ) ϵθ (ζ) − ∇ζϵ (ζ)F1 (ζ) . The notation

GR, Gσ, and Gϵ is defined as GR = GR (ζ) ≜ G (ζ)R−1G (ζ)T , Gσ = Gσ (ζ) ≜

∇ζσ (ζ)GR (ζ)∇ζσ (ζ)T , and Gϵ = Gϵ (ζ) ≜ ∇ζϵ (ζ)G (ζ)∇ζϵ (ζ)
T , respectively.

Sparse Bellman Error Extrapolation

At each time instant t ∈ R≥0, the estimated BE in (3–3) and policy in (2–22) are

evaluated using the current system state, critic estimate, and actor estimate to get the

instantaneous BE and control policy, which are denoted by δ̂ ≜ δ̂
(
ζ, θ̂, Ŵc, Ŵa

)
and
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µ̂ ≜ µ̂
(
ζ, Ŵa

)
, respectively. However, using only the on-trajectory BE and control policy

requires the traditional PE condition to be satisfied to show exponential convergence.

Motivated to increase computational efficiency, local BE extrapolation has been

performed in [22] and [53] around unexplored areas of the state space by using more

efficient computational capabilities compared with previous methods. Similarly, using

SNNs improves computational efficiency and use segmentation for BE extrapola-

tion. This allows the BE to be estimated across a larger, combined region of the state

space. Therefore, leveraging the increased computational efficiency of SNNs and seg-

mentation to extrapolate the BE, the BE can be estimated across the entire operating

region within the state space without the computational burden of nonsparse methods.

The use of BE extrapolation provides simulation of experience, which provides excitation

via off-policy learning.

To facilitate the sparse BE extrapolation, let the operating domain Ω be partitioned

into S ∈ N segments such that S ≜ {j ∈ N|j ≤ S} defines the set of segments in

the operating domain as Ω =
⋃S

j=1 Ωj. To simulate PE and extrapolate BE over off-

policy trajectories, the segments {ζi : ζi ∈ Ωj}Nj

i=1 are selected, where Nj ∈ N denotes

the number of extrapolated states in each segment Ωj. Each segment is assigned a

certain number of off-policy trajectories. The segments are predetermined by the user

and are state dependent (e.g. in [32] the states: altitude, angle of attack, and Mach

number determine segment activation). Using the extrapolated trajectories ζi ∈ Ωj

for j ∈ S, the BE in (3–3) is evaluated such that δ̂i ≜ δ̂
(
ζi, θ̂, Ŵc, Ŵa

)
. For a given

j ∈ S, the tuple
(
Σj

c,Σ
j
a,Σ

j
Γ

)
is defined as the extrapolation stacks corresponding to Ωj

such that Σj
c ≜ 1

Nj

∑Nj

i=1
ωi

ρi
δ̂i, Σj

a ≜ 1
Nj

∑Nj

i=1
GT

σiŴaωT
i

4ρi
, and Σj

Γ ≜ 1
Nj

∑Nj

i=1
ωiω

T
i

ρi
, where

ωi ≜ ω
(
ζi, θ̂, Ŵa

)
, ρi = ρ

(
ζi, θ̂, Ŵa

)
= 1 + νωT

i Γωi, Γ ∈ RL×L is a subsequently defined

user-initialized learning gain, and Assumption 3.2 is provided to facilitate the subsequent

stability analysis.
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Assumption 3.2. Over each segment j ∈ S, there exist a finite set of trajectories

{ζi : ζi ∈ Ωj}Nj

i=1 such that 0 < c ≜ inft∈R≥0, j∈S λmin

{
Σj

Γ

}
for all t ∈ R≥0.

Remark 3.2. The constant c is the lower bound of the value of each input-output data

pairs’ minimum eigenvalues.

Remark 3.3. The BE extrapolations can be performed in parallel if needed (i.e., BE

extrapolation across multiple segments can be performed simultaneously). Since

SNNs are used to improve computational efficiency, the extrapolation within multiple

segments can be performed at once. For certain systems, parallel computing may

be more computationally efficient in time and power when compared to methods that

use traditional NNs for BE extrapolation across the entire state space. One difference

in the developed technique compared to previous results is that the actor and critic

update laws take a new form in which switching extrapolation stacks are introduced.

The extrapolation stacks, Σj
c, Σ

j
Γ, and Σj

a correspond to user-defined segments of the

state space. Upon entering a new segment of the state space, the extrapolation stacks

will recall data previously recorded from when the system was last operating in that

segment. This allows the user to use separate analysis tools (e.g., machine learning

tools) to select segment properties (e.g., size, spacing, quantity, etc.). Switching

extrapolation stacks introduces discontinuities in the time-derivative of the candidate

Lyapunov function, requiring a more nuanced stability analysis with generalized solution

to differential inclusions.

3.3 Actor and Critic Weight Update Laws

Using the instantaneous BE δ̂ and extrapolated BEs δ̂i, the critic and actor weights

are updated according to

˙̂
Wc =− ηc1Γ

ω

ρ
δ̂ − ηc2ΓΣ

j
c, (3–7)
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Γ̇ =

(
λΓ− ηc1

ΓωωTΓ

ρ2
− Γηc2

(
Σj

Γ

)
Γ

)
1{Γ≤∥Γ∥≤Γ}, (3–8)

˙̂
Wa =− ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa +

ηc1G
T
σ Ŵaω

T

4ρ
Ŵc + ηc2Σ

j
aŴc, (3–9)

where ηc1, ηc2, ηa1, ηa2, λ ∈ R>0 are constant learning gains, Γ andΓ ∈ R>0 are upper

and lower bound saturation constants, and 1{·} denotes the indicator function. ∥Γ (t)∥ is

upper and lower bounded by user-defined saturation constants, Γ and Γ, respectively.

Using (4–25) ensures that Γ ≤ ∥Γ (t)∥ ≤ Γ for all t ∈ R>0. The indicator function in

(4–25) can be removed with additional assumptions and modifications outlined in [22].

3.4 Stability Analysis

To facilitate the stability analysis, let θ̃ ≜ θ − θ̂, and Z ∈ Rn(3+p)+2L denote a

concatenated state Z ≜

[
eT , W̃ T

c , W̃
T
a , x̃

T , vec
(
θ̃
)T]T

. The function Q is PSD, therefore

V ∗ (ζ) is also PSD. Hence, V ∗ is not a valid Lyapunov function. The result in [61] can be

used to show that a nonautonomous form of V ∗, denoted as V ∗
na : Rn × R≥0 → R and

defined as V ∗
na (e, t) ≜ V ∗ (ζ) , is PD and decrescent. Furthermore, V ∗

na (0, t) = 0 ∀t ∈ R≥0

and there exist class K∞ functions v, v : R≥0 → R≥0 that bound v (∥e∥) ≤ V ∗ (e, t) ≤

v (∥e∥) ∀e ∈ Rn, t ∈ R≥0. Hence, V ∗
na (e, t) is a valid Lyapunov function candidate. Let

VL : Rn(3+p)+2L × R≥0 → R be a candidate Lyapunov function defined as

VL (Z, t) ≜ V ∗ (e, t) +
1

2
W̃c (t)

T Γ (t)−1 W̃c (t) +
1

2
W̃a (t)

T W̃a (t)

+
1

2
x̃ (t)T x̃ (t) +

1

2
tr
(
θ̃ (t)T Γ−1

θ θ̃ (t)
)
. (3–10)

Using the properties of V ∗
na (e, t) and [67, Lemma 4.3], then (3–10) be bounded as

α1 (∥Z∥) ≤ VL (Z, t) ≤ α2 (∥Z∥) for class K functions α1, α2 : R≥0 → R≥0. Using

(3–8), the normalized regressors ω
ρ

and ωi

ρi
can be bounded as supζ∈Ω

∥∥∥ω
ρ

∥∥∥ ≤ 1

2
√

νΓ
and

supζi∈Ωj , j∈S

∥∥∥ωi

ρi

∥∥∥ ≤ 1

2
√

νΓ
. The matrices GR and Gσ can be bounded as supζ∈Ω ∥GR∥ ≤

λmax {R−1}G2
≜ GR and supζ∈Ω ∥Gσ∥ ≤

(
∇ζσG

)2
λmax {R−1} ≜ Gσ, respectively.
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Theorem 3.1. Provided the dynamics in (2–13), Assumption 3.2, and the sufficient gain

conditions

ηa1 + ηa2 ≥
1√
νΓ

(ηc1 + ηc2)W ∗Gσ, (3–11)

c ≥ 3
ηa1
ηc2

+
3
(
(ηc1 + ηc2)W ∗Gσ

)2
16ηc2νΓ (ηa1 + ηa2)

+
9
(
(ηc1 + ηc2)W ∗∇ζσϕ

)2
8ηc2kθνΓλmin

{∑M
j=1 ϕjϕT

j

} (3–12)

ν−1
l (l) < α−1

2 (α1 (r)) , (3–13)

where l and r are positive constants, then the system state ζ, weight estimation errors

W̃c and W̃a, state estimation error x̃, output-layer weight matrix error θ̃, and control policy

µ̂ are UUB.

Proof. Let r ∈ R>0 be the radius of a compact ball χ ⊂ Rn(3+p)+2L centered at the origin.

Let Z (t) for t ∈ R≥0 be a Filippov solution to the differential inclusion Ż ∈ K [h] (Z),

where K [·] is defined in [68] and h : Rn(4+p)+2L+L2 → Rn(4+p)+2L+L2 is defined as

h ≜

[
ζ̇T , ˙̃W T

c ,
˙̃W T
a , vec

(
Γ̇−1
)T

, ˙̃xT , vec
(
˙̃θ
)T]T

. Due to the discontinuity in the update

laws in (3–7)-(3–9), the time derivative of (3–10) exists almost everywhere (a.e., i.e.,

for almost all t ∈ R≥0) and V̇L (Z)
a.e.
∈ ˙̃VL (Z), where ˙̃VL is the generalized time-

derivative of (3–10) along the Filippov trajectories of Ż = h (Z) [69]. Using the class of

dynamics in (2–1); the calculus of K [·] from [69]; V̇ ∗ (ζ) = ∇ζV
∗ (ζ) (F (ζ) +G (ζ)µ);

substituting (3–1), (3–2), and (3–6)-(3–9); using Young’s Inequality and nonlinear

damping; Assumption 3.1 and 3.2; and substituting the sufficient conditions in (3–11)

and (3–12) yields V̇L

a.e.

≤ −νl (∥Z∥) , ∀ν−1
l (l) ≤ ∥Z∥ ≤ α−1

2 (α1 (r)) , where νl (∥Z∥) ≜

q(∥e∥)
2

+ ηc2c
12

∥∥∥W̃c

∥∥∥2 + ηa1+ηa2
16

∥∥∥W̃a

∥∥∥2 + k
4
∥x̃∥2 + kθλmin{∑M

j=1 ϕjϕ
T
j }

6

∥∥∥vec(θ̃)∥∥∥2 . Since (3–10)

is a common Lyapunov-like function across each segment j ∈ S, [67, Theorem 4.18]

can be invoked to conclude that Z is UUB such that lim supt→∞ ∥Z∥ ≤ α−1
1

(
α2

(
ν−1
l (l)

))

37



and µ̂ converges to a neighborhood around the optimal policy µ∗. Furthermore, since

Z ∈ L∞, it follows that e, W̃c, W̃a, x̃, θ̃ ∈ L∞, hence x, Ŵc, Ŵa, θ̂ ∈ L∞ and u ∈ L∞.

Remark 3.4. The sufficient condition in (3–11) can be satisfied by increasing the

gains ηa2 and ν, and selecting a penalty weight matrix R such that λmax {R−1} is small.

Selecting a R with a large minimum eigenvalue and a large gain ν will also help satisfy

the gain condition in (3–12) by decreasing the right-hand-side. The sufficient condition

in (3–12) can be satisfied by selecting off-policy trajectories for sparse BE extrapolation

in each Ωj such that the minimum eigenvalue c ≤ cj ≜ inft∈R≥

{
Σj

Γ (t)
}

is large enough

for each j ∈ S. The minimum eigenvalue of each Σj
Γ (t) can be increased by collecting

redundant data, i.e., selecting Nj ≫ L for each segmented neighborhood Ωj ⊂ Ω and

j ∈ S. Provided the basis functions used for approximation are selected such that ∇sσ,

ϵ, and ∇sϵ are small, and ηa2, λmax {R}, ν, and c are selected sufficiently large, then the

sufficient condition in (3–13) can be satisfied [48].

3.5 Simulation Results

Simulations were performed in MATLAB® Simulink®. The simulation PC has an

Intel® Core™ i7-8750H CPU @ 2.20 GHz with 16 GB DDR3 RAM.

3.5.1 2-State System with Unknown Dynamics

In the following section, the developed technique is applied and compared to a

linear quadratic tracking problem. The cost function is selected as r (ζ, µ) = eTQe +

µTRµ. The linear system

ẋ =

 −1 1

−1
2

−1
2

x+

 0

1

u (3–14)

is leveraged in this simulation due to the fact that an analytical solution to the HJB

equation in (2–18) can be calculated. The system in (3–14) was selected because it

has been used in previous ADP works [48]. The control objective is to track the desired
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trajectory

xd (t) = [4 sin (t) , 4 cos (t) + 4 sin (t)]T (3–15)

and to minimize the infinite horizon cost function in (2–17), where Q = 10× I2 and R = 1.

For value function approximation, the basis is selected as

σ (ζ) =
[
e21, e1e2, e1xd1, e1xd2, e

2
2, e2xd1, e2xd2

]T
. (3–16)

The drift dynamics are unknown, but are approximated using the developed method.

The unknown drift dynamics are approximated with the linear basis σθ (x) = [x1, x2]
T . To

facilitate the sparse BE extrapolation, two segments are defined: Ω1 ⊂ R2 and Ω2 ⊂ R2,

where Ω1 ≜ {e ∈ R2 : 6 < |e1| ≤ 15, 6 < |e2| ≤ 15} and Ω2 ≜ {e ∈ R2 : |e1| ≤ 6, |e2| ≤ 6} .

The basis used over Ω1 is

σi (ζi) =
[
e21,i, e1,ie2,i, e1,ixd1,i, e1,ixd2,i, e

2
2,i, e2,ixd1,i, e2,ixd2,i

]T ∀ζi ∈ Ω1 (3–17)

with N1 = 150 extrapolated trajectories. The basis used over Ω2 is

σi (ζi) =
[
e21,i, e1,ie2,i, 0, 0, e

2
2,i, e2,ixd1,i, e2,ixd2,i

]T ∀ζi ∈ Ω2 (3–18)

with N2 = 90 extrapolated trajectories. The initial conditions used for the simulated

system are x (0) = [−10, 10]T , Ŵc (0) = 10 · 17, Ŵa (0) = 5 · 17, Γ (0) = 1000 · I7, and

θ̂ (0) = 04,
1 where 1n and 0n are vectors of ones and zeros with n entries, respectively.

The gains were selected as ηc1 = 0.5, ηc2 = 10, ηa1 = 10, ηa2 = 0.001, λ = 0.1, ν = 0.005,

Γ = 104, Γ = 1, kθ = 500, and Γθ = 0.01× I7.

3.5.2 2-State System Simulation Results

Figure 3-1 illustrates the convergence of the error trajectories to zero (Figure 3-1(a))

and the state space portrait for the two-state system in (3–14) (Figure 3-1(b)). The

1 From (3–14), θ =
[
−1, 1,−1

2
,−1

2

]T
.
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value function and control policy weight estimates are shown in Figure 3-2. The critic

NN weights converge within approximately 3 seconds. The actor NN weights converge

within approximately 3.5 seconds. The actor is expected to converge slower than the

critic because the actor tracks the critic weights. Figure 3-3 presents the trajectories

of the system identification NN weights compared to their actual values. Note that

the NN system ID weight converge faster than the actor-critic ADP weights converge.

Figure 3-4 indicates that the ADP control policy converges to the optimal control policy

in approximately 0.5 seconds. The optimal value function is analytically determined

by solving the HJB equation for the linear system in (3–14). Figure 3-5 presents the

optimal control policy compared the estimated optimal control policy, which takes

approximately 4.5 seconds to converge. It is shown in this simulation example that

the approximated optimal control policy converges close to the optimal control policy.

This simulation illustrates the ability to use a sparse basis for BE extrapolation while

switching extrapolation stacks to achieve trajectory tracking, convergence to the optimal

control policy, and convergence to the optimal value function.

3.5.3 Two-Link Manipulator with Exact Model Knowledge Simulation

To further validate the performance of the developed technique, an additional

simulation is performed on a two-link robotic manipulator, in which the dynamics

are known. In this simulation case the dynamics are assumed to be known. The

two-link manipulator dynamics are described using Euler-Lagrange dynamics as

u = M (q) q̈ + Vm (q) q̇ + Fdq̇ + Fs (q̇) ,where q ≜ [q1, q2]
T , q̇ = [q̇1, q̇2]

T , and q̈ =

[q̈1, q̈2]
T are the angular positions in radians, the angular velocities in radians per

second of each link, and the angular acceleration in radians per second squared of

each link, respectively. The inertia matrix M : R2 → R2×2 is defined as M (q) ≜ p1 + 2p3 cos (q2) p2 + p3 cos (q2)

p2 + p3 cos (q2) p2

 ; the centripetal-Coriolis matrix Vm : R2 → R2×2 is
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defined as Vm (q) ≜

 −p3 sin (q2) q̇2 −p3 sin (q2) (q̇1 + q̇2)

p3 sin (q2) q̇1 0

 ; the viscous friction term

Fd ∈ R2×2 is defined as Fd ≜ diag (fd1, fd2) , and the static friction term Fs : R2 → R2 is

defined as Fs (q̇) ≜ [fs1 tanh (q̇1) , fs2 tanh (q̇2)]
T . In this simulation p1 = 3.473, p2 = 0.196,

p3 = 0.242, fd1 = 5.3, fd2 = 1.1, fs1 = 8.45, and fs2 = 2.35.

The objective is to determine a policy µ to ensure that the state x = [q1, q2, q̇1, q̇2]
T

tracks the desired trajectory xd = [cos (0.5t) , 2 cos (t) , −0.5 sin (0.5t) , −2 sin (t)]T while

minimizing the cost function, which is selected as r (ζ, µ) = eTQe+ µTRµ. The dynamics

for the two-link robotic system can be rewritten in the form

f (x) =

 q̇

(M−1 (q) ((−Vm (q)− Fd) q̇ − Fs (q̇)))
T

 , (3–19)

g (x) =

[[
0, 0

]T
,

[
0, 0

]T
,
(
M−1 (q)

)T]
,T (3–20)

g+ (xd) =

[[
0, 0

]T
,

[
0, 0

]T
, MT (xd)

]
, (3–21)

hd (xd) = [xd3, xd4, −0.25xd1, xd2]
T ,which, using the development in (2–13)-(2–15), can

be written in the form (2–13), where ζ ≜
[
eT , xT

d

]T
.

Simulations were run in Simulink using a discrete-time differential equation solver

at a frequency of 100 Hz on the same machine. Each simulation case is run for 150

seconds of simulated time. For each simulation case the cost parameters are Q =

[20, 20, 2, 2] · I4×4, R = 10 · I2, the gains are ηc1 = 0.6, ηc2 = 0.075, ηa1 = 0.5, ηa2 = 0.005,

Γ = 10 · 103, Γ = 1, λ = 0.002, ν = 0.005, and the initial conditions are Ŵc (0) = 10 · 123,

Ŵa (0) = 6 · 123, Γ (0) = 200 · I23, and x (0) = [1.8, 1.6, 0, 0]T .
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The basis selected for value function approximation is a polynomial basis with 23

elements given by [61]

σ (ζ) =
1

2

[
ζ22 , ζ

2
1 , ζ1ζ3, ζ1ζ4, ζ2ζ3, ζ2ζ4, ζ

2
1ζ

2
2 , ζ

2
1ζ

2
5 , ζ

2
1ζ

2
6 , ζ

2
1ζ

2
7 , ζ

2
1ζ

2
8 , ζ

2
2ζ

2
5 ,

ζ22ζ
2
6 , ζ

2
2ζ

2
7 , ζ

2
2ζ

2
8 , ζ

2
3ζ

2
5 , ζ

2
3ζ

2
6 , ζ

2
3ζ

2
7 , ζ

2
3ζ

2
8 , ζ

2
4ζ

2
5 , ζ

2
4ζ

2
6 , ζ

2
4ζ

2
7 , ζ

2
4ζ

2
8

]T
, (3–22)

where, generally, ζi refers to the ith entry of ζ. The basis in (3–22) was used in each

simulation case. A total of eight different test cases were performed.

Case 1 uses the result from [61], which requires the PE condition to be satisfied. To

ensure that the PE condition is satisfied, a probing signal

p (t) =



2.55 tanh
(
20 sin

√
232πt

)
cos
(√

20πt
)

+6 sin (18e2t) + 20 cos (40t) cos (21t)

0.01 tanh (2t)
(
20 sin

√
132πt cos

(√
10πt

))
+6 sin (8et) + 20 cos (10t) cos (11t)


(3–23)

is added to the first 37.5 seconds of the simulation (see [61]).

Cases 2-8 are model-based and do not require a probing signal. Instead, Cases

2-8 use BE extrapolation. More specifically, Case 2 (the method in [22]) uses traditional

BE extrapolation, Cases 3-7 use sparse BE extrapolation, and Case 8 uses sparse BE

extrapolation and switches the extrapolation stacks.

In the R-MBRL methods, a total of 576 extrapolation points were used in each case.

The extrapolation points were selected from the interval ζi ∈ [−1.5, 1.5] ∀i = 1, 2, ..., 8.

Table 3-1 lists which nodes were eliminated in each case. Case 8 uses a total of 576

unique extrapolation points. However, not all 576 points are simultaneously used in the

extrapolation stack. If |ζ1| ≤ 0.75 or |ζ2| ≤ 0.75, then the extrapolation point was assigned

to Ω1. Otherwise it was assigned to Ω2. Furthermore, in the assignment of extrapolation

points, every sixth point was also assigned to Ω3 (i.e., Ω3 ⊂ (Ω1 ∩ Ω2)). Furthermore, the

42



ζ21ζ
2
5 , ζ

2
1ζ

2
6 , ζ

2
1ζ

2
7 , ζ

2
1ζ

2
7 , ζ

2
1ζ

2
8 nodes are eliminated in Ω1 and Ω2, but Ω3 uses a nonsparse

basis.

Table 3-1. Simulation Case Parameters
Simulation Case Nodes Eliminated Extrapolation Segments (Ωj ) Total Extrapolation Points

Case 1 ([61]) N/A 0 0

Case 2 ([48]) N/A 1 576

Case 3 ζ21ζ
2
5 = 0 2 576

Case 4 ζ21ζ
2
5 , ζ

2
1ζ

2
6 = 0 2 576

Case 5 ζ21ζ
2
5 , ζ

2
1ζ

2
6 , ζ

2
1ζ

2
8 = 0 2 576

Case 6 ζ21ζ
2
5 , ζ

2
1ζ

2
6 , ζ

2
1ζ

2
7 , ζ

2
1ζ

2
8 = 0 2 576

Case 7 ζ21ζ
2
5 , ζ

2
1ζ

2
6 , ζ

2
1ζ

2
7 , ζ

2
1ζ

2
7 , ζ

2
1ζ

2
8 = 0 2 576

Case 8 ζ21ζ
2
5 , ζ

2
1ζ

2
6 , ζ

2
1ζ

2
7 , ζ

2
1ζ

2
7 , ζ

2
1ζ

2
8 = 0 3 576

3.5.4 Two-Link Manipulator Simulation Results

The median computation time, integral of error (i.e.,
´ 150
0

∥e (τ)∥ dτ ), 5% rise time,

and root mean squared (RMS) error are shown in Table 3-2. The computation time

varied between multiple instances of the same simulation case. To better measure

the computation time of each case, the median computation time was determined by

running each case 10 times. The median was selected to eliminate the affect of outliers

because the computation times are skewed toward higher computation times. For each

case, the integral of error, 5% rise time, and RMS steady-state error of each case were

identical between multiple simulation trials. I.e., only the computation time differed.

Table 3-2. Simulation results for the two-link robotic manipulator tracking problem.
Controller Case 1 ([61]) Case 2 ([48]) Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Median Computation
Time (s) 21.70 120.40 117.41 114.81 90.51 71.12 65.4 25.90

Integral of Error (rad·s) 54.96 33.72 32.99 23.25 25.12 27.11 26.25 27.97

5% Rise Time (s) 133.06 33.33 69.61 40.65 41.34 41.57 41.44 44.29
RMS Steady-state

Error (rad) 34.29e-3 6.92e-3 11.18e-3 5.69e-3 7.86e-3 6.45e-3 6.61e-3 5.57e-3

Case 8 has the shortest computation time. By combining the switched extrapolation

stacks and sparse BE, the computation time is reduced by 78.4% with respect to the

non-sparse BE extrapolation method (cf., [22]).The computation time is the amount

of real-world time it takes to run 150 seconds of simulation time. There is a clear
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trend in the computation times of each case. Case 1 has the lowest computation time

since no BE extrapolation is performed. Case 2 has the highest computation time

because it performs the highest amount of BE extrapolation. As the BE extrapolation

becomes more sparse (from Case 3 to Case 7) the computation time significantly

decreases. Case 8 uses a switched extrapolation stack with a mix of sparse and non-

sparse BE extrapolation. By decreasing the number of points in each extrapolation

stack, the computation time is greatly decreased. Furthermore, by performing sparse

BE extrapolation on the smaller extrapolated stacks, the computation time is further

reduced. As the BE extrapolation becomes more sparse and switching extrapolations

tacks occurs, the computation time significantly decreases.

The integral of error for Case 1 is high because of the probing noise. Generally, as

the BE extrapolation becomes more sparse, the integral of error slightly decreases.

The 5% rise time is the amount of time it takes for the error to reach 5% of its

initial value. The rise time of Case 1 is the highest because the controller uses the

least amount of data. The rise time of Case 2 is the smallest because it uses the most

amount of data. While there is no clear correlation for the rise time between Cases 3-8.

Generally, as the BE extrapolation becomes more sparse, the rise time improves.

The RMS steady-state error is highest for Case 1 due to the probing noise. Cases

2 and 4-8 have similar RMS steady-state error. From this fact, we can conclude that the

amount of sparsity has little impact on the RMS steady-state error. Figure 3-6 illustrates

the performance of the ADP method in Case 2 applied to the robot manipulator.

Figure 3-7 illustrates the performance of the ADO method in Case 8 applied to the

robot manipulator. Noticeably, the error decreases more steadily in Case 8, however

Case 2 has faster overall convergence.
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3.5.5 Euler-Lagrange System with Unknown Dynamics

In this section the developed technique is applied to a linear quadratic tracking

problem, which has a cost function r (ζ, µ) = eTQe+ µTRµ. The Euler Lagrange system

u = a1ÿ + a2ẏ, (3–24)

where y, ẏ, ÿ ∈ R2, is leveraged in this simulation due to the fact that an analytical

solution to the HJB equation in (2–18) can be calculated. The concatenated state x

is defined as x ≜
[
yT , ẏT

]T
. The matrix a1 ∈ R2×2 is defined as a1 ≜

 1 1
5

1
2

1
5

 ,

and a2 ∈ R2×2 is defined as a2 ≜

 1 −1

1
2

1
2

 . The objective is to determine a policy

µ online to ensure that the concatenated state x tracks the desired trajectory xd =

[cos (0.5t) , 2 cos (t) , −0.5 sin (0.5t) , −2 sin (t)]T while minimizing the cost function, which

is selected as r (ζ, µ) = eTQe+ µTRµ.

The dynamics in (3–24) can be rewritten in the form A ≜

 02×2 I2×2

02×2 a−1
1 a2

 , f (x) =

Ax, g (x) =
[
0T
2×2,

(
a−1
1

)T]
,T g+ (xd) = [02×2, a1] , hd (xd) = [xd3, xd4,−0.25xd1,−xd2]

T ,

which can be expressed as in (2–13), where ζ ≜
[
eT , xT

d

]T
.

To achieve the desired objective, the developed value function approximation

method is used. The basis selected for value function approximation is (3–22). The drift

dynamics are unknown, but are approximated using the developed system identification

method. The unknown drift dynamics are approximated with the linear basis function

ϕ (x) = [x1, x2, x3, x4]
T . Five separate simulation cases were performed that use identical

gains, initial conditions, and basis function for system identification and on-trajectory

BE. The differences between the simulations is that BE extrapolation is performed with

different NNs, which have varying sparsity, which are specified in Table 3-3. Case 1

(i.e., [48]) uses traditional BE extrapolation, Cases 2-4 use sparse BE extrapolation, and
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Case 5 uses sparse BE extrapolation and switches the extrapolation stacks depending

on the system state. Each simulation case was executed in Simulink using a discrete-

time differential equation solver at a frequency of 100 Hz on the same machine. Each

simulation case is executed for 120 seconds of simulated time.

Table 3-3. Simulation Case Parameters
Simulation Case Nodes Eliminated Extrapolation Segments (Ωj)

Case 1 ([48]) N/A 1
Case 2 ζ22ζ

2
8 = 0 1

Case 3 ζ22ζ
2
6 , ζ

2
2ζ

2
7 ,= 0 1

Case 4 ζ22ζ
2
6 , ζ

2
2ζ

2
7 ,

ζ22ζ
2
8 = 0

1

Case 5 ζ22ζ
2
6 , ζ

2
2ζ

2
7 ,

ζ22ζ
2
8 = 0

2

For Cases 1-4, BE extrapolation is performed over the domain Ω1 ≜

{ζ ∈ R8 : −5 ≤ ζi ≤ 5∀i ∈ [1, 8]} with N1 = 64 extrapolated trajectories. How-

ever, for Case 5, two segments are defined: Ω1 ⊂ R4 and Ω2 ⊂ R4, where

Ω1 ≜ {ζ ∈ R8 : −5 ≤ ζi ≤ 5 ∀i ∈ [1, 8]} with N1 = 64 extrapolated trajectories. The

second segment is defined such that Ω2 ≜ Ω1 with N2 = 32 extrapolated trajectories. In

Case 5, both Ω1 and Ω2 use the same basis, which is defined in the subsequent Table

3-3. The active BE extrapolation stack Ωj is selected via the policy

j ≜


1 ∥e∥ > 2

2 ∥e∥ ≤ 2

. (3–25)

For each simulation case the cost parameters are Q = [1000, 1000, 0.2, 0.2]T · I4 and

R = 10 · I2, the gains are ηc1 = 0.012, ηc2 = 0.001, ηa1 = 0.005, ηa2 = 0.005, λ = 0.075,

ν = 0.005, kθ = 100, Γθ = 0.02 · I4. Γ = 103, Γ = 10, and the initial conditions are
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Ŵc (0) = 10 · 123, Ŵa (0) = 6 · 123, Γ (0) = 200 · I23, θ̂ (0) = 04×4,
2 x̂ (0) = 04, and

x (0) = [15,−15, 0, 0]T .

3.5.6 Euler-Lagrange Simulation Results

The tracking errors for Case 1 and Case 5 are compared in Figure 3-8. The

purpose of Figure 3-8(a) is to show the performance of an existing, non-sparse result.

To contrast Figure 3-8(a), Figure 3-8(b) presents the performance of the most sparse

simulation case. These figures, when paired with Table 3-4, exhibit the benefits and

drawbacks to using the techniques described in Case 1 and Case 5. Case 1 may take

slightly longer to converge, but it has a lower steady-state error, which indicates that the

use of additional BE extrapolation data results in improved value function approximation.

The convergence rate of Case 5 (SNN with switched BE extrapolation stack) is better

than that of Case 1 (standard BE extrapolation from [48]).

For this class of dynamics and cost function, the solution to the HJB equation can

be determined analytically by solving the Algebraic Riccati Equation offline. Hence, the

approximate value function V̂
(
ζ, Ŵc

)
can be compared to the optimal value function

V ∗ (ζ) . This comparison is shown in Figure 3-9.

To examine the effects of increased sparse BE extrapolation, data was collected

from each simulation case to facilitate a quantitative comparison. The computation

time varied between multiple instances of the same simulation case. To better measure

the computation time of each case, the median computation time was determined by

running each case 10 times. The median was selected to eliminate the affect of outliers

because the computation times are skewed toward higher computation times. For each

case, the integral of error, 5% rise time, and RMS steady-state error of each case were

identical between multiple simulation trials. The median computation time, integral of

2 From (3–24), θ = AT .
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error (i.e.,
´ 120
0

∥e (τ)∥ dτ ), 5% rise time, and RMS error for each case are shown in Table

3-4.

Table 3-4. Simulation results for simulation Cases 1-5.
Controller Case 1 ([48]) Case 2 Case 3 Case 4 Case 5

Median Computation Time (s) 66.09 13.66 13.56 13.49 9.55
Integral of Error 802.88 593.97 580.36 595.13 594.91
5% Rise Time 55.96 37.88 37.57 37.90 37.90

RMS Steady-state Error 0.80 0.92 0.96 0.93 0.93

The computation time is the amount of real-world time it takes to run 120 seconds

of simulation time. The computation times were measured by a built-in function in

MATLAB. There is a clear trend in the computation times of each case. Case 1 has the

highest computation time because it performs the highest amount of BE extrapolation.

Case 5 has the shortest computation time. By combining the switched extrapolation

stacks and sparse BE, the computation time is reduced by 85.6% compared to the

non-sparse BE extrapolation method in [48]. As the BE extrapolation becomes more

sparse (from Case 2 to Case 4) the computation time significantly decreases. Case

5 uses a switched extrapolation stack with sparse BE extrapolation (the same SNN

as Case 4). By decreasing the number of points in each extrapolation stack, the

computation time is decreased. Additionally, by performing sparse BE extrapolation on

the smaller extrapolated stacks, the computation time is further reduced. Hence, as the

BE extrapolation becomes more sparse and more switching extrapolations stacks are

used, the computation time significantly decreases.

The 5% rise time is the amount of time it takes for the error to reach 5% of its initial

value (i.e., ∥e (t)∥ ≤ 0.05 · ∥e (0)∥). The 5% rise time was used as a performance metric

to better compare the convergence of the test cases. If a 10% rise time were used, the

performance difference between Case 1 and Cases 2-5 would not be as pronounced.

While the rise time is the worst for Case 1, there is no clear explanation. Increasing

sparsity seems to have a minor effect on rise time. The RMS steady-state error is
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lowest for Case 1. This is likely due to the fact that Case 1 uses the most data and

computations; however, this has a negative effect on computation time. Cases 2-5 have

similar RMS steady-state error; we can conclude that the increasing amount of sparsity

has little impact on the RMS steady-state error.

3.5.7 Ease of Sparsification

As the processing power of modern computing platforms increases, the need

for computational efficiency gradually decreases. For the industrial application of

the developed sparse BE extrapolation, one may be required to make a decision to

either purchase additional man-hours for a designer to implement this technique or to

purchase more sophisticated hardware. Like many product implementation decisions,

there is a break-even point (or possibly many points) at which it may be more cost-

effective to purchase upgraded computing hardware instead of paying a designer.

While there are many parameters used to determine the most cost-effective solution,

the general trend is not clear. However, once a designer is familiar with the developed

technique, modifying [48] to include sparse BE extrapolation should take less than one

man-hour.

In many applications it is not possible to use a faster processor due to architecture

(PC104, Controller Area Network bus) restrictions, qualifications of the processor (e.g.,

for military or space applications, or processing power demands. In such applications,

the developed sparse BE extrapolation method will be beneficial because the reduced

computational load reserves computational capabilities for other processes.

3.6 Concluding Remarks

In this chapter, an online approximate optimal tracking controller is developed for an

initially unknown dynamical system. The value function is approximated by performing

sparse BE extrapolation over segments of the state space. Motivated by reducing the

computational complexity of BE extrapolation, sparse BE extrapolation is performed

over user-defined subsets of the state space. Using SNNs in BE extrapolation yields
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computational benefits due to the smaller number of active neurons. UUB tracking of

each agent’s state to the neighborhood of the desired state and convergence of the

control policy to the neighborhood of the optimal policy are proven using a Lyapunov-like

stability analysis in the presence of discontinuities. One simulation example for a two-

state dynamical system shows that this method enables the system to track a desired

trajectory while approximating the value function and optimal control policy to their

optimal values. A third simulation example is used to show that using sparse, switched

BE extrapolation reduces the computation time by 85.6% when compared to the method

in [48].
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-10 0 10

-10

0

10

Figure 3-1. Error trajectories and state space portrait of the two-state simulation
example. Figure (a) shows the error trajectories. Figure (b) shows the state
space portrait for the two-state dynamical system described in (3–14). In
figure (b) the blue boxed area represents where the Ω2 segment is active,
whereas the visible area outside of the box represent where the Ω1 segment
is active.
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Figure 3-2. . Critic and actor weight values of the two-state simulation example. Figure
(a) shows the trajectories of the critic weights Ŵc (t). Figure (b) shows the
trajectories of actor weights Ŵa (t) . The dashed vertical line indicates the
time at which the extrapolation stack is switched from Ω1 to Ω2.
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Figure 3-3. Estimate of the drift dynamics. This figure illustrates that system
identification is completed around the 4 second mark.

51



0 2 4 6 8 10

0

200

400

600

Figure 3-4. Comparison of the optimal value function V ∗ (ζ) to the approximated optimal
value function V̂

(
ζ, Ŵc

)
.
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Figure 3-5. Comparison of the optimal value function u∗ (ζ) to the approximated optimal
value function û

(
ζ, Ŵa

)
.
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Figure 3-6. Errors e1, e2, ė1, ė2 for Case 2.
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Figure 3-7. Errors e1, e2, ė1, ė2 for Case 8. The dashed vertical lines indicate the time at
which the extrapolation stack is switched from Ω1 to Ω2 to Ω3, respectively.
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Figure 3-8. Error signals e1, e2, ė1, ė2 for Case 1 and Case 5 as outlined in Table 3-4.
Figure (a) shows the errors for Case 1. Figure (b) shows the errors for Case
5. The vertical line represents the time at which the system switched BE
extrapolation data stacks due to (3–25). Case 5 has faster convergence than
Case 1; however, Case 1 has a smaller steady-state error.
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Figure 3-9. Comparison of the optimal value function V ∗ (ζ) to the approximated optimal
value function V̂

(
ζ, Ŵc

)
for Case 5. The vertical line represents the time at

which the system switched BE extrapolation data stacks due to (3–25).
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CHAPTER 4
SPARSE LEARNING-BASED APPROXIMATE DYNAMIC PROGRAMMING WITH

BARRIER CONSTRAINTS

This chapter and the result in [64] provide an approximate online adaptive solution

to the infinite-horizon optimal control problem for control-affine continuous-time non-

linear systems while formalizing system safety using barrier certificates. The use of

a BF transform provides safety certificates to formalize system behavior. Specifically,

using a BF, the system is transformed to aid in developing a controller which maintains

the system state in a user-defined constrained region. To aid in online learning of the

value function, the state-space is segmented into a number of user-defined segments.

Off-policy trajectories are selected in each segment, and sparse BE extrapolation is

performed within each respective segment to generate an optimal policy within each

segment; the process of state space segmentation for BE extrapolation is detailed in

Chapter 3. A Lyapunov-like stability analysis is included which proves UUB regulation in

the presence of the BF transform and discontinuities. Simulation results are provided for

a two-state dynamical system to compare the performance of the developed method to

existing methods.

4.1 Barrier Functions

Consider the continuous-time control-affine nonlinear dynamical system

ẋ = f (x) + g (x)u (4–1)

with initial condition x (0) = x0 ∈ Rn, where x ∈ Rn denotes the system state, u ∈ Rm

denotes the control input, f : Rn → Rn denotes the drift dynamics, and g : Rn → Rn×m is

the control effectiveness. The goal is to design a control policy u for the system in (4–1)

while regulating the system state, x = [x1, . . . , xn]
T , to the origin while also ensuring the

states lie within distinct user-specified sets (i.e., within the user-defined barriers) such

that
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xi (t) ∈ (ai, Ai) ∀ i = 1, . . . , n and t ∈ R≥0, (4–2)

where a ∈ Rn and A ∈ Rn represent the vectors of all lower and upper bounds of the

sets, respectively, with ai ∈ R and Ai ∈ R being the ith row of a and A, respectively,

where i ∈ {1, . . . , n} . Let a logarithmic BF, b : R× R× R → R, be defined as

b (zi, ai, Ai) ≜ ln

(
Ai

ai

ai − zi
Ai − zi

)
,∀ zi ∈ (ai, Ai) , (4–3)

such that the constants ai and Ai satisfy ai < 0 < Ai, zi ∈ R, and the inverse of the BF in

(4–3), is

b−1 (zi, ai, Ai) = aiAi
ezi − 1

eziai − Ai

. (4–4)

The logarithmic BF in (4–4) is as a tool to ensure the system remains within the

user-defined barriers. To this end, the derivative of (4–4) is taken with respect to zi to

yield

db−1 (zi, ai, Ai)

dzi
=

a2iAi − aiA
2
i

a2i e
zi − 2Aiai + A2

i e
−zi

. (4–5)

Let si ∈ R be the state-space to barrier-space coordinate transformed state such that

si = b (xi, ai, A,i) . (4–6)

Using (4–4), the transformation from the barrier-space to the state-space is

xi = b−1 (si, ai, A,i) , (4–7)

Taking the time-derivative of (4–7) and rearranging yields

ṡi =
(a2i e

si − 2Aiai + A2
i e

−si)

a2iAi − aiA2
i

ẋi. (4–8)
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Using (4–1) in (4–8) results in the transformed state

ṡi = Fi (si, ai, Ai) +Gi (si, ai, Ai)u (t) , (4–9)

where

Fi (si, ai, Ai) ≜

(
a2i e

si − 2Aiai + A2
i e

−si

a2nAn − anA2
n

)
· fi
(
b−1 (si, ai, A,i)

)
, (4–10)

Gi (si, ai, Ai) ≜

(
a2i e

si − 2Aiai + A2
i e

−si

a2nAn − anA2
n

)
· gi
(
b−1 (si, ai, A,i)

)
, (4–11)

and b−1 (si, ai, A,i) with fi : R → R and gi : R → R1×m being the ith row of the functions f

and g in (4–1), respectively. The transformed states s ≜ [s1, . . . , sn]
T ∈ Rn can be written

using (4–8) in a compact form as

ṡ = F (s) +G (s)u (t) , (4–12)

where F (s) ≜ [F1 (s1, a1, A1) , . . . , Fn (sn, an, An)]
T and G (s) ≜

[G1 (s1, a1, A1) , . . . , Gn (sn, an, An)]
T .

The drift dynamics F is assumed to be a locally Lipschitz function with F (0) = 0,

where ∇xF : Rn → Rn×n is continuous. There exists a constant bf , such that for s ∈ Ω,

∥F (s)∥ ≤ bf ∥s∥ , where Ω ⊂ Rn is a compact set containing the origin. The system is

assumed to be controllable over the compact set Ω, and the control effectiveness, G,

is assumed to be a locally Lipschitz function and bounded such that 0 < ∥G (x)∥ ≤ G,

where G ∈ R≥0.

4.2 Approximate Optimal Controller Development

The development in this section follows that in Chapter 2, however, this section

presents the ADP problem formulation for the barrier states in (4–6). The control

objective is to solve the infinite-horizon optimal regulation problem, i.e., determine a

control policy, u, that minimizes the infinite horizon cost function, J : Rn × Rm → R≥0,
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defined as

J (s, u) ≜
ˆ ∞

t0

r (s (τ) , u (τ)) dτ, (4–13)

subject to (4–12) while regulating the system states to the origin (i.e., s = 0n), where

r : Rn × Rm → R≥0 is the instantaneous cost defined as r (s, u) ≜ sTQs + uTRu,

Q ∈ Rn×n is a constant user-defined symmetric PD matrix, and R ∈ Rm×m is a constant

user-defined PD symmetric matrix.1

Remark 4.1. The state cost matrix, Q, satisfies qIn ≤ Q ≤ qIn where q, q ∈ R>0.

The infinite horizon value function (i.e, the cost to go) for the optimal solution is

denoted by V ∗ : Rn → R≥0 and given by

V ∗ (s) = min
u(τ)∈U, τ∈R≥t

ˆ ∞

t

r (s (τ) , u (τ)) dτ, (4–14)

where U ⊆ Rm denotes the action space. Provided and optimal control policy exists, the

value function is characterized by the corresponding HJB

0 = min
u(τ)∈U

(
∇sV

∗ (s) (F (s) +G (s)u) + sTQs+ uTRu
)
, (4–15)

with the boundary condition V ∗ (0) = 0. Provided the HJB in (4–15) admits a continu-

ously differentiable PD solution, then the optimal closed-loop control policy u∗ : Rn → Rm

is

u∗ (s) = −1

2
R−1G (s)T (∇sV

∗ (s))T . (4–16)

4.2.1 Value Function Approximation

The HJB in (4–15) requires knowledge of the optimal value function, which, gen-

erally, is an unknown function for nonlinear systems. Parametric methods can be used

1 As in Chapter 2, the matrix PD Q can be replaced with a PD function Q (s) .
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to approximate the value function over a compact domain. To facilitate the solution of

(4–15), let Ω ⊂ Rn be a compact set containing the origin with s ∈ Ω. The universal

function approximation property of single-layer NNs is used to parameterize the value

function V ∗ as

V ∗ (s) = W ∗Tσ (s) + ϵ (s) , (4–17)

where W ∗ ∈ RL is an unknown bounded weight, σ : Rn → RL is a user-defined

vector of basis functions, and ϵ : Rn → R is the bounded function approximation error.

Solving (4–15) for u and using (4–17), the approximate optimal control policy u∗ can be

expressed in terms of the gradient of the value function V ∗ as

u∗ (s) = −1

2
R−1G (s)

(
∇sσ (s)T W ∗ +∇sϵ (s)

T
)
. (4–18)

Property 4. There exists a set of constants that upper bound the unknown weight

vector, W ∗, the user-defined basis vector, σ, and approximation error, ϵ, such that

∥W ∗∥ ≤ W ∗, sups∈Ω ∥σ (s)∥ ≤ σ, sups∈Ω ∥∇sσ (s)∥ ≤ ∇sσ, sups∈Ω ∥ϵ (s)∥ ≤ ϵ,

sups∈Ω ∥∇sϵ (s)∥ ≤ ∇sϵ, where W ∗, σ, ∇sσ, ϵ, ∇sϵ ∈ R>0 [60].

Since the ideal weights are unknown, a parametric estimate, called a critic weight,

Ŵc ∈ RL, is substituted to estimate the optimal value function, V̂ : Rn × RL → R where

V̂
(
s, Ŵc

)
= Ŵ T

c σ (s) . (4–19)

An actor weight estimate, Ŵa ∈ RL, is used to provide an estimated version of (4–18),

û : Rn × RL → Rm, given by

û
(
s, Ŵa

)
= −1

2
R−1G (s)T

(
∇sσ (s)T Ŵa

)
. (4–20)

4.2.2 Bellman Error

The HJB in (4–15) is equal to zero under optimal conditions; however, substituting

(4–19) and (4–20) into (4–15) results in a residual term, δ : Rn × RL × RL → R, which is
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referred to as the BE, defined as

δ
(
s, Ŵc, Ŵa

)
≜ ∇sV̂

(
s, Ŵc

)(
F (s) +G (s) û

(
s, Ŵa

))
+ r

(
s, û

(
s, Ŵa

))
(4–21)

where ∇sV̂
(
s, Ŵc

)
= Ŵ T

c ∇sσ (s) denotes the gradient of the value function estimate.

The BE is indicative of how close the actor and critic weight estimates are to the ideal

weights. By defining the mismatch between the estimates and the ideal values as

W̃c ≜ W − Ŵc and W̃a ≜ W − Ŵa, substituting (4–19) and (4–20) in (4–15), and

subtracting from (4–21) yields

δ =
1

4
W̃ T

a GσW̃a − ωT W̃c +O (s) , (4–22)

where ω : Rn × RL → Rn is defined as

ω
(
s, Ŵa

)
≜ ∇sσ (s)

(
F (s) +G (s) û

(
s, Ŵa

))
, (4–23)

and O (s) ≜ 1
2
W ∗T∇sσ (s)GR∇sϵ (s)

T + 1
4
Gε −∇sϵ (s)F. The notation GR, Gσ, and Gε is

defined as GR = GR (s) ≜ G (s)R−1G (s)T , Gσ = Gσ (s) ≜ ∇sσ (s)GR (s)∇sσ (s)T , and

Gε = Gε (s) ≜ ∇sϵ (s)G (s)∇sϵ (s)
T , respectively.

4.2.3 Sparse Bellman Error Extrapolation

At each time instant, the BE in (4–21) is calculated using the control pol-

icy given by (4–18) evaluated using the current system state, critic weight esti-

mates, and actor weight estimates to obtain the instantaneous BE denoted by

δ (t) ≜ δ
(
s (t) , Ŵc (t) , Ŵa (t)

)
and control policy denoted by u (t) ≜ û

(
s (t) , Ŵa (t)

)
. Our

previous work in [33] explored using the computational efficiency of SNNs and segmen-

tation to extrapolate the BE, so that the BE can be active across the active state-space,

thereby relaxing the traditional PE condition. The benefit to performing BE extrapolation

across multiple segments is that the process can be performed in parallel. Since SNNs

are more efficient than traditional full-weight neurons in this application, BE extrapolation

within multiple segments can be computed simultaneously.
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To relax the strictness of the PE condition, virtual excitation using BE extrapolation

is performed. The state-space is divided into a user-specified number of segments. Let

the operating domain Ω be a partition into S ∈ N segments such that S ≜ {j ∈ N|j ≤ S}

defines the set of segments in the operating domain as Ω =
⋃S

j=1Ωj.

Each segment is assigned a user-specified number and location of off-trajectory

points, {si,j : si,j ∈ Ωj}Nj

i=1 , where Nj ∈ N denotes the user-specified number of points

in the segment Ωj, and xi,j = b−1 (si,j, ai, Ai). Using the extrapolated barrier-space

trajectories, si,j for a given j ∈ S, the tuple
(
Σj

c,Σ
j
a,Σ

j
Γ

)
is defined as the history stack

corresponding to Ωj where Σj
c ≜

1
Nj

∑Nj

i=1
ωi,j(t)

ρi,j(t)
δi,j (t) , Σ

j
a ≜ 1

Nj

∑Nj

i=1

GT
σi,jŴa(t)ωT

i,j(t)

4ρi,j(t)
, Σj

Γ ≜

1
Nj

∑Nj

i=1

ωi,j(t)ω
T
i,j(t)

ρi,j(t)
, ωi,j (t) ≜ ω

(
si,j, Ŵa

)
= ∇sσ (si,j)

(
F (si,j) +G (si,j) û

(
si,j, Ŵa

))
,

ρi,j (t) = 1+νωT
i,j (t) Γ (t)ωi,j (t) , and ν ∈ R>0 are user-defined gains. Recall, the notation

GR = G (s)R−1G (s)T , Gσ = Gσ (s) ≜ ∇sσ (s)GR (s)∇sσ (s)T , and Gε = Gε (s) ≜

∇sϵ (s)G (s)∇sϵ (s)
T

Remark 4.2. BE extrapolation is performed in the barrier-space since function approxi-

mation is taken in a compact set over the barrier-space.

Assumption 4.1. Over each segment j ∈ S, there exists a finite set of trajectories

{si,j : si,j ∈ Ωj}Nj

i=1 such that 0 < c ≜ inf
t∈R≥0, j∈S

λmin

{
Σj

Γ

}
for all t ∈ R≥0.

Remark 4.3. The constant c is the lower bound of the value of each input-output data

pair’s minimum eigenvalues.

4.2.4 Update Laws for Actor and Critic Weights

Using the instantaneous BE δ (t), policy u (t), and extrapolated BEs δi,j (t), the critic

and actor weights are updated according to

˙̂
Wc (t) =− ηc1Γ

ω (t)

ρ (t)
δ (t)− ηc2Σ

j
c (t) , (4–24)

Γ̇ (t) =

(
λΓ (t)− ηc1

Γ (t)ω (t)ω (t)T Γ (t)

ρ (t)
− Γ (t) ηc2Σ

j
ΓΓ (t)

)
1{Γ≤∥Γ∥≤Γ}, (4–25)
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˙̂
Wa (t) =− ηa1

(
Ŵa (t)− Ŵc (t)

)
− ηa2Ŵa (t) +

ηc1G
T
σ (t) Ŵa (t)ω

T (t)

4ρ (t)
Ŵc (t) + ηc2Σ

j
aŴc (t) ,

(4–26)

where ηc1, ηc2, ηa1, ηa2, λ are positive constant learning gains, Γ,Γ ∈ R>0 are upper and

lower bound saturation constants, and 1{·} denotes the indicator function. ∥Γ (t)∥ is

upper and lower bounded by user-defined saturation constants, Γ and Γ, respectively.

Using (4–25) ensures that Γ ≤ ∥Γ (t)∥ ≤ Γ for all t ∈ R>0. The indicator function in

(4–25) can be removed with additional assumptions and modifications outlined in [22].

4.3 Stability Analysis

To facilitate the analysis, the notation (·) is defined as (·) ≜ supx∈Ω (·). Let r ≜[
sT , W̃ T

c , W̃
T
a

]T
denote a concatenated state, and let VL : Rn+2L × R≥0 → R be a

candidate Lyapunov function defined as

VL (r, t) = V ∗ (s) +
1

2
W̃ T

c Γ
−1 (t) W̃c +

1

2
W̃ T

a W̃a, (4–27)

which, using the positive definiteness of V ∗ and [67, Lemma 4.3], can be bounded as

vl (∥r∥) ≤ VL (r, t) ≤ vl (∥r∥) for class K∞ functions vl, vl : R≥0 → R≥0. Using (4–25), the

normalized regressors ω
ρ

and ωi,j

ρi,j
can be bounded as supt∈R≥0

∥∥∥ω
ρ

∥∥∥ ≤ 1

2
√

νΓ
for all s ∈ Ω

and supt∈R≥0

∥∥∥ωi,j

ρi,j

∥∥∥ ≤ 1

2
√

νΓ
for all si ∈ Ωj for all j ∈ S. The matrices GR and Gσ can be

bounded as sups∈Ω ∥GR∥ ≤ λmax {R−1}G2
and sups∈Ω ∥Gσ∥ ≤

(
∇sσG

)2
λmax {R−1}.

Theorem 4.1. Provided the class of dynamics in (4–12), Assumption 4.1, and the

sufficient gain conditions

ηa1 + ηa2 >
1√
νΓ

(ηc1 + ηc2)W ∗Gσ, (4–28)

c >
3ηa1
ηc2

+
3 (ηc1 + ηc2)

2W ∗2Gσ
2

16νΓηc2 (ηa1 + ηa2)
, (4–29)

v−1
l (l) < v−1

l

(
vl (r)

)
, (4–30)
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hold, then the system state s(t) in (4–6), weight estimation errors W̃c (t) and W̃a (t), and

policy u(t) are UUB.

Proof. Let z (t) for t ∈ R≥0 be a Filippov solution to the differential inclusion

ż ∈ K [h] (z), where K [·] is defined in [68] and h : Rn+2L+L2 → Rn+2L+L2 is de-

fined as h ≜

[
ṡT , ˙̃W T

c ,
˙̃W T
a , vec

(
Γ̇−1
)T]T

. Due to the discontinuity in the update

laws in (4–24)-(4–26), the time derivative of (4–27) exists almost everywhere and

V̇L (z)
a.e.
∈ ˙̃VL (z), where ˙̃VL is the generalized time-derivative of (4–27) along the

Filippov trajectories of ż = h (z) [69]. Using the calculus of K [·] from [69], and

V̇ ∗ (s) = ∇sV
∗ (s) (F (s) +G (s)u (t)), then substituting (4–24)-(4–26) yields

˙̃VL ⊆ ∇sV
∗ (F +Gu)− W̃ T

c Γ
−1

(
−ηc1Γ

ω

ρ
δ̂ − ηc2K

[
Σj

c

])
− 1

2
W̃ T

c Γ
−1

(
λΓ− ηc1

ΓωωTΓ

ρ
− Γηc2K

[
Σj

Γ

]
Γ

)
Γ−1W̃c

− W̃ T
a

(
−ηa1

(
Ŵa (t)− Ŵc (t)

)
− ηa2Ŵa (t)

)
− W̃ T

a

(
ηc1G

T
σ (t) Ŵa (t)ω

T (t)

4ρ (t)
Ŵc (t) + ηc2K

[
Σj

a

]
Ŵc

)
. (4–31)

Using the class of dynamics in (4–12), Assumption 4.1, and substituting the

sufficient conditions in (4–28) and (4–29) yields

V̇L

a.e.

≤ − vl (∥r∥) , ∀ ∥r∥ ≥ v−1
l (l) ,∀t ∈ R≥0, (4–32)

where

vl (∥r∥) ≤
q ∥x∥2

2
+

(ηa1 + ηa2)

16

∥∥∥W̃a

∥∥∥2 + ηc2c

12

∥∥∥W̃c

∥∥∥2 , (4–33)

where l is a known positive constant. Since (4–27) is a common Lyapunov-like function

across each segment j ∈ S, [67, Theorem 4.18] can be invoked to conclude that r

is UUB such that lim supt→∞ ∥r∥ ≤ v−1
l

(
vl
(
v−1
l (l)

))
. Since r ∈ L∞, it follows that

s, W̃c, W̃a ∈ L∞,Ŵc, Ŵa ∈ L∞, and u ∈ L∞. Moreover, if s ∈ L∞, by (4–4) x ∈ L∞ and

satisfies xi ∈ (ai, Ai) for each i ∈ {1, · · · , n}.
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Remark 4.4. See Remark 3.4 for details on satisfying Assumption 4.1.

4.4 Simulation Results

To demonstrate the performance of the developed method for a nonlinear system,

simulation results are performed for the two-state dynamical system described in [70].

The simulation is performed with the system given in (4–1) where x = [x1, x2]
T ,

f (x) =

 −x1 + x2

−1
2
x1 − 1

2
x2

(
1− (cos (2x1) + 2)2

)
 , (4–34)

and

g (x) =

 0

cos (2x1) + 2

 . (4–35)

The control objective is to minimize (4–13), where Q = diag (0.01, 0.1) and R = 0.1. To

approximate the value function, a polynomial basis is selected as σ (s) = [s21, s1s2, s
2
2]

T
.

The barrier sets as defined in (4–2) are x1 ∈ (−5.25, 0.25) and x2 ∈ (−0.25, 5.25) .

To facilitate the sparse BE extrapolation, two segments are selected as Ω1 ⊂ R2 and

Ω2 ⊂ R2 where

Ω1 ≜
{
s ∈ R2 : b (−5.25,−5.25, 0.25) < s1 < b (−3.5,−5.25, 0.25) ,

b (3.5,−0.25, 5.25) < s2 < b (5.25,−0.25, 5.25)} (4–36)

and

Ω2 ≜
{
s ∈ R2 : b (−3.5,−5.25, 0.25) < s1 < b (0.25,−5.25, 0.25) ,

b (−0.25,−0.25, 5.25) < s2 < b (3.5,−0.25, 5.25)} . (4–37)

The basis used over segment 1 is σi (si) =
[
s21,i, s1,is2,i, s

2
2,i

]T for all si ∈ Ω1 with 1 = 16

extrapolated trajectories, while in segment 2 the second element is turned off such that

σi (si) =
[
s21,i, 0, s

2
2,i

]T for all si ∈ Ω2 with N2 = 144 extrapolated trajectories used for
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BE extrapolation. The initial conditions for the system (i.e., t = 0) are x (0) = [−5, 5]T ,

Ŵa (0) = Ŵc (0) =
[
1
2
, 1
2
, 1
2

]T
, Γ (0) = 250 × I3. The gains were selected as ηc1 = 0.001,

ηc2 = 5, λ = 0.5, ηa1 = 25, ηa2 = 0.1, ν = 0.005.

Figure 4-1 shows that the state converge to the origin while staying within the user-

specified barriers. System parameters were selected to show the impact of the barriers

on the system. As shown, as the state nears x1 (t) = 0, but does not cross over the

boundary at A1 = 0.25. By design, the state trajectory comes close to the barrier without

intersecting it. As x2 (t) approaches a2, the controller forces the system trajectory away

from the boundary, and toward the origin. The developed method and the method

from [38] obey the barrier constraints, whereas the methods in [33] and [53] do not.

Figure 4-2 illustrates the convergence of the systems’ states to the origin with respect

to the barriers. The colors and line styles correspond to those in Figure 4-1. All of the

simulated methods converge to the origin. The developed method converges first. The

noisy behavior of the simulation of [38] is partially due to added noise in the controller to

satisfy the PE condition. The initial control input in [38] is high since the state is close to

the barriers and due to the structure of (4–35).

Table 4-1 compares the developed method to [33, 38, 53] in terms of execution

time of a 15 second simulation. Each method was simulated in MATLAB. Based on this

simulation, BFs constrain an ADP algorithm that uses sparse BE extrapolation, which

enables the system to converge to the origin while switching history stacks between

active segments, thus formalizing system safety constraints. The developed method

converges faster than [33,38,53] but is more computationally expensive.

Table 4-1. Simulation Execution Time
Method Computation Time (s)

Sparse BE Extrapolation with BF 3.39
Sparse BE Extrapolation [33] 2.58

StaF ADP [53] 2.71
Standard ADP with BF [38] 1.97
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4.5 Concluding Remarks

This chapter presents a framework that combines the use of sparse BE extrapola-

tion with BFs. Using this framework, a dynamic model can be used to evaluate the BE

over unexplored areas of the state-space when the states have been transformed using

BFs. An online approximate optimal controller is developed using sparse, segmented BE

extrapolation and BFs to optimally regulate a dynamical system while providing formal

safety guarantees. A BF transform is applied to a fully-constrained dynamical system to

generate an unconstrained optimization problem. RL is used to solve the optimization

problem online, leading to the development of an approximate optimal controller. The

value function is approximated via sparse BE extrapolation over segments of the state-

space. A Lyapunov-like stability analysis in the presence of discontinuities shows UUB

regulation of the system states to the neighborhood of the origin and convergence of

the control policy to the neighborhood of the optimal policy. A simulation of a two-state

dynamical system compares the developed method to related existing methods.

Future research thrusts in the combination of optimal control and BFs can examine

the use of more complicated (e.g., coupled) state constraints. While multiple variations

of ADP have been used to impose constraints on individual states, the problem of

implementing more complex combined state constraints exists. While it is possible

to place BF-based constraints on µ̂ in (4–20), such a constraint would invalidate the

optimality objective. A more complicated (and currently open problem) is how to perform

a BF-based transformation of the state (e.g., the one developed in (4–2)-(4–12)) to

include more complex state constraints.
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Figure 4-1. State-space portrait for the system in (4–35). The black dashed lines
represent the barriers. The solid red line denotes the trajectory of the
developed method, the dashed blue line denotes the trajectory using the
method in [33], the dotted green line denotes the trajectory using the method
in [53], the dash-dotted magenta line denotes the trajectory using the
method in [38] without input saturation. Each method is simulated with the
same Q and R values.
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Figure 4-2. State trajectory for the system in (4–35). The black horizontal dashed lines
represent the barriers of each state. The developed method is shown to
converge to the origin first. The legend for this figure is omitted since it is the
same as Figure 4-1.
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CHAPTER 5
MODEL-BASED REINFORCEMENT LEARNING FOR OPTIMAL FEEDBACK

CONTROL OF SWITCHED SYSTEMS

This chapter and the results in [71–73] examine the use of RL-based controllers to

approximate multiple value functions of specific classes of subsystems while following

a switching sequence. Each subsystem may have varying characteristics, such as

different cost or different system dynamics. Stability of the overall switching sequence is

proven using Lyapunov-based analysis techniques. Specifically, Lyapunov-based meth-

ods are developed to prove boundedness of individual subsystems and to determine

a minimum dwell-time condition to ensure stability of the overall switching sequence.

UUB regulation of the states, approximation of the value function, and approximation

of the optimal control policy is achieved for arbitrary switching sequences provided the

minimum dwell-time condition is satisfied. Simulation results for a three-state dynamical

system are presented to demonstrate the performance of the developed technique.

5.1 Switched ADP Development

In the subsequent chapter, the ADP problem is outlined again for a family of

dynamical systems. The development of an ADP controller for each subsystem is

identical to that in Chapter 2, except a separate ADP policy governs each subsystem.

Generally, the subscript p denotes the pth subsystem (e.g., fp represents the drift

dynamics for the pth subsystem).

Let p ∈ P, where P ⊂ N and |P| < ∞, represent a family of switched subsystems.

Consider the pth continuous-time control-affine nonlinear dynamical system ẋ =

fp (x) + gp (x)u where x ∈ Rn denotes the system state, u ∈ Rm denotes the control

input, fp : Rn → Rn denotes the drift dynamics, and gp : Rn → Rn×m is the control

effectiveness, where n ≥ m and the pseudoinverse of g (x) exists. The control objective
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is to track a time-varying continuously differentiable signal xd ∈ Rn.1 To quantify the

tracking objective, the tracking error is defined as e ≜ x − xd. Using the technique

in [48] to transform the time-varying tracking problem into an infinite horizon regulation

problem, the control-affine dynamics can be rewritten as

ζ̇ = Fp (ζ) +Gp (ζ)µp, (5–1)

where ζ ∈ R2n is the concatenated state vector ζ ≜
[
eT , xT

d

]T
, µp ≜ u − ud,p (xd)

is the transient portion of the controller, hd : Rn → Rn is subsequently-defined,

ud,p : Rn → Rm is the subsequently-defined trajectory tracking component of the

controller, Fp : R2n → R2n is defined as

Fp (ζ) ≜

 fp (e+ xd)− hd,p (xd) + gp (e+ xd)ud,p (xd)

hd,p (xd)

 , (5–2)

and Gp : R2n → R2n×m is defined as

Gp (ζ) ≜
[
gp (x)

T ,0m×n

]T
. (5–3)

The action space for µp is U ⊆ Rm. The following assumptions facilitate the development

of the approximate optimal tracking controller [48].

Assumption 5.1. The function fp is continuously differentiable and fp (0) = 0 for all

p ∈ P.

Assumption 5.2. Each function gp is locally Lipschitz and bounded such that 0 <

∥gp (x)∥ ≤ gp, where gp ∈ R>0 is the known constant maximum singular value of gp (x). It

follows that 0 < ∥Gp (ζ)∥ ≤ Gp, where Gp ∈ R>0 is a known constant.

Assumption 5.3. There exist locally Lipschitz functions hd,p : Rn → Rn that define

the desired trajectories such that hd,p (xd) ≜ ẋd and gp (xd) g
+
p (xd) (hd,p (xd)− fp (xd)) =

1 xd need not be continuously differentiable at the switching instances.

70



hd,p (xd) − fp (xd) ∀t ∈ R≥0 and p ∈ P, where g+p : Rn → Rm×n is defined as g+p (x) ≜(
gTp (x) gp (x)

)−1
gTp (x) .

The control objective is to solve the infinite-horizon optimal tracking problem for

each subsystem, i.e., determine a transient control policy µp that minimizes the infinite

horizon cost functional, Jp : Rn × Rm → R≥0, defined as

Jp (ζ, µp) ≜
ˆ ∞

t0

Qp (ζ) + µT
pRpµp dτ, (5–4)

subject to (5.1) while tracking the desired trajectory of the pth mode, where Qp ∈ R2n →

R≥0 is a PSD user-defined state cost function pth subsystem, and Rp ∈ Rm×m is user-

defined PD symmetric input cost matrix for the pth subsystem. Let Qp (ζ) ≜ Qp (e) ,

where Qp : Rn → R≥0 is a PD user-defined cost function that penalizes the error e and

not the desired trajectory xd.

Property 5. Each state cost function Qp is PSD and satisfies q
p
(∥e∥) ≤ Qp (ζ) ≤

qp (∥e∥) ∀p ∈ P, where q
p
, qp : R≥0 → R≥0.

The infinite horizon value function (i.e., the cost-to-go) for the pth mode V ∗
p : R2n →

R≥0 is defined as

V ∗
p (ζ) ≜ min

µp∈U

ˆ ∞

t

Qp (ζ) + µT
pRpµp dτ, (5–5)

which has the boundary condition V ∗
p (0) = 0. If the optimal value function is continu-

ously differentiable, then the optimal control policy µ∗
p : R2n → Rm can be obtained from

the corresponding HJB equation

0 = ∇ζV
∗
p (ζ)

(
Fp (ζ) +Gp (ζ)µ

∗
p

)
+Qp (ζ) + µ∗T

p Rpµ
∗
p, (5–6)

with the boundary condition V ∗
p (0) = 0. Provided the HJB in (5–6) admits a continuously

differentiable PD solution, then the optimal closed-loop transient control policy µ∗
p :
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R2n → Rm is

µ∗
p (ζ) = −1

2
R−1

p Gp (ζ)
T (∇ζV

∗
p (ζ)

)T
. (5–7)

Value Function Approximation

The HJB in (5–6) requires knowledge of the optimal value function, which is

unknown for general nonlinear systems. Parametric NN-based methods can be used

to approximate the optimal value function over a compact domain.2 To facilitate the

solution of (5–6), let Ωp ⊂ R2n be a compact set Ωp ⊂ R2n be a compact set such that

ζ ∈ Ωp. The universal function approximation property of single-layer NNs is used to

represent the value function of the pth mode V ∗
p as

V ∗
p (x) = W ∗T

p ϕp (ζ) + ϵp (ζ) , (5–8)

where W ∗
p ∈ RL is an unknown bounded vector of weights, ϕp : R2n → RL is a user-

defined vector of basis functions, and ϵp : Rn → R is the function approximation error.

Each subsystem p can have finitely many neurons L. The number of neurons in each

subsystem’s NN can be different (e.g., L for subsystem 2 need not be the same as

L in subsystem 1). However, to focus the subject of this manuscript and to minimize

the amount of notation, generally, L represents the number of neurons in ϕp ∀p ∈ P.

Substituting (5–8) into (5–7), the transient optimal control policy of the pth mode µ∗
p is

expressed as

µ∗
p (ζp) = −1

2
R−1

p Gp (ζ)
(
W ∗

p∇ζϕp (ζ) +∇ζϵp (ζ)
)T

. (5–9)

Property 6. There exists a set of constants that bound each unknown ideal weight

vector W ∗
p , the user-defined activation functions ϕ, and function reconstruction error ϵp,

2 The subsequent stability analyses proves that if ζ is initialized within a compact set,
then it will remain in that compact set.
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from above such that
∥∥W ∗

p

∥∥ ≤ W ∗
p , supζ∈Ωp

∥ϕp (ζ)∥ ≤ ϕp, supζ∈Ωp
∥∇ζϕp (ζ)∥ ≤ ∇ζϕp,

supζ∈Ωp
∥ϵp (ζ)∥ ≤ ϵp, supζ∈Ωp

∥∇ζϵp (ζ)∥ ≤ ∇xϵp, where W ∗
p , ϕp, ∇ζϕp, ϵp, ∇ζϵp ∈ R≥0

[60].

The ideal weights W ∗
p in (5–8) and (5–9) are unknown; hence, an approximation of

W ∗
p is sought. Specifically, the critic estimate, Ŵc,p ∈ RL is substituted to estimate the

value function V̂p : R2n × RL → R denoted as

V̂p

(
ζ, Ŵc,p

)
≜ Ŵ T

c,pϕp (ζ) . (5–10)

Similarly, another estimate for Wp, called the actor weight vector Ŵa,p ∈ RL, is used

to provide an approximate version of (5–9), the approximate optimal control policy

µ̂p : Rn × RL → R is given by

µ̂p

(
ζ, Ŵa,p

)
= −1

2
R−1

p Gp (ζ)
T
(
∇ζϕp (ζ)

T Ŵa,p

)
. (5–11)

5.2 System Identification

One contribution of this chapter is the extension of ADP to certain classes of

switched systems. In many cases, a model of the drift dynamics fp, and therefore Fp,

may be known a priori. However, if the drift dynamics contain uncertainty (i.e., contains

parametric uncertainties), then online system identification must be performed to

estimate the system model in real-time.

To facilitate the system identification objective, let f̂p : Rn ×Rs → Rn be a parametric

estimate of the drift dynamics fp. The number of parametric uncertainties s ∈ N

represents the number of uncertain parameters for each subsystem p. Each subsystem

p may have a different number of uncertainties and, therefore, different value of s. For

notational brevity, let s = sp ∀p ∈ P represent the number of parametric uncertainties

for each subsystem. Let fp be linearly parameterizable, i.e., fp (x) ≜ Yp (x) θp, where

Yp : Rn → Rn×s is a constant regression matrix and θp ∈ Rs denotes the unknown
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constant parameters of fp. The developed technique can be extended to a linear-in-

the-parameters NNs [48] or DNNs [52] to capture a larger class of nonlinear systems.

To contain the scope of this manuscript, the dynamics are assumed to be linear-in-the-

parameters. Using an approximation of the uncertain parameter vector θ̂p ∈ Rs, an

approximation of the pth mode’s uncertain drift dynamics f̂p : Rn × Rs → Rn is defined as

f̂p

(
x, θ̂p

)
≜ Yp (x) θ̂p. The parameter estimates are updated using the ICL-based update

policy

˙̂
θp ≜ −Γp,θ

M∑
j=1

YT
p,j

(
x (tj)− x (tj −∆t)− Up,j − Yp,j θ̂p

)
(5–12)

from [74], where Γp,θ ∈ Rs×s is a PD learning gain, Yp,j ≜ Yp (tj) , Up,j ≜ Up (tj) ,

Yp (t) ≜
´ t
max[t−∆t,0]

Yp (x (τ)) dτ, and Up (t) ≜
´ t
max[t−∆t,0]

gp (x (τ))u (τ) dτ.

Assumption 5.4. An history stack of recorded state and control inputs {x (tj) , u (tj)}Mp

j=1

that satisfy Y
p
≜ λmin

{∑M
j=1 YT

p,jYp,j

}
> 0 are available a priori for all subsystems p ∈ P.

Remark 5.1. To relax the common PE condition, the update law in (5–12) uses a history

stack of recorded state and input data. The finite excitation condition (Assumption

5.4) from [74] is necessary to facilitate parameter convergence in the subsequent

stability analysis. With a minor modification to the parameter update law in (5–12), the

availability of the history stack a priori is not necessary [48]. Assumption 5.4 is used to

focus the scope of this manuscript and simplify the subsequent stability analysis.

To facilitate the subsequent stability analysis, define θ̃p ≜ θp − θ̂p. The update law in

5–12 can be rewritten in an analytical form as

˙̃θp = −kICL,pΓp,θ

M∑
j=1

YT
p,jYp,j θ̃p (5–13)

If f is unknown, then the trajectory tracking component of the controller ud (xd)

contains uncertainty. An approximation of the trajectory tracking component ûd :

Rn × Rs → Rm is defined as ûd,p

(
xd, θ̂

)
≜ g+p (xd)

(
hd,p (xd)− f̂p

(
x, θ̂
))

. Hence, the
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applied control policy is

u ≜ µ̂p

(
ζ, Ŵa,p

)
+ ûd,p

(
xd, θ̂p

)
. (5–14)

5.3 Bellman Error

The HJB equation in (5–6) is equal to zero under optimal conditions; however,

substituting (5–10) and (5–11) into (5–6) results in a residual term δ̂p : Rn×RL×RL → R,

which is referred to as the BE, defined as

δ̂p

(
ζ, θ̂p, Ŵc,p, Ŵa,p

)
≜ ∇ζ V̂p

(
ζ, Ŵc,p

)(
Fθ,p

(
ζ, θ̂p

)
+ F1,p (ζ) +Gp (ζ) µ̂p

(
ζ, Ŵa,p

))
+Qp (ζ) + µ̂p

(
ζ, Ŵa,p

)T
Rpµ̂p

(
ζ, Ŵa,p

)
, (5–15)

where Fθ,p

(
ζ, θ̂p

)
≜

[(
f̂p

(
x, θ̂p

)
− gp (x) g

+
p (xd) f̂p

(
xd, θ̂p

))T
, 01×n

]T
and F1,p (ζ) ≜[(

−hd,p (xd) + gp (x) g
+
p (xd)hd,p (xd)

)T
, hd,p (xd)

T
]T

. The BE is in indirect measure of

the proximity of the actor and critic weight estimates to the ideal weights. By defining

the mismatch between the estimates and the ideal values as W̃c,p ≜ W ∗
p − Ŵc,p and

W̃a,p ≜ W ∗
p − Ŵa,p, substituting (5–8) and (5–9) in (5–6), and subtracting from (5–15)

yields the analytical form of the BE, which is used in the subsequent stability analysis,

as

δ̂p

(
ζ, θ̂p, Ŵc,p, Ŵa,p

)
= −W T

p ∇ζϕp (ζ)
(
Fθ,p (ζ, θp)− Fθ,p

(
ζ, θ̂p

))
− ωT

p W̃c,p

+
1

4
W̃ T

a,pGϕ,pW̃a,p +Op (ζ) , (5–16)

where ωp : R2n × RL × Rs → R2n is defined as

ωp

(
ζ, Ŵa,p, θ̂p

)
≜ ∇ζϕp (ζ)

(
Fp,θ

(
ζ, θ̂p

)
+ F1,p (ζ) +Gp (ζ) µ̂

(
ζ, Ŵa,p

))
, (5–17)

O (ζ) ≜ 1
2
∇ζϵp (ζ)GR,p∇ζϕp (ζ)

T W ∗
p + 1

4
Gϵ,p − ∇ζϵp (ζ)Fp,θ (ζ, θp) − ∇ζϵp (ζ)F1,p (ζ) ,

GR,p = GR,p (ζ) ≜ Gp (ζ)R
−1
p Gp (ζ)

T , Gϕ,p = Gϕ,p (ζ) ≜ ∇ζϕp (ζ)GR,p (ζ)∇ζϕp (ζ)
T , and

Gϵ,p = Gϵ,p (ζ) ≜ ∇ζϵp (ζ)Gp (ζ)∇ζϵp (ζ)
T .
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Remark 5.2. The expressions in (5–15) and (5–16) are equivalent for the BE. However,

(5–15) is used in implementation, while (5–16) is used in the stability analysis.

Bellman Error Extrapolation

At each time instant, the BE in (5–15) is calculated using the control policy given

by (5–11) evaluated using the current system state, critic weight estimates, and actor

weight estimates to obtain the instantaneous BE denoted by δ̂p ≜ δ̂p

(
ζ, θ̂p, Ŵc,p, Ŵa,p

)
.

A classical problem in learning-based control is exploration versus exploitation.

Results such as [26] add an exploration signal to sufficiently explore the operating

domain. However, no analytical methods exist to compute the appropriate exploration

signal. Alternatively, results such as [19] evaluate the BE along the system trajectory

and at any desired point in the state space (i.e., so-called BE extrapolation). The BE

extrapolation technique provides simulation of experience to avoid using an exploration

signal.

Specifically, BE is extrapolated from a user-specified number and location of off-

trajectory points {ζi,p : ζi,p ∈ Ωp}Np

i=1 , where Np ∈ N denotes a user-specified number

of points in the compact set Ωp. The data is represented by the tuple (Σc,p,Σa,p,ΣΓ,p) ,

defined as Σc,p ≜ 1
Np

∑Np

i=1
ωi,p

ρi,p
δ̂i,p, Σa,p ≜ 1

Np

∑Np

i=1

GT
σi,pŴa,pωT

i,p

4ρi,p
, ΣΓ,p ≜ 1

Np

∑Np

i=1

ωi,pω
T
i,p

ρi,p
,

where δ̂i,p ≜ δ̂p

(
ζi,p, θ̂p, Ŵc,p, Ŵa,p

)
, ωi,p ≜ ωp

(
ζi,p, Ŵa,p, θ̂p

)
, and ρi,p = 1 + νpω

T
i,pΓpωi,p,

νp ∈ R>0 is a user-defined gain, and Γ : R → RL×L is a time-varying least-squares

gain matrix. Each subsystem, p, must have distinct sets of data, gain values, and update

laws.

Assumption 5.5. Over the compact set, Ωp, a finite set of off-trajectory points

{ζi,p : ζi,p ∈ Ωp}Np

i=1 exists such that 0 < cp ≜ inf
t∈R≥0

λmin {ΣΓ,p (t)} for all t ∈ R≥0

and p ∈ P, where cp is a constant scalar lower bound of the value of each input-output

data pair’s minimum eigenvalues for the pth subsystem.
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5.4 Update Laws for Actor and Critic Weights

Using the extrapolated BEs δ̂i,p, the critic and actor weights are updated according

to the following policies. In the following definitions, ηc,p, ηa1,p, ηa2,p, λp ∈ R are positive

constant learning gains, and Γp, Γp ∈ R>0 are upper and lower bounds of the least-

squares learning gains of subsystem p. The critic update law of the pth mode is

˙̂
Wc,p ≜ −ηc,pΓpΣc,p. (5–18)

The actor update law of the pth mode is

˙̂
Wa,p ≜ −ηa1,p

(
Ŵa,p − Ŵc,p

)
− ηa2,pŴa,p + ηc2,pΣa,pŴc,p. (5–19)

The least-squares gain matrix update law of the pth mode is

Γ̇p ≜ (λpΓp − ηc,pΓpΣΓ,pΓp) · 1{Γp≤∥Γp∥≤Γp}, (5–20)

where 1{·} denotes the indicator function, and Γp,Γp ∈ R>0 are user-defined saturation

gains that bound ∥Γp∥ such that Γp ≤ ∥Γp (t)∥ ≤ Γp for all t ∈ R>0 and p ∈ P.

The update policies in (5–12) and (5–18)-(5–20) are distinct for each subsystem.

However, to prove stability of the overall switched system, each update policy must

be active simultaneously. Note that the aforementioned update policies do not rely on

the current state of the system to update the learning parameters. The update policy

in (5–12) relies on the history stack of state-action data, and the update policies in

(5–18)-(5–20) depend on the values of other parameters and data collected from BE

extrapolation.

5.5 Stability Analysis

Generally, the trajectory of a switched system can diverge even when all the

subsystems that compose the switched system are stable. Hence, the switching signal

must be properly designed to keep the overall system stable. Before the switching

signal is designed, the stability of each subsystem must be analyzed. In the following
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development, p subsystems, each with a class of dynamics in (5–1), will be analyzed

with the control policy and update laws outlined in (5–1) and (5–18)-(5–20).

5.5.1 Subsystem Stability Analysis

Recall from Property 5 that the function Q and, therefore, the optimal value function

V ∗ in (5–8) is PSD. Hence, V ∗ is not a valid Lyapunov function. The result in [61] can be

used to show that a nonautonomous form of V ∗, denoted as V ∗
na : Rn × R≥0 → R and

defined as V ∗
na,p (e, t) ≜ V ∗ (ζ) , is PD and decrescent. Hence, V ∗

na (0, t) = 0 and there

exist class K∞ functions v, v : R≥0 → R≥0 that bound vp (∥e∥) ≤ V ∗
na,p (e, t) ≤ vp (∥e∥) ∀e ∈

Rn, t ∈ R ≥ 0. Hence, V ∗
na (e, t) is a valid Lyapunov function. Let Z ∈ Rn+|P|(2L+s) denote

a concatenated state defined as Z ≜
[
eT , W̃ T

c,1, . . . , W̃
T
c, , W̃

T
a,1, . . . , W̃

T
a, , θ̃

T
1 , . . . , θ̃

T
]T

. Let

VL,p : Z ∈ Rn+|P|(2L+s) × R≥0 → R be a candidate Lyapunov function defined as

VL,p (Z, t) ≜ V ∗
na,p (e, t) +

1

2

∑
p∈P

W̃ T
c,pΓp (t)

−1 W̃c,p +
1

2

∑
p∈P

W̃ T
a,pW̃a,p +

1

2

∑
p∈P

θ̃Tp Γ
−1
θ,pθ̃p. (5–21)

Using the properties of V ∗
na (e, t) and [67, Lemma 4.3], then (5–21) be bounded as

α1,p (∥Z∥) ≤ VL,p (Z, t) ≤ α2,p (∥Z∥) using class K functions α1,p, α2,p : R≥0 → R≥0. Using

(5–20), the normalized regressors ω
ρ

and ωe

ρe
can be bounded as supt∈R≥0

∥∥∥ωp

ρp

∥∥∥ ≤ 1

2
√

νpΓp

for all ζp ∈ Ωp and supt∈R≥0

∥∥∥ωe,p

ρe,p

∥∥∥ ≤ 1

2
√

νpΓp

for all ζe,p ∈ Ωp. The matrices GR,p and

Gσ,p can be bounded as supζp∈Ωp
∥GR∥ ≤ λmax

(
R−1

p

)
Gp

2
≜ GR,p and supζp∈Ωp

∥Gσ,p∥ ≤(
∇ζϕpGp

)2
λmax

(
R−1

p

)
≜ Gσ,p, respectively. Furthermore, define Rp ∈ R>0 as the radius

of a compact ball centered at the origin BRp ⊂ Rn+|P|(2L+s).

Theorem 5.1. Provided Assumptions 5.4 and 5.5 hold, the weight update laws in

(5–18)-(5–20) are used, and the gain conditions

ηa1,p + ηa2,p >
ηc1,p + ηc2,p√

νpΓp

W ∗
pGϕ,p, (5–22)

cp >
3ηa1,p
ηc,p

+
3η2c,pW

∗
p

2
Gϕ,p

2

16νpΓp (ηa1,p + ηa2,p) ηc2,p
, (5–23)
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Lp < α−1
2,p (α1,p (Rp)) , (5–24)

are satisfied for all p ∈ P, where Lp and Rp are positive constants, then the tracking error

e, weight estimation errors W̃c,p and W̃a,p, and parameter estimation error θ̃p are UUB.

Hence, the error between the transient control policy for each mode µ̂p in (5–11) and its

respective optimal control policy µ∗
p in (5–7) is UUB.

Proof. Taking the time derivative of (5–21), the fact d
dt
Γ−1 = Γ−1Γ̇Γ−1, along with

Assumptions 5.1-5.5 and the sufficient conditions in (5–22)-(5–24) yields V̇L,p ≤

−vL,p (∥Z∥) , ∀v−1
L,p (Lp) ≤ ∥Z∥ ≤ α−1

2,p (α1,p (R)) , where vL,p (∥Z∥) ≜ 1
2
q
p
(∥e∥) +∑|P|

p=1

[
ηc,pcp
12

∥∥∥W̃c,p

∥∥∥2 + ηa1,p+ηa2,p
20

∥∥∥W̃a,p

∥∥∥2 + kICL,pYp

6

∥∥∥θ̃p∥∥∥2] and Lp is a positive constant.

While each individual subsystem is active, [67, Theorem 4.18] can be invoked to

conclude that Z is UUB such that lim supt→∞ ∥Z (t)∥ ≤ α−1
1,p

(
α2,p

(
v−1
L,p (Lp)

))
. Hence,

it can also be shown that µ̂p converges to a neighborhood of the optimal policy µ∗
p.

Furthermore, since Z ∈ L∞, it follows that e, W̃c,1, . . . , W̃c,|P|, W̃a,1, . . . , W̃a,|P|, θ̃1, . . . , θ̃|P| ∈

L∞, hence x, Ŵc,1, . . . , Ŵc,|P|, Ŵa,1, . . . , Ŵa,|P|, θ̂1, . . . , θ̂|P| ∈ L∞ and u ∈ L∞.

5.5.2 Dwell-Time Analysis

Theorem 5.1 indicates that each subsystem is UUB. However, this does not account

for switching between subsystems. Switching between control policies may result in

instantaneous growth when switching between multiple Lyapunov-like functions. To

ensure that the switched system is stable, a dwell-time must be designed to switch

between subsystems. Hence, continuity is not guaranteed between Lyapunov-like

functions VL,p across all subsystems.

Remark 5.3. The notation in this subsection is meant to be self-contained. To generalize

the following development, the conventional notation used in Lyapunov-based analyses

is introduced.
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Suppose we have a family fp, p ∈ P of functions from fp : Rn × R≥0 → Rn where P is

a switching index set. This yields a family of systems

ẋ = fp (x, t) , p ∈ P (5–25)

that evolve on Rn. σ : R≥0 → P is a piecewise constant switching signal that is

continuous from the right everywhere (σ (t) = limτ→t+ σ (τ) for each τ ≥ 0). To simplify

notation and denote switching, let

ẋ = fσ(t) (x, t) , p ∈ P. (5–26)

This stability analysis approach relies on multiple Lyapunov functions. While

each candidate Lyapunov function Vp for p ∈ P is continuous, the general candidate

Lyapunov function Vσ(t) is discontinuous (i.e., the value of the Lyapunov-like function

may instantaneously change value at the switching instances). While each Vp (x, t)

decreases or is bounded within a defined UUB region while active, Vp (x, t) may increase

when the pth system is inactive.

Definition 5.1. Given an infinite sequence of switching times tσ ≜ {t0, t1, . . . , ti, tj, . . .},

the dwell-time τ ∈ R>0 is defined as the time between switching instances. Specifically,

τ (ti, tj) ≜ tj − ti such that σ (ti) ̸= σ (tj).

Theorem 5.2. Let ẋ = fp (x, t) be a finite family of UUB stable subsystems and

Vp : Rn × R≥0 → R be a family of corresponding Lyapunov-like functions that satisfy

α1,p (∥x∥) ≤ Vp (x, t) ≤ α2,p (∥x∥) , (5–27)

∂Vp

∂t
+

∂Vp

∂x
fp (x, t) ≤ −Wp (x) , (5–28)

and

max
p∈P

α2,p (µp) < min
p∈P

α1,p (r) (5–29)
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for all x ∈ Λp, p ∈ P, and t ≥ 0, where Λp ≜ {x | 0 ≤ µp ≤ ∥x∥ ≤ r}, α1,p, α2,p :

[0, r] → R≥0 are class K functions, and Wp : Rn → R≥0 is a continuous PD function.

Furthermore, let tσ = {t0, t1, t2, . . .} represent a sequence of switching times. If the

conditions in (5–27)-(5–29) and the minimum dwell-time condition

τ (ti) ≥


α2,σ(ti)

(∥x(ti)∥)−α
1,σ(t−i )

(∥x(ti)∥)

κ
∀Vσ(ti) (x (ti) , ti) > α

> 0 ∀Vσ(ti) (x (ti) , ti) ≤ α

(5–30)

are satisfied for all p ∈ P and for every switching instant ti ∈ tσ, where Vj represents

the Lyapunov-like function of the jth subsystem, κ is a subsequently defined positive

constant, and ti ∈ tσ represents a general switching instance, then the trajectories of

the switched system ẋ = fp (x, t) initialized in the set
{
x | ∥x∥ ≤ minp,q∈P α

−1
2,p (α1,q (r))

}
converge to a bounded region given by limt→∞ ∥x (t)∥ ≤ maxp,q∈P α

−1
1,p (α2,q (µq)).

Proof. Consider a pair of switching times {t0, t1} ⊆ tσ such that t0 < t1, σ (t) = p ∈ P ∀t ∈

[t0, t1). Let q ∈ P represent the subsystem active before p, i.e., σ
(
t−0
)
= q.

If (5–29) holds and if α2,p (µp) < Vp (x, t) ≤ α1,p (r), then x ∈ Λp and

V̇p (x, t) < 0 from (5–28). As a result, if (5–29) holds and if Vp (x (t0) , t0) ≤ α2,p (µp),

then Vp (x (t) , t) ≤ α2,p (µp) for all t ∈ [t0, t1]. Similarly, if (5–29) holds and if

Vp (x (t0) , t0) ≤ α ≜ maxp∈P {α2,p (µp)}, then either Vp (x (t0) , t0) ≤ α2,p (µp) or

x (t0) ∈ Λp. In either case, (5–28) implies that Vp (x (t) , t) ≤ max {Vp (x (t0) , t0) , α2,p (µp)}

for all t ∈ [t0, t1]. Thus, if (5–29) holds, then the α-sublevel set and the α1,p (r)-

sublevel set of Vp are forward invariant over [t0, t1]. From (5–28), whenever x ∈ Λp,

V̇p (x, t) ≤ −Wp (x) ≤ −minp∈Pminx∈Λp Wp (x) ≜ κ. Using forward invari-

ance of α1,p (r) and α2,p (µp), and sublevel sets of Vp, it can be concluded that

Vp (x (t) , t) ≤ max {Vp (x (t0) , t0)− κ (t− t0) , α2,p (µp)} ∀t ∈ [t0, t1] whenever

Vp (x (t0) , t0) ≤ α1,p (r).

The difference between the Lyapunov-like functions of the qth and pth subsys-

tems, at the time of exit, is bounded from above as Vp (x (t1) , t1) − λVq (x (t0) , t0) ≤
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max {Vp (x (t0) , t0) − λVq (x (t0) , t0) − κ (t1 − t0) , α− λVq (x (t0) , t0)} for some λ ∈ (0, 1].

If the inequality

Vp (x (t0) , t0)− λVq (x (t0) , t0)− κ (t1 − t0) ≤ 0 (5–31)

is satisfied, then

Vp (x (t1) , t1)− λVq (x (t0) , t0) ≤ max {0, α− λVq (x (t0) , t0)} . (5–32)

If α − Vq (x (t0) , t0) ≥ 0, then α − λVq (x (t0) , t0) ≥ 0. Thus, (5–32) implies that

Vp (x (t1) , t1) ≤ α. If α − λVq (x (t0) , t0) ≤ 0 (i.e., the value of the Lyapunov-like function

is bounded within α), then (5–32) implies that Vp (x (t1) , t1) ≤ λVq (x (t0) , t0) (i.e. that the

value of the Lyapunov-like function has not increased at the time of exit).

In conclusion, Vp (x (t0) , t0) ≤ α1,p (r) and (5–31) imply that Vp (x (t1) , t1) ≤

max {α, λVq (x (t0) , t0)}. If it can be guaranteed (by (5–29)) that

α ≤ α1,p (r) and λVq (x (t0) , t0) ≤ α1,p (r) (5–33)

then, recursively, Vσ(ti+1) (x (ti+1) , ti+1) ≤ max
{
α, λVσ(ti) (x (ti) , ti)

}
for all ti ∈ tσ.

That is, the sequence of Lyapunov-like functions decays to α, and since α-sublevel

sets are forward invariant over [ti, ti+1] under (5–29), the trajectories decay to⋃
p∈P {x |Vp (x (t) , t) ≤ α} ⊆

{
x | ∥x∥ ≤ maxp∈P α

−1
1,p (α)

}
.

Sufficient conditions for (5–33) can be derived as x (t0) ∈

{x |α2,p (∥x (t)∥) ≤ α1,p (r) ∀p ∈ P} and α ≤ minp∈P α1,p (r), and a sufficient dwell-time

condition to satisfy the inequality in (5–31) can be derived as

τ (t0) ≥ τ ∗ (t0) =
α2,p (∥x (t0)∥)− α1,q (∥x (t0)∥)

κ
, (5–34)
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The dwell-time restriction in (5–34) can be relaxed if the state at the switching time is

in the set {x |Vp (x, t) ≤ α ∀p ∈ P} ⊆ {x |α2,p (∥x∥) ≤ α ∀p ∈ P}, which yields the final

dwell-time condition in (5–30).

5.5.3 Application to Switched ADP

From Theorem 5.1, every individual subsystem is UUB; i.e., each subsystem

satisfies (5–27)-(5–29). Hence, given that the dwell-time condition in (5–34) is sat-

isfied, then Theorem 5.2 can be trivially applied to show that limt→∞ ∥Z (t)∥ ≤

maxp,q∈P α
−1
1,p (α2,q (µq)). Hence, it can also be shown that each µ̂p converges to a

neighborhood of the respective optimal policy µ∗
p for all p ∈ P. Furthermore, since

Z ∈ L∞, it follows that e, W̃c,1, . . . , W̃c,|P|, W̃a,1, . . . , W̃a,|P|, θ̃1, . . . , θ̃|P| ∈ L∞, hence

e, Ŵc,1, . . . , Ŵc,|P|, Ŵa,1, . . . , Ŵa,|P|, θ̂1, . . . , θ̂|P| ∈ L∞ and u ∈ L∞.

5.6 Simulation Results

To demonstrate the performance of the developed method, the ADP controller is

applied to a family of dynamical systems. The simulation is performed on the control-

affine systems in (5–35)-(5–37). The dynamic models are based on the continuous-time

F-16 longitudinal dynamics from [18]. The dynamics of the first mode are

ẋ =


−1 0.9 −0.002

0.8 −1.1 −0.2

0 0 −1

x+


0

0

1

u, (5–35)

the dynamics of the second mode are

ẋ =


−0.8 0.2 −0.01

0.6 −1.3 −0.1

0 0 −1

x+


0

0

0.5

u, (5–36)

and the dynamics of the third mode are
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ẋ =


−1 0.5 −0.02

0.9 −0.8 −0.4

0 0 −1

x+


0

0

1

u, (5–37)

where x =

[
x1, x2, x3

]T
, x ∈ R is measured in radians, and u ∈ R. The ini-

tial condition is x (0) =

[
0.35 0.26 −0.35

]T
. The mode described by (5–35)

is the closest to the dynamic model given in [18]. (5–36) and (5–37) vary from

(5–35). A different mode was arbitrarily selected every 5 second as the active sub-

system to highlight this method’s ability to switch between different dynamical sys-

tems. The simulated switching sequence is {1, 2, 3, 1, 3, 2} . The basis function is

ϕp (x) =

[
x2
1, x1x2, x1x3, x2

2, x2x3, x2
3

]T
for all p ∈ P. Modes 1-3 have different

cost matrices and gains, which alters V ∗
p ,and hence, the performance. The simulation

parameters for each mode are listed in Table 5-1.

Table 5-1. Switched Subsystem Simulation Parameters
Parameter Mode 1 Mode 2 Mode 3

Qp diag(1, 1, 1) diag(5, 5, 5) diag(3, 3, 3)
Rp 0.5 2 1
Γp 103 103 103

Γp 500 500 50
λp 0.4 0.5 0.5
νp 0.005 0.005 0.005
ηc1,p 3 1 1
ηc2,p 5 2.5 5
ηa1,p 20 10 5
ηa2,p 1 0.75 1
Np 10 10 10

Figure 5-1 illustrates that the system states are driven to the origin with an arbitrary

switching sequence and sufficiently long dwell-time. Since the dynamical systems are

linear, the analytical value function can be determined by solving the Algebraic Riccati

Equation. Solving the Algebraic Riccati Equation provides a matrix which corresponds

84



to the value function weights W ∗
p , and, hence, the value functions V ∗

p (x) . Figure 5-2

compares the value of the approximate value function to analytical value function while

switching between modes. Figure 5-3 presents the evolution of the critic weights Ŵc,p,

while switching. A mode’s weights update regardless of mode (in)activity. Note that the

weights of mode 1 and 2 converge before switching to another mode for the first time,

while mode 3 is switched before it finishes learning. This illustrates that the weights do

not need to be learned before the switching occurs.

5.7 Concluding Remarks

A set of online approximate optimal controllers are developed for an arbitrary

sequence of subsystems. Each controller is proven to regulate the state to within a

neighborhood of the origin. Furthermore, the control policies are shown to converge to

the neighborhood of the optimal policy using a Lyapunov-based analysis, while switching

between different dynamic models and cost matrices. Simulation results show that

switching according to an arbitrary sequence yields different tracking performance while

maintaining overall system stability.

85



0 5 10 15 20 25 30

-20

-10

0

10

20

Figure 5-1. System states. The vertical dashed lines represent the time instances at
which the mode was switched.
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Figure 5-2. Comparison of the analytical value functions, V ∗
p (x) , and the approximate

value functions, V̂p

(
x, Ŵc,p

)
. The vertical dashed lines represent the time

instances at which the mode was switched.
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Figure 5-3. Critic weight estimates of each mode, Ŵc,p. The vertical dashed lines
represent the time instances at which the mode was switched. The active
vector of critic weights is denoted with a solid instead of a dashed line.
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CHAPTER 6
DEEP NEURAL NETWORK-BASED APPROXIMATE OPTIMAL TRACKING FOR

UNKNOWN NONLINEAR SYSTEMS

Results in [49] and [50] leverage a multi-timescale deep model reference adaptive

controller. Similarly, the method in [52] uses a multi-timescale DNN to estimate the

unknown system dynamics, which facilitates a trajectory tracking objective. In [52], a

gradient-based adaptation policy is used to estimate the output layer weights of the DNN

in real-time. Simultaneous to real-time execution, input-output data is stored and used

to update the inner-layer weights using traditional offline DNN function approximation

methods.

However, the adaptive update policy in [52] cannot be easily extended to system

identification within the ADP framework. To prove stability of the overall system with an

ADP controller, the adaptive update policy of the output-layer DNN weights must include

the CL modification from [57], which complicates the stability analysis (cf., model-based

ADP analyses in [19] and [48]).

The primary contribution of this chapter is to analyze the stability of tracking

problem while using the multi-timescale DNN system identification approach. Simulation

results are presented to illustrate the effectiveness of the developed technique in

comparison to existing ADP-based results.

6.1 DNN-based System Identification

There exist numerous DNN architectures can approximate continuous functions on

a compact set; the ability to do so is based on universal approximation theorems that

can be invoked case-by-case for specific DNN architectures [75]. The drift dynamics f
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can be approximated on a compact set C ⊂ Rn as1

f (x) = θTϕ (Φ∗ (x)) + ϵ∗θ (x) ∀x ∈ C, (6–1)

where θ ∈ Rh×n is an unknown bounded ideal output-layer weight matrix, ϕ : Rp → Rh

is an vector of activation functions, Φ∗ : Rn → Rp is the ideal unknown inner-

layer features of the DNN, and ϵ∗θ : Rn → Rn is a bounded function approx-

imation error. For example, the unknown ideal DNN Φ∗ can be expressed as

Φ∗ (x) = Vkϱk (Vk−1, ϱk−1 (Vk−2, ϱk−2 (...x))) , where k ∈ N denotes the number of

inner-layers of the DNN, Vk and ϱk (·) denote the corresponding inner-layer weights and

activation functions of the DNN, respectively.

Based on the DNN representation in (6–1), the ith DNN-based estimate of the drift

dynamics f̂i : Rn × Rh×n,→ Rn is defined as

f̂i

(
x, θ̂
)
= θ̂Tϕ

(
Φ̂i (x)

)
, (6–2)

where θ̂ ∈ Rh×n is the estimate of the ideal output-layer weight matrix θ, and Φ̂i :

Rp → Rn is the ith iteration selection of the inner features with user-selected activation

functions and estimated internal-layer weights. To facilitate the convergence of the

DNN-based online system identifier, (6–2) can be used to develop an estimator

˙̂x = f̂i

(
x, θ̂
)
+ g (x)u+ kox̃, (6–3)

where x̃ ≜ x− x̂, and ko ∈ R>0 is a user-selected estimator learning gain.

Using the universal function approximation property of NNs [60], there exists

constant weights θ∗ and known finite constants θ∗, ϵ∗θ, and ∇xϵ∗θ ∈ R≥0, such that

∥θ∗∥ ≤ θ∗, sup
x∈C

∥ϵ∗θ (x)∥ ≤ ϵ∗θ, and sup
x∈C

∥∇xϵ
∗
θ (x)∥ ≤ ∇xϵ∗θ.

1 The subsequent stability analysis in Theorem 4.1 proves that if x is initialized within
an appropriately-sized subset of C, then it will remain in C.
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Assumption 6.1. The ith user-selected inner-layer features of the DNN Φ∗ and Φ̂i

are selected such that Φ∗ (x) − Φ̂i (x) ≤ Φ̃i (x) , where Φ̃i : Rn → Rp is the inner-

layer DNN function reconstruction error of the ith iteration, and sup
x∈C, i∈N

∥∥∥Φ̃i (x)
∥∥∥ ≤ Φ̃,

where Φ̃ ∈ R≥0 is a bounded constant for all i. Using the Mean Value Theorem,∥∥∥ϕ (Φ∗ (x))− ϕ
(
Φ̂i (x)

)∥∥∥ ≤ ∇xϕ Φ̃.

Assumption 6.2. A history stack of input-output data pairs {xj, uj}Mj=1 and his-

tory stack of numerically-computed state derivatives
{
ẋj

}M
j=1

, which satisfies

λmin

{∑M
j=1 ϕ̂i

(
Φ̂i (xj)

)
ϕ̂i

(
Φ̂i (xj)

)T}
> 0 and

∥∥ẋj − ẋj

∥∥ < d ∀j, are available a priori

for each index j of xj, where d ∈ R>0 is a known constant and ẋj ≜ f (xj) + g (xj)uj [57].

Remark 6.1. Availability of the system identification history stack (i.e., the tuple

{xj, uj, ẋj}Mj=1) a priori is not necessary [48]. Assumption 6.2 is used to focus the

scope of this chapter and simplify the subsequent stability analysis. A traditional,

PE-based ADP controller (e.g., [10]) can be used during the initial stage in which As-

sumption 6.2 cannot be verified. Provided that the system is sufficiently exited and

the history stack is recorded within a finite time, then the developed controller can be

used. Switching between a PE-based controller and the developed controller results in a

switched subsystem with one switching event. In this case, stability of the overall system

is determined from the stability of the individual subsystems.

In the developed method, a DNN with uncertain output-layer parameters θ̂ is used

to facilitate system identification in the sense that F̂ approximates F. To enable con-

vergence of F̂ to F, CL-based parameter update laws are developed that use recorded

data for learning. This CL strategy is leveraged to modify the output-layer weight update

law in [52]. As shown in the subsequent stability analysis, this modification enables θ̂ to

converge to a region containing θ. The output-layer DNN weight estimates are updated

using a CL-based update law

˙̂
θ = Γθϕ

(
Φ̂i (x)

)
x̃T + kθΓθ

M∑
j=1

ϕ
(
Φ̂i (xj)

)(
˙̄xj − gj (xj)uj − θ̂Tϕ

(
Φ̂i (xj)

))T
, (6–4)
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where Γθ ∈ Rh×h and kθ ∈ R>0 are constant user-selected adaptation gains.

Remark 6.2. While the contribution of this section focuses on updating the output layer

weights in real-time, (re)training of the DNN system identifier is key to the DNN system

identifier framework outlined in [52]. The history stack can be collected a priori and/or

online. The history stack, which is also used to update the output layer weights in (6–4),

can simultaneously be used to update the inner-layer features and weights of the DNN

(i.e., update ϕ
(
Φ̂i (x)

)
from i to i + 1) iteratively. To improve the DNN estimate of the

dynamics, additional data should be collected online and used to update the inner-layer

features and weights.

6.2 Bellman Error

The HJB equation in (2–18) is equal to zero under optimal conditions; however,

substituting (2–21), (2–22), and the approximated drift dynamics f̂i

(
x, θ̂
)

into (2–18)

results in a residual term δ̂ : R2n × Rh×n × RL × RL → R, which is referred to as the BE,

defined as

δ̂
(
ζ, θ̂, Ŵc, Ŵa

)
≜ µ̂

(
ζ, Ŵa

)T
Rµ̂
(
ζ, Ŵa

)
+Q (ζ)

+∇ζ V̂
(
ζ, Ŵc

)(
F̂i

(
ζ, θ̂
)
+G (ζ) µ̂

(
ζ, Ŵa

))
, (6–5)

where F̂i : R2n × Rh×n → R2n is defined as

F̂i

(
ζ, θ̂
)
≜

[
f̂i

(
e+ xd, θ̂

)T
− hd (xd)

T + ud (xd)
T g (e+ xd)

T , hd (xd)
T

]T
. (6–6)

The BE in (6–5) indicates how close the actor and critic weight estimates are to

their respective ideal weights. The mismatch between the estimates and their ideal

values are defined as W̃c ≜ W ∗ − Ŵc and W̃a ≜ W ∗ − Ŵa. Substituting (2–21) and (2–22)

into (2–18), and subtracting from (6–5) yields the analytical form of the BE, given by

δ̂
(
ζ, θ̂, Ŵc, Ŵa

)
= −ωT W̃c −W ∗T∇ζσ

(
F (ζ)− F̂i

(
ζ, θ̂
))

+
1

4
W̃ T

a GσW̃a +O (ϵ,∇ζϵ, ϵ
∗
θ) ,

(6–7)
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where ω : R2n × RL × Rh×n → Rh is defined as ω
(
ζ, Ŵa, θ̂

)
≜

∇ζσ (ζ)
(
F̂i

(
ζ, θ̂
)
+G (ζ) µ̂

(
ζ, Ŵa

))
, O (ζ) ≜ 1

2
∇ζϵ (ζ)GR∇ζσ (ζ)T W ∗ + 1

4
Gε −

W ∗T∇ζσ (ζ) ϵ∗θ (e+ xd) − ∇ζε (ζ)F (ζ) , GR = GR (ζ) ≜ G (ζ)R−1G (ζ)T ,

Gσ = Gσ (ζ) ≜ ∇ζσ (ζ)GR (ζ)∇ζσ (ζ)T , and Gε = Gε (ζ) ≜ ∇ζϵ (ζ)G (ζ)∇ζϵ (ζ)
T .

Bellman Error Extrapolation

At each time instant t ∈ R≥0, the estimated BE in (6–5) and policy in (2–22) are

evaluated using the current system state, critic estimate, and actor estimate to get the

instantaneous BE and control policy, which are denoted by δ̂ ≜ δ̂
(
ζ, θ̂, Ŵc, Ŵa

)
and

µ̂ ≜ µ̂
(
ζ, Ŵa

)
, respectively. However, using only the on-trajectory BE and control policy

requires the traditional PE condition to be satisfied to show convergence.

To simulate PE and extrapolate BE over off-policy trajectories, the off-policy trajec-

tories {ζe : ζe ∈ Ω}Ne=1 are selected, where N ∈ N denotes the number of extrapolated

trajectories in Ω. The extrapolation points are selected a priori by the user and are state

dependent. Using the extrapolated trajectories ζe ∈ Ω, the BE in (6–5) is evaluated

such that δ̂e ≜ δ̂
(
ζe, θ̂, Ŵc, Ŵa

)
. Let the tuple (Σc,Σa,ΣΓ) define the extrapolation

stacks corresponding to Ω such that Σc ≜ 1
N

∑N
e=1

ω
ρ
δ̂, Σa ≜ 1

N

∑N
e=1

GT
σeŴaωT

e

4ρe
, and

ΣΓ ≜ 1
N

∑N
e=1

ωeωT
e

ρe
, where ωe ≜ ω

(
ζe, θ̂, Ŵa

)
, ρe ≜ ρ

(
ζe, θ̂, Ŵa

)
= 1 + νωT

e Γωe, Γ ∈ RL×L

is a subsequently defined user-initialized learning gain, and Assumption 6.3 is provided

to facilitate the subsequent stability analysis.

Assumption 6.3. There exist a finite set of trajectories {ζe : ζe ∈ Ω}Ne=1 such that

0 < c ≜ inft∈R≥0
λmin {ΣΓ} for all t ∈ R≥0.

Remark 6.3. The constant c is the lower bound of the value of each input-output data

pairs’ minimum eigenvalues.

Remark 6.4. The computational expense of BE extrapolation can be reduced by using

the sparse BE extrapolation method in [64].
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6.3 Actor and Critic Weight Update Laws

Using the instantaneous BE δ̂ and extrapolated BEs δ̂e, the critic and actor weights

are updated according to

˙̂
Wc =− ηc1Γ

ω

ρ
δ̂ − ηc2ΓΣc, (6–8)

Γ̇ =

(
λΓ− ηc1

ΓωωTΓ

ρ2
− Γηc2ΣΓΓ

)
1{Γ≤∥Γ∥≤Γ}, (6–9)

˙̂
Wa =− ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa + ηc1

GT
σ Ŵaω

T

4ρ
Ŵc + ηc2ΣaŴc, (6–10)

where ηc1, ηc2, ηa1, ηa2, λ ∈ R>0 are constant learning gains, Γ and Γ ∈ R>0 are upper and

lower bound saturation constants, and 1{·} denotes the indicator function. ∥Γ (t)∥ is up-

per and lower bounded by two user-defined saturation constants, Γ and Γ, respectively.

Using the indicator function in (6–9) ensures that Γ ≤ ∥Γ (t)∥ ≤ Γ for all t ∈ R>0, where

Γ ∈ R>0. The indicator function in (6–9) can be removed provided additional conditions

are met [53].

6.4 Stability Analysis

Note that the function Q and, therefore, V ∗ are positive semidefinite. Hence,

V ∗ is not a valid Lyapunov function. However, the result in [61] can be used to show

that a nonautonomous form of V ∗, denoted as V ∗
na : Rn × R≥0 → R and defined as

V ∗
na (e, t) ≜ V ∗ (ζ) , is PD and decrescent. Hence, V ∗ (0, t) = 0 and there exist class K∞

functions v, v : R≥0 → R≥0 that bound v (∥e∥) ≤ V ∗ (e, t) ≤ v (∥e∥) ∀e ∈ Rn, t ∈ R≥0.

Hence, V ∗
na (e, t) is a valid Lyapunov function. Let Z ∈ R2n+2L+hn denote a concatenated

state defined as Z ≜

[
eT , W̃ T

c , W̃
T
a , x̃

T , vec
(
θ̃
)T]T

. Let VL : R2n+2L+hn × R≥0 → R be a

candidate Lyapunov function defined as

VL (Z, t) ≜ V ∗
na (e, t) +

1

2
W̃ T

c Γ (t)−1 W̃c +
1

2
W̃ T

a W̃a +
1

2
x̃T x̃+

1

2
tr
(
θ̃TΓ−1

θ θ̃
)
. (6–11)
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Using the properties of V ∗
na (e, t) and [67, Lemma 4.3], then (6–11) be bounded as

vl (∥Z∥) ≤ VL (Z, t) ≤ vl (∥Z∥) for class K∞ functions vl, vl : R≥0 → R≥0. Using (6–9), the

normalized regressors ω
ρ

and ωi

ρi
can be bounded as supt∈R≥0

∥∥∥ω
ρ

∥∥∥ ≤ 1

2
√

νΓ
for all ζ ∈ Ω

and supt∈R≥0

∥∥∥ωi

ρi

∥∥∥ ≤ 1

2
√

νΓ
for all ζi ∈ Ω. The matrices GR and Gσ can be bounded as

supζ∈Ω ∥GR∥ ≤ λmax {R−1}G2
≜ GR and supζ∈Ω ∥Gσ∥ ≤

(
∇ζσG

)2
λmax {R−1} ≜ Gσ,

respectively. Furthermore, g+d can be bounded as supt∈R≥0

∥∥g+d ∥∥ ≤ g+d .

Theorem 6.1. Given the dynamics in (2–1), given that Assumptions 6.2 and 6.3 are

satisfied, and given that the sufficient gains conditions

ηa1 + ηa2 ≥ (ηc1 + ηc2)
W Gσ√

νΓ
, (6–12)

c ≥ 4
ηa1
ηc2

+
(ηc1 + ηc2)

2W ∗2Gσ
2

4νΓ (ηa1 + ηa2)
+

3 (ηc1 + ηc2)
2W

2∇ζσ
2
(
ϕ+ g+d ϕg

)2
2ηc2kθνΓλmin

{∑M
j=1 ϕ

(
Φ̂i (xj)

)
ϕ
(
Φ̂i (xj)

)T} , (6–13)

ν−1
l (l) < v−1

l (vl (∥Z∥)) , (6–14)

are satisifed, where l is a known positive constant, then the system state ζ, weight

estimation errors W̃c and W̃a, state estimation error x̃,and output-layer weight matrix

error θ̃ are UUB. Hence, the applied control policy û converges to a neighborhood of the

optimal control policy u∗.

Proof. Let r ∈ R>0 be the radius of a compact ball χ ⊂ R2n+2L+hn centered at the

origin. Using (2–13), V̇ ∗ (ζ) = ∇ζV
∗ (ζ) (F (ζ) +G (ζ)µ), (6–3), (6–4), (6–8)-(6–10),

Young’s Inequality, nonlinear damping, Assumption 6.2, Assumption 6.3, the sufficient

conditions in (6–12) and (6–13) yields V̇L ≤ −νl (∥Z∥) , ∀ν−1
l (l) ≤ ∥Z∥ ≤ v−1

l

(
vl (r)

)
∀t ∈

R≥0,where νl (∥Z∥) ≜ 1
2
q (∥e∥) + 1

16
ηc2c

∥∥∥W̃c

∥∥∥2 + 1
16
(ηa1 + ηa2)

∥∥∥W̃a

∥∥∥2 + ko
4
∥x̃∥2 +

kθ
6
λmin

{∑M
j=1 ϕ

(
Φ̂i (xj)

)
ϕ
(
Φ̂i (xj)

)T}∥∥∥vec(θ̃)∥∥∥2. Since the discontinuities in the up-

date laws in (6–3), (6–4), and (6–8)-(6–10) are piecewise continuous in time and (6–11)
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is a common Lyapunov-like function across each DNN iteration i, [67, Theorem 4.18]

can be invoked to conclude that Z is UUB such that lim supt→∞ ∥Z∥ ≤ v−1
l

(
vl
(
ν−1
l (l)

))
and µ̂ converges to a neighborhood around the optimal policy µ∗. Since Z ∈ L∞, it

follows that e, W̃c, W̃a, x̃, θ̃ ∈ L∞; hence, x, Ŵc, Ŵa, θ̂ ∈ L∞ and µ ∈ L∞.

The result in [67, Theorem 4.18] can be invoked to show that every trajectory Z (t)

that satisfies the initial condition ∥Z (0)∥ ≤ v−1
l (vl (r)) is bounded for all t ∈ R≥0. That

is, Z ∈ χ ∀t ∈ R≥0. Since Z ∈ χ it follows that the individual states of Z lie on compact

sets.2 Furthermore, since xd ≤ xd, then ζ ∈ Ω and x ∈ C, where Ω is the compact

set that facilitates value function approximation, and C is the compact set that facilitates

DNN-based system identification.

Remark 6.5. For insight into satisfying the conditions in (6–12)-(6–14), see [48].

6.5 Simulation Results

The following section will apply the developed technique to a linear quadratic

tracking (LQT) problem, which has a cost function r (ζ, µ) = eTQe + µTRµ. The linear

system

ẋ =

 −1 1

−1
2

−1
2

x+

 0

1

u (6–15)

is studied in the following simulation. Since linear system dynamics are used, an

analytical solution to the HJB equation in (2–18) can be calculated for comparison

purposes. The linear system in (6–15) was selected because it has been used in

previous ADP works (e.g., [48]) and an analytical solution to the HJB equation in (2–18)

can be calculated for comparison purposes. The control objective is to track the time-

varying desired trajectory xd (t) = [4 sin(t), 4 cos(t) + 4 sin(t)]T and to minimize the infinite

horizon cost function in (2–16).

2 See [16, Algorithm A.2] for discussion on establishing the compact set χ.
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The drift dynamics are unknown and approximated using the developed DNN-

based system identification method. The DNN used in this simulation was composed

of 4 layers, each with 10, 6, 7, and 2 neurons, respectively. The DNN architecture is

illustrated in Figure 6-1. Note that the DNN architecture utilizes jump connections that

are often seen in residual NNs. Since the developed framework is constructed to permit

DNN structures with a linear output layer, this parameterization matches that in (6–1).

The first, second, and third layers use Elliot symmetric sigmoid, logarithmic sigmoid, and

tangent sigmoid activation functions, respectively. Additionally, biases are included in

the first, second, and third layers. The learning rate (i.e., the learning gain parameter

used to determine the step size in retraining the DNN weights at each iteration) was

fixed as η = 0.001. The mean squared error was used as the loss function for training.

The Levenberg-Marquardt algorithm was used to train the weights of the DNN. For

each DNN training iteration, 70% of the data was used for training, 15% was used for

validation, and 15% was used for testing.

Figure 6-1. The DNN is composed of 4 layers, each with 10, 6, 7, and 2 neurons,
respectively.

The cost function in (2–17) is selected asr (ζ, µ) = eTQe + uTRu, where Q =

5 · I2 and R = 1. The basis selected for value function approximation is σ (ζ) =

[e21, e1e2, e1xd1, e1xd2, e
2
2, e2xd1, e2xd2]

T
. N = 50 BE extrapolation points were uniformly

selected across Ω ≜ {ζ ∈ R4 : −15 < e1,2 ≤ 15, −4 < xd1,2 ≤ 4, } . The initial conditions

used for the simulated system are x (0) = [−1, 1]T , x̂ (0) = 17, Ŵc (0) = 17, Ŵa (0) = 17,

Γ (0) = 2500 · I7, and θ̂ (0) = 113×2. The gains were selected as ηc1 = 0.005, ηc2 = 0.1,

ηa1 = 10, ηa2 = 0.1, λ = 0.4, ν = 0.005, Γ = 104, Γ = 0.1, kθ = 30, ko = 10 and Γθ = 20 · I7.
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The following simulation results are divided into two sections. Section 6.5.1 pro-

vides qualitative and quantitative comparisons between the different ADP methods

and the analytical optimal control policy; to focus the presented figures, none of the

DNN methods update their inner features online. Section 6.5.2 provides a more direct

comparison between the randomly initialized DNN ADP methods; one updates the

inner-layer weights online and the other does not.

6.5.1 ADP Simulation Comparisons

This section presents simulation results for an analytical (Analyt.) optimal control

policy, exact model knowledge (EMK) ADP, linearly parameterizable (LP) ADP, randomly

initialized DNN ADP, transfer learning DNN ADP, and pretrained DNN ADP. All of the

ADP methods in this simulation comparison are model-based (i.e., use BE extrapo-

lation). The analytical optimal control policy calculates feedback gains a priori and

is a baseline measurement for the best possible optimal control performance. EMK

ADP uses exact model knowledge of f (x) , so the results present the best possible

performance for an ADP-based controller. LP ADP assumes that f (x) is linearly pa-

rameterizable (i.e., f (x) = Y (x) θ, where Y (x) exactly parameterizes the dynamics),

as typically seen in adaptive control literature [76]. LP requires some, but not exact

model knowledge. Furthermore, LP dynamics are a special class of dynamics. Since

the dynamics in this simulation happen to be LP, and LP is common in adaptive control

literature, it is included in this comparison study. Pretrained DNN ADP pretrains the

DNN on the actual dynamics f (x) (e.g., (6–15)).This method requires some data from

the system a priori, which may not always be possible. Transfer learning DNN ADP

pretrains the DNN on a dynamical system that is similar, but not exactly the same,

as the one it will be implemented on (e.g., (6–15)). Specifically, for this training case

A =

 −2 −2

−1 −2

 and B is identical. The pretraining can be done on a similar system or

from prior experiments a priori. However, transfer learning DNN ADP does not require
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exact model knowledge. Randomly initialized DNN ADP uses the developed DNN ADP

controller, but there is no pretraining. The initial values of the inner and output-layer

weights are arbitrarily selected from the interval [−1, 1] . This simulation case shows that

without any model knowledge, the desired trajectory can still be tracked.

Figure 6-2 compares the above methods qualitatively. The analytical and EMK ADP

methods were expected to perform best, and are used for comparison purposes. Both of

these methods require exact model knowledge, whereas the other methods do not. The

LP ADP performs very well, but also requires some knowledge about the model. The

pretrained DNN ADP method performs well, but does not perform as well as EMK ADP.

The transfer learning ADP performs slightly better than the randomly initialized ADP,

but both are noticeably worse than the other methods, specifically around the transient

changes in error caused by a rapid change in the desired trajectory. The random and

transfer learning DNN cases did not successfully identify the dynamics in regions with a

rapidly changing desired trajectory.

Table 6-1 quantitatively compares the performance of each method. Column one

compares the total error of each simulation (i.e.,
´ 15+1

0
e (τ) dτ ). Recall that the analytical

and EMK ADP were expected to have the best performance. Pretrained DNN ADP

performs the best out of the methods without model exact model knowledge, followed by

LP ADP, transfer learning DNN ADP, and random DNN ADP, in that order. The second

column of Table 6-1 compares the ADP methods with the integral of the difference

between their state trajectory and the EMK ADP state trajectory. Similarly pretrained

DNN ADP performs the best, followed by LP DNN ADP, transfer learning DNN ADP, and

random DNN ADP, in that order. A noticeable trend in Table 6-1 is that if a system has

more model knowledge a priori, then performance improves.
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Table 6-1. Simulation Results and ADP Comparison

Control Type Total Integral Error Integral Error from EMK

Analytical Solution 3.43 –

EMK ADP 5.04 –

LP ADP 5.19 0.27

Pretrained DNN ADP 4.93 0.22

Transfer Learning DNN ADP 7.00 2.91

Random DNN ADP 10.57 6.33

6.5.2 Multi-Timescale Simulation Results

This simulation section presents a simulation case in which the inner-layer weights

are updated. This section will present the performance improvements that occur after

online retraining. For comparison purposes, all of the gains, costs, etc. are identical to

those in Section 6.5.1. Both cases are initialized as the random DNN ADP. The internal

weights of one controller are updated in one case, which is henceforth referred to as

“retrained DNN.” The internal weights of the other controller are not updated in the

other case, which is henceforth referred to as “random DNN.” A history stack of DNN

training data is collected for 5 seconds. The time of 5 seconds was arbitrarily selected.

Collecting more data, generally, should result in improved training of the inner-layer

weights at the expense of additional computation time. After 5 seconds, the internal

DNN weights begin retraining. Once retraining is complete, the new internal weights

are implemented, at which point the difference between the retrained DNN and random

DNN controllers is notable. The retrained DNN ADP controller has significantly better

performance compared to the random case. Figure 6-3 illustrates the magnitude of the

error between the retrained DNN and random DNN case. The cases are identical, as

intended, until the updated internal DNN weights are implemented. The retrained DNN

has improved performance after retraining completes.
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Figure 6-4 depicts a phase plot that compares the performance of the retrained

DNN and random DNN ADP controllers. The red, random DNN ADP controller tracks

the general shape of the desired trajectory; however, its poor approximation of f (x)

led to increased tracking error. In contrast, the blue, retrained DNN ADP controller pro-

gressively converges toward the desired trajectory, suggesting that the DNN retraining

facilitated learning of f (x) .

Figures 6-5a and 6-5b show the actor and critic weights Ŵc and Ŵa, respectively, for

the retrained DNN ADP simulation case. While a majority of the learning occurs during

the first 1-2 seconds, additional learning takes place after DNN retraining.

Figure 6-6 shows the output-layer weight estimates of the DNN θ̂ for the retrained

DNN simulation case. Note that the Lyapunov-based analysis in Theorem 1 does not

guarantee convergence of the DNN weights to their actual values, which are unknown.

Learning initially occurs in the first 5 seconds. Once the internal weight are trained

(in the retrained DNN case), then the output-layer weights adjust to compensate for

changes in the inner-layer DNN.

Figure 6-7 compares the analytically-obtained optimal value function V ∗ (ζ) and

the value function estimate for the retrained case V̂
(
ζ, Ŵc

)
. Note that V ∗ (ζ) is not

the same as the analytical simulation in Section 6.5.1. The analytical simulation in

Section 6.5.1 applies the optimal value function and optimal control policy, which have

been determined a priori, directly. In contrast, the V ∗ (ζ) presented in Figure 6-7 uses

the same analytically-determined value function V ∗ that is instead analyzed along

the trajectories generated by the retrained DNN ADP controller. Initially, the value

function is poorly approximated, which is likely due to the poor approximation of the

dynamics f (x) . The poor approximation is clear around the 6 second mark. After

the retraining, the value function approximation improves.Figure 6-8 compares the

analytically-determined optimal control policy and approximate optimal control policy for

the retrained case u∗ (ζ) and û
(
ζ, Ŵa

)
, respectively. Like the comparison in Figure 6-7,
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the values of u∗ (ζ) are not from the analytical simulation in Section 6.5.1. u∗ is the same

function as the control policy in the analytical simulation case, but it is evaluated along

the trajectory generated by the retrained DNN ADP controller. û
(
ζ, Ŵa

)
tracks u∗ (ζ)

better after the retraining; however, there are isolated increases in the control effort,

which are likely due to the poor approximation of f (x) by the DNN.

Overall, these simulation studies confirm the effectiveness of a DNN-based ADP

controller with iterative inner-layer weight updates. Furthermore, the simulation results

suggest that the DNN-based methods are not necessarily superior to having exact

model knowledge or a known LP case, which is expected. The benefit to the developed

technique is that the drift dynamics f (x) can be learned without any model knowledge

a priori. When some model knowledge of the dynamics are known, then the developed

method may not always be the best solution, but it is a is a promising technique for

instances when the system model is completely unknown.

6.6 Concluding Remarks

This chapter develops a framework for using the DNN-based system identifier

in [52] within the model-based ADP framework, which was initially developed in [48],

to solve the infinite horizon optimal tracking control problem. A CL-based continuous-

time update law is used to update the weights of the DNN. A Lyapunov-based analysis

was performed to prove UUB convergence of the trajectory tracking error and DNN

weights estimation error to a neighborhood of zero. Hence, approximation of the applied

control policy to the optimal control policy is proven. Simulations results are presented

to illustrate the performance of the developed method compared to existing methods.

Future works will investigate using a DNN to estimate the value function in conjunction

with a DNN-based system identifier.
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Figure 6-2. Error comparisons between different ADP methods and the analytical
solution.
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Figure 6-3. Error comparison of DNN ADP with and without an online internal weight
update. The red dashed line at t = 5 seconds represents the beginning of
the retraining, and the black dashed line at approximately t = 7.5 seconds
represents the end the retraining and when the new internal DNN weights
are implemented.
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Figure 6-4. Phase plot comparison of retrained DNN and random DNN ADP trajectories.
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(a) Approximated critic weights
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(b) Approximated actor weights
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Figure 6-5. The actor and critic weights Ŵc and Ŵa, respectively, of the retrained case.
As detailed in 6-3, the red dashed line represents the beginning of the
retraining and the black dashed line represents when the new internal DNN
weights are implemented.
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Figure 6-6. Output layer DNN weights θ̂ for the retrained DNN case. As stated in Figure
6-3, the red and black dashed lines represents the beginning of the
retraining and implementation of the new internal DNN weights, respectively.
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Figure 6-7. Comparison of analytical and approximated value function V ∗ (ζ) and
V̂
(
ζ, Ŵc

)
, respectively. As stated in Figure 6-3, the red and black dashed

lines represents the beginning of the retraining and implementation of the
new internal DNN weights, respectively.
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Figure 6-8. Comparison of analytical and approximated optimal control policy u∗ (ζ) and
û
(
ζ, Ŵa

)
. As stated in Figure 6-3, the red and black dashed lines

represents the beginning of the retraining and implementation of the new
internal DNN weights, respectively.
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CHAPTER 7
CONCLUSIONS

RL is a valuable tool for learning parametric uncertainties and approximating opti-

mal control policies in dynamical systems. The application of RL-based techniques to

nonlinear dynamical systems is complicated due to practical system constraints. This

dissertation develops methods that advance the state-of-the-art of ADP-based con-

trollers. Specifically, sparse BE extrapolation is leveraged to reduce the computational

load associated with BE extrapolation while retaining its improved regional approxi-

mation properties, barrier function-based system constraints are leveraged to improve

system safety during the online learning phase, the ADP framework has been extended

to nonlinear switched systems, and a DNN-based system identifier is used to improve

function approximation. The barrier function, switched systems, and DNN system identi-

fier add significant computational expenses to their respective variation of ADP; hence,

the sparse BE extrapolation makes these variations feasible in real-time applications.

In Chapter 3, a method is developed that significantly decreases the computational

expense of R-MBRL techniques. This chapter has significant practical application, as

it may be infeasible for systems with limited computational resources, such as mobile

robots or multirotor aircraft, to implement traditional R-MBRL algorithms. While the

concept of BE extrapolation is retained from R-MBRL, the developed method introduces

the idea of sparse BE extrapolation within subsets of the operating domain. That is,

sparse BE extrapolation is used within user-defined regions of the operating domain;

within each region, a subset of BE extrapolation points are used to provide sufficient

excitation to prove convergence. A limitation of Chapter 3 is a lack of guidance on how

to segment the operating domain and which nodes of the NN to modify to promote

sparsity while maintaining sufficient data richness. Currently, these tasks are done

iteratively with a tuning-like method. Future research will investigate the idea of having

an algorithm determine how to segment the state space, how many BE extrapolation
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points to select, the locations of the BE extrapolation points, and what basis function to

use for sparse BE extrapolation.

Chapter 4 pairs the computational benefits of sparse BE extrapolation with BFs to

provide safety certificates. The BFs are enforced by a state space transformation that

artificially increases the cost of the state around user-defined boundaries. Previous work

in BF-augmented ADP has required the restrictive PE condition to be satisfied to prove

system convergence. The result in Chapter 4 extends existing work to relax the PE con-

dition via BE extrapolation. However, the state space transformation used to generate

the BFs require additional computations; hence, the sparse BE extrapolation method

in 3 is added to offset the computational expense of the state space transformation.

Future work will investigate the case in which the initial state of the system lies outside

of the user-defined barriers, which may require a switched systems-based Lyapunov-like

analysis.

In Chapter 5 a framework is developed that investigates ADP applied to families

of switched systems. Current ADP techniques are designed for a single continuous

systems; however, numerous practical systems have multiple sets of continuous

dynamics that are discretely activated (i.e., switched to) by a time-based signal. Hence,

the stabilizing ADP-based controller on the first set of dynamics (e.g., subsystem) may

not stabilize the second active subsystem. Hence, multiple ADP learning systems must

be implemented in real-time to separately approximate each subsystem’s value function

to show overall system convergence.

Unlike previous ADP results, it is necessary to evaluate the stability of each

subsystem to determine convergence of the overall switched system. Typically, in

switched systems, stability is proved with the existence of a common Lyapunov function.

However, for ADP, a common Lyapunov function has not yet been determined. Hence,

a switched systems analysis with multiple Lyapunov functions must be performed. In

the process of developing this analysis, it became clear that the broader problem, which
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is the analysis of switched individually UUB stable subsystems with multiple Lyapunov

functions has not yet been addressed. Hence, we have developed a general theorem

to show stability of nonautonomous switched UUB stable subsystems via multiple

Lyapunov functions. This theorem, and its application to ADP, has thus far been useful

for the development of an ADP-based functional electrical stimulation cycling controller

and ADP-based hierarchical RL supervisory controller. While the aforementioned

result is significant, a more complicated problem remains for state-based switching (cf.

time-based switching), which will be the focus of future research efforts.

Chapter 6 incorporates multi-timescale DNN-based system identifier within the

R-MBRL framework. While the general DNN used in this framework has been used

in existing robust control results, its use in ADP requires parameter (i.e., output-layer

weight error) convergence, which the robust control results do not require. Hence, the

output-layer weights are modified with a CL-based adaptation policy to faciliatate UUB

convergence of the overall system. Furthermore, the work in this chapter presents

comparisons between the DNN identifier and alternative methods, including linear-in-

the-parameters system identification and exact model knowledge. Generally, single-layer

NN approximations are less accurate than DNN approximations are. Hence, to further

capture nonlinearities in the value function approximation, future efforts will use two

separate multi-timescale DNNs for value function approximation and online system

identification to better approximate optimal control policies via R-MBRL.

All of these chapters consider nonsmooth modifications to the traditional R-MBRL

method. However, the methods presented in this dissertation do not consider state-

based switched, hybrid dynamics, and stochastic systems. These omissions limit the

application of ADP to a broader class of practical systems. This motivates investiga-

tion into the application of ADP-based controller to state-based switching and hybrid

systems. Patchy Lyapunov functions, which have been used in the analysis of hybrid

systems, may be a useful tool in the analysis of general state-based switching for UUB
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stable subsystems [77]. However, significant efforts will be required to mature such a

result for general classes of UUB stable subsystems to subsystems with ADP-based

controllers. With the rise of RL within the machine learning community over the past

decade, it is clear that the methods in this dissertation will play a role in the development

of future intelligent data-based autonomous systems.
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