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By
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May 2022

Chair: Warren E. Dixon
Major: Mechanical Engineering

In many autonomous applications, nonlinear dynamical systems experience intermittent

state information due to various reasons, e.g., the operating environment, task definition, system

constraint. To achieve the autonomous control objective, various switched system approaches

have been investigated under intermittent state information. A generalized switched systems

consists of feedback available and feedback unavailable subsystems. The autonomous agent’s

state can be switched between these subsystems. While state information is available, a controller

can be developed using true state information. While state information is unavailable, state

predictors or observers can be designed to predict the state using estimated information. When

the agent’s state is switched from a feedback unavailable to a feedback available subsystem, the

estimated state will be reset to the true state to compensate for the state estimation error. By using

a switched systems approach to design controllers, observers, and adaptation laws, the

autonomous agent is enable to achieve the control objective under intermittent state information.

Various control applications may require an autonomous system to operate in completely

unknown or adversarial environments. Recent advancements in machine learning (ML) and

artificial intelligence (AI) can potentially address the challenges posed by unknown and

adversarial environments. Specifically, ML/AI-based tools such as neural networks (NNs) are

useful for learning and adapting to unknown environments. NNs are universal function

approximators that are capable of approximating continuous functions. Therefore, the universal

11



approximation property of NNs is typically used to approximate functions representing the

dynamics of an autonomous system. Recent advancements in ML/AI show that depth of the

network structure provides significant improvement in the function approximation performance of

a NN. Although deep neural network (DNN)-based control methods facilitate task execution in

unknown environments, the learning schemes for ML/AI augmented autonomous control systems

are often implemented in an open-loop manner, based on pre-trained networks that may not

represent the operational environment. It is well-known that open-loop approaches lack stability,

robustness, and convergence guarantees that are afforded by closed-loop feedback control

schemes. For safety-critical applications, there is a need to balance adaptation, safety, robustness,

and stability.

Chapter 2 provides a generalized switched systems technique called the relay-explorer

approach, to allow a relay agent to intermittently provide navigational feedback information to an

explorer leader for nonlinear multi-agent systems (MASs). A distributed controller is developed

for formation control and leader tracking for the explorer followers, enabling a MAS to explore

an unknown environment indefinitely. To compensate for the lack or inability to use navigational

sensors, state observers are used to propagate state estimates for the relay and explorer agents

(e.g., in Global Positioning System (GPS)-denied regions). Stabilizing dwell-time conditions are

determined via a Lyapunov-based switched systems approach to ensure the trajectory tracking

errors are globally uniformly ultimately bounded (GUUB) defined by user-defined thresholds.

Using the developed approach, a MAS’s trajectory tracking error remains bounded, enabling the

exploration of GPS-denied regions for a predetermined period of time, before acquiring

navigational feedback from a relay agent.

Chapter 3 provides a method to enable a nonholonomic agent to explore an unknown

environment with intermittent state feedback. A maximum stabilizing dwell-time condition is

determined via a Lyapunov-based switched systems approach to maintain overall system stability

despite the intermittent loss of state feedback and the presence of external disturbances. A

minimum stabilizing dwell-time condition is determined via a Lyapunov-based switched systems

12



approach to ensure the tracking error converges within a desired neighborhood of the desired

trajectory. Using the developed stabilizing maximum and minimum dwell-time conditions, a

nonholonomic agent’s tracking error is proven to be GUUB, enabling the exploration of the

feedback-denied region for a predetermined period of time, before acquiring state feedback.

Chapter 4 provides a real-time DNN adaptive control architecture for general uncertain

nonlinear dynamical systems to track a desired time-varying trajectory. A Lyapunov-based

method is leveraged to develop adaptation laws for the output-layer weights of a DNN model in

real-time while a data-driven supervised learning algorithm is used to update the inner-layer

weights of the DNN. Specifically, the output-layer weights of the DNN are estimated using an

unsupervised learning algorithm to provide responsiveness and guaranteed tracking performance

with real-time feedback. The inner-layer weights of the DNN are trained with collected data sets

to increase performance, and the adaptation laws are updated once a sufficient amount of data is

collected. Building on the results in [1] and [2], which focus on deep model reference adaptive

control (D-MRAC) for linear systems with known drift dynamics and control effectiveness

matrices, this chapter considers general control-affine uncertain nonlinear systems. The real-time

controller and adaptation laws enable the system to track a desired time-varying trajectory while

compensating for the unknown drift dynamics and parameter uncertainties in the control

effectiveness. A nonsmooth Lyapunov-based analysis is used to prove semi-global asymptotic

tracking of the desired trajectory.

Chapter 5 concludes the dissertation and presents potential extensions to the work presented

in the previous chapters.
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CHAPTER 1
INTRODUCTION

1.1 Background

Robotic systems are often challenged by the temporary or permanent loss of navigational

feedback, which can arise due to environmental and physical constraints or from the task

definition. For instance, unmanned underwater vehicles (UUVs) are often used to conduct

surveying or reconnaissance operations, requiring the UUVs to navigate using inertial

measurement units (IMUs) because absolute position and orientation sensing is unavailable

underwater. However, disturbances in the dynamics and measurement noise from the ambient

environment can cause IMU-based state estimates to drift over time. To compensate for the

accumulated error, UUVs are required to intermittently surface to obtain absolute position and

orientation information, increasing the time and energy needed to accomplish the operational

objectives.

Numerous results have been developed to provide robustness to intermittent feedback

[3]-[15]. For example, [8]-[11] used event-triggered approaches to allow the agents to limit

communication. However, these approaches determine when to communicate based on triggering

conditions which is not possible while exploring an unknown environment due to additional

feedback constraints determined by the agents’ position in the environment. Specifically, state

feedback is only available when an agent is contained in a feedback region, and hence, the agent

must travel to designated feedback regions periodically to acquire state feedback while exploring

the unknown environment.

In lieu of requiring the UUVs to intermittently surface to obtain absolute position and

orientation information in the previous example, a network of UUVs, consisting of relay and

explorer agents, can be used to address this issue. Specifically, a relay agent can be tasked with

surfacing to acquire absolute position and orientation information, then traveling back to the

explorer network to provide estimated navigational feedback. For some applications, the

navigational sensors can be replaced with low cost or less capable sensors or even removed. Such

scenarios motivated the development of a class of relay-explorer problems.

Relay-explorer problems indicate that one dynamic system (i.e., relay agent) is

14



intermittently providing state feedback to another dynamic system (i.e., explorer agent).

Specifically, the results in [16]-[18] develop a control method that is robust to intermittent loss of

state feedback, guaranteeing that an agent will return to a previously occupied feedback region,

after operating in a sensors feedback-denied region. The result in [16] yields trajectory tracking

for a nonholonomic system with intermittent state feedback, by developing a set of dwell-time

conditions via a Lyapunov-based switched systems approach. Specifically, the developed

maximum dwell-time condition dictates the maximum time the agent can operate without state

feedback, while a minimum dwell-time condition dictates the minimum time the agent must dwell

within a feedback region to compensate for the accumulated error. By satisfying the developed

dwell-time conditions in [16], the tracking error is proven to remain globally uniformly ultimately

bounded (GUUB). In [17], the same objective of following a desired trajectory is achieved for a

holonomic system with intermittent state feedback. Both results require using an observer

adaptation law with a high-frequency sliding-mode term. A reset map is introduced in [18],

eliminating the need for an observer that requires continuous state feedback for a holonomic

system. Specifically, the state estimate is reset to the true state whenever the agent has feedback,

allowing the holonomic agent to operate in a sensors feedback-denied region for an extended

period of time.

In [19], a nonholonomic agent is allowed to temporarily navigate outside of a set of

feedback regions and explore an unknown environment, provided the agent tracks an auxiliary

trajectory that enables the agent to satisfy dwell-time conditions. The dwell-time conditions are

obtained from a Lyapunov-based switched systems approach, without the requirement of using an

observer that requires continuous state feedback. With the availability of multiple feedback

regions, the nonholonomic agent can further explore the sensors feedback-denied region while

satisfying the dwell-time condition.

MASs are motivated to explore an unknown environment more rapidly, but coordinating the

agents with intermittent feedback is challenging. In [20], a method for regulating the position of

multiple follower agents is developed for operating within a sensors feedback-denied region,

15



where a leader agent with global feedback sensors, visits each of the follower agents to update the

agent’s state estimate. However, this approach requires the leader to know the full state feedback

of itself and requires the leader to communicate with each individual follower.

In [21], a relay agent is tasked with switching between feedback available and

feedback-denied regions, while intermittently providing state estimates to an explorer leader. This

strategy allows the explorer network to operate indefinitely in the sensors feedback-denied region,

where a distributed formation controller regulates the relative distances between the explorer

leader and follower agents, improving coverage of the unknown environment. The design is

complicated by the fact that the relay agent does not have navigational-feedback once it enters the

sensors feedback-denied region, and hence, the relay agent has to rely on its state estimate to

reach the explorer leader and return to the feedback region before the accumulated error exceeds a

user-defined threshold. Another challenge is the relay agent only communicates with one

exploring agent, i.e., the explorer leader. Thus, a decentralized leader-follower formation

controller is required to maintain the formation of the explorer agents. To ensure the stability of

the overall system, a Lyapunov-based switched systems approach is used to develop dwell-time

conditions to determine the maximum time the relay agent can remain in the sensors

feedback-denied region and the maximum time the explorer agents are allowed to operate without

a state estimate update. A distributed controller for the explorer followers is developed, ensuring

the explorer agents maintain a formation while exploring the unknown environment.

In addition to holonomic systems, regulation and tracking control of nonholonomic systems

have been heavily studied (cf., [22]-[24]) due to their wide range of applications (e.g., exploration

of unknown environment and autonomous driving). In many cases, nonholonomic constraints, the

operating environment, or task definition could result in temporary loss of state feedback. For

example, cameras are a popular and extensively studied sensor capable of providing state

feedback. Various results (cf., [25]-[33]) have investigated methods to measure distance and

viewing angles by keeping the feature points of landmarks in the field-of-view (FOV) while an

agent performs a task. Keeping landmarks in the FOV of systems with nonholonomic constraints
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is challenging and may result in limited, sharp-angled, or non-smooth trajectories as illustrated in

[34] and [35]. Furthermore, in many scenarios, the desired trajectory may not be in a region

where a specific landmark is located (e.g., unknown environment exploration), motivating the

development of methods that are robust to intermittent loss of feature-based state feedback.

Previous results have investigated the guidance, navigation, and control of nonholonomic

systems under intermittent state feedback. Results such as [36] employ a daisy-chaining approach

that utilizes multiple landmarks within the FOV to establish a relationship between the moving

camera frame and the landmark frame via coordinate transformations, which allows the previous

landmark to leave the FOV but maintain estimated state information to expand the operating

domain. However, the estimation error accumulates over time due to disturbances in the dynamics

and measurement noise from the ambient environment. Without error corrections, the agent will

deviate from a desired trajectory. Similarly, numerous simultaneous localization and mapping

(SLAM) approaches (cf., [37]-[41]) assume an environment is feature-rich, and typically generate

relationships between landmarks to estimate the state (e.g., position and orientation) of the

system. However, SLAM algorithms also accumulate error caused by measurement noise over

time unless a loop-closure can compensate for the accumulated error. Additionally, returning to a

landmark before the state error exceeds a threshold is not guaranteed, implying the agent may still

diverge from a desired trajectory.

To ensure loop-closures are achievable, the results in [16]-[18] guarantee an agent can

return to a single feedback region after entering the feedback-denied region. In comparison to the

previous methods, [19] enables a nonholonomic agent to temporarily navigate outside of a set of

feedback regions and explore an unknown environment provided the agent tracks a desired

trajectory that enables the agent to satisfy dwell-time conditions, which are obtained from a

Lyapunov-based switched systems approach, without the requirement of using an observer that

requires continuous state feedback. While the trajectory design in [18] is limited to a holonomic

vehicle and a single feedback zone, in [19], multiple feedback regions are established for the

nonholonomic vehicle to receive feedback and a reset map is utilized to reset the state estimation
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error. With the availability of multiple feedback regions, the nonholonomic vehicle can further

explore the feedback-denied region while satisfying the dwell-time conditions. In addition, the

development in [19] includes timing conditions from a switched systems approach that ensures

the nonholonomic vehicle can reach one of the feedback regions ensuring the agent achieves

loop-closure.

Various control applications may require an autonomous system to operate in completely

unknown or adversarial environments. The universal approximation property of neural networks

(NNs) is typically used to approximate functions representing the dynamics of an autonomous

system. Deep neural network (DNN) methods can capture complex features of the dynamics by

using back-propagation algorithms that indicate how to update the inner-layer weights [42]. In

results such as [42] and [43], the emergence of DNN models with more complex structures

improve function approximation performance. Although DNN function approximation methods

show improved performance empirically, these methods typically lack performance guarantees

because the accuracy of the outputs are probabilistic. As a result, DNN-based methods may have

limited adoption for safety-critical applications.

Motivated to ensure performance guarantees, early works in [44]-[47] use Lyapunov-based

methods for NN-based adaptive control of unknown nonlinear systems. In [44]-[46], NNs are

trained with a gradient descent-based adaptive update law and used as a feedforward control term.

Since the update laws are derived from a stability analysis and the NN weights are embedded

inside activation functions, it is challenging to derive adaptation laws from a stability analysis

beyond a single-hidden-layer.

In [48] and [49], the authors developed a data-driven adaptive learning method called

concurrent learning (CL) to increase performance of parameter estimation. CL leverages recorded

input and output data concurrent to real-time execution to apply batch-like updates to adaptive

update laws, and has been extended to works in [50]-[52]. Results in [1], [2] and [53] leverage CL

to develop a deep model reference adaptive control (D-MRAC). Specifically, a gradient

descent-based adaptive update law is used to estimate the ideal output-layer weights of a DNN in
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real-time online, and an offline data-driven method is used to apply batch updates to the

inner-layer weights of the DNN for linear systems with known system matrices. The methods

were tested on quadrotors and demonstrated that DNN-based adaptive control can significantly

improve learning performance [2, 53]. The authors demonstrated that DNN enabled model

reference adaptive control (MRAC) outperforms shallow NN MRAC, and also showed that the

DNN weights cluster in different regions in different operating envelopes of the quadrotor, clearly

establishing the learning performance of DNNs [53]. However, the D-MRAC development is

specific to linear systems with known system A,B matrices with matched system uncertainty

∆(x(t)) , i.e., ẋ(t) = Ax(t)+B(u(t)+∆(x(t))) .

Building on the output-layer weight adjustment strategy in [1] and [2], a new control design

and stability analysis method is developed for general uncertain nonlinear systems [54]. A

Lyapunov-based adaptive control law is developed to estimate the unknown output-layer weights

of the DNN using real-time state feedback. Concurrent to real-time execution, data is collected

and an offline function approximation method is used to update the estimates of the inner-layer

DNN weights. Moreover, control-affine dynamics with uncertain state-dependent control

effectiveness matrices are considered. To compensate for the uncertain control effectiveness, a

novel adaptive update law is developed that has internal feedback. Specifically, the adaptive

update law depends on the control input, and hence, is a function of both the input uncertainty

estimates and the DNN weight estimates. To account for switching from iterative updates of the

DNN weights, a nonsmooth Lyapunov-based analysis is performed to ensure asymptotic tracking

of the desired trajectory.

1.2 Outline of the Dissertation

Chapter 2 develops a method for MAS to allow a relay agent to intermittently provide

navigational feedback to an explorer leader. The developed approach enables the network of

explorer agents to explore an unknown environment where navigational feedback is unavailable.

The explorer agents follow the explorer leader, which is following a desired trajectory through the

unknown environment, and intermittently receiving state estimate information from the relay
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agent. The relay agent is intermittently receiving state information from regions where

navigational-feedback is available and then communicating with the leader of the explorer agents

to provide state estimate information when the explorer leader is within the communication radius

of the relay agent.

The contributions in Chapter 2 include developing a method for MAS to explore a sensors

feedback-denied environment. Specifically, agents can follow the desired trajectory within the

feedback-denied environment by only using state estimates. To compensate the state estimation

error of the explorer agents, a switched system approach is used to enable a relay agent to provide

state estimates to an explorer leader, which prevents the explorer leader deviating away from the

desired trajectory. A distributed formation controller using state estimates is developed to enable

the explorer follower agents to maintain a formation with respect to the explorer leader while

exploring the environment, which significantly increases the exploring coverage compared to a

single agent. To ensure the objective is achievable, a switched systems approach is also used for

the relay agent. The relay agent can travel between a feedback available and feedback-denied

regions, and the state estimate can be updated with the true state while it is within a feedback

available region. With the developed method, an MAS can explore a feedback-denied

environment indefinitely.

Chapter 3 enables a nonholonomic agent to explore an unknown environment, where

feedback is unavailable by intermittently following a trajectory through the unknown environment

and intermittently into regions, where feedback is available. A maximum stabilizing dwell-time

condition is determined via a Lyapunov-based switched systems approach to maintain overall

system stability despite the intermittent loss of state feedback and the presence of external

disturbances. A minimum stabilizing dwell-time condition is determined via a Lyapunov-based

switched systems approach to ensure the tracking error converges within a desired neighborhood

of the desired trajectory. Using the proposed maximum and minimum dwell-time conditions, a

nonholonomic agent’s tracking error is GUUB, enabling the exploration of the feedback-denied

region for a predetermined period of time, before acquiring state feedback.
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The contributions in Chapter 3 include developing a set of stabilizing dwell-time conditions

using a Lyapunov-based switched systems approach to ensure stability of the system while the

nonholonomic agent is exploring the unknown environment. Specifically, a maximum dwell-time

condition is developed to allow the nonholonomic agent to explore the feedback-denied

environment for a predetermined period of time, and a minimum dwell-time condition is

developed to compensate for the state estimation error to ensure the trajectory tracking error

converges within a desired neighborhood of the desired trajectory. By satisfying these stabilizing

dwell-time conditions, the trajectory tracking error of the nonholonomic agent is shown to be

bounded by a user-defined threshold despite the intermittent loss of state feedback and the

presence of external disturbances.

In Chapter 4, a real-time DNN adaptive control architecture is developed for general

uncertain nonlinear dynamical systems to track a desired time-varying trajectory. A

Lyapunov-based method is leveraged to develop adaptation laws for the output-layer weights of a

DNN model in real-time while a data-driven supervised learning algorithm is used to update the

inner-layer weights of the DNN. Specifically, the output-layer weights of the DNN are estimated

using an unsupervised learning algorithm to provide responsiveness and guaranteed tracking

performance with real-time feedback. The inner-layer weights of the DNN are trained with

collected data sets to increase performance, and the adaptation laws are updated once a sufficient

amount of data is collected. The real-time controller and adaptation laws enable the system to

track a desired time-varying trajectory while compensating for the unknown drift dynamics and

parameter uncertainties in the control effectiveness.

The contributions in Chapter 4 include developing a multiple timescale learning DNN

adaptive control architecture for general uncertain nonlinear dynamical systems. Specifically, the

unknown drift dynamics are approximated using a universal function approximator (i.e., a

feedforward fully connected DNN). A Lyapunov-based real-time adaptation law is developed to

update the output-layer weights of the DNN, and a batch optimization (i.e., minimize the mean

squared error (MSE)) is used to periodically update the inner-layer weights of the DNN. The
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output-layer weights are updated continuously to ensure system stability, while the inner-layer

weights are updated when a sufficient number of data are collected and trained to improve the

approximation of the DNN. The multiple timescale learning adaptive control architecture enables

the general uncertain nonlinear dynamical systems to track a desired trajectory, while using a

DNN to iteratively improve the control performance.

Chapter 5 concludes the dissertation and presents potential extensions to the work presented

in the previous chapters.

1.3 Preliminaries

1.3.1 Notation

Let R and Z denote the set of real numbers and integers, respectively, where R≥0 ≜ [0,∞),

R>0 ≜ (0,∞), Z≥0 ≜ R≥0 ∩Z, and Z>0 ≜ R>0 ∩Z. Let p ∈ Z>0. The p× p identity matrix is

denoted by Ip. The Euclidean norm of a vector m ∈ Rp is denoted by ∥m∥≜
√

mTm, and the

absolute-value of a scalar n ∈ R is denoted by |n|. The notation λmin {·} and λmax {·} denote the

minimum and maximum eigenvalues of {·}, respectively. The symbol L∞ denotes the set of

essentially bounded measurable functions, i.e., given the Lebesgue measurable function

f : R→ R, f ∈ L∞ if and only if inf{C ≥ 0 : | f (x)| ≤C for almost every x ∈ R} ∈ R≥0.

1.3.2 Graphs

Let G ≜ (V,E) be an undirected graph with node set V ≜ {1,2, ...,N} and undirected edge

set E ∈ V ×V , where N ∈ Z>0. The neighbor set of node i is denoted by Ni ⊂ V . An undirected

edge is defined as an unordered pair (i, j) where (i, j) ∈ E . Note that (i, j) ∈ E implies agent j can

obtain information from agent i. An undirected path is a sequence of undirected edges in E . An

undirected graph is called connected if and only if there exists an undirected path between any

two distinct nodes. There are no self-loops or repeated edges in graph G. The adjacency matrix is

defined as A≜
[
ai j
]
∈ RN×N

≥0 , where ai j ≜ a ji ≥ 0 for all i ̸= j and aii ≜ 0. The degree matrix of

the undirected graph G is defined as a diagonal matrix such that ∆ ≜
[
∆i j
]
∈ RN×N

≥0 , where ∆i j ≜ 0

for all i ̸= j and ∆ii ≜
N
∑
j=1

ai j. The graph Laplacian L ∈ RN×N of the undirected graph G is defined

as L ≜ ∆−A.
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CHAPTER 2
RELAY-EXPLORER APPROACH FOR MULTI-AGENT EXPLORATION OF AN UNKNOWN

ENVIRONMENT WITH INTERMITTENT COMMUNICATION

A relay-explorer control method for nonlinear MASs developed in [21] is described in this

chapter to allow a relay agent to intermittently provide navigational feedback to an explorer

leader. The contributions in this chapter include developing a method for MAS to explore a

sensors feedback-denied environment. Specifically, agents can follow the desired trajectory within

the feedback-denied environment by only using state estimates. To compensate for the state

estimation error of the explorer agents, a switched system approach is used to enable a relay agent

to provide state estimates to an explorer leader, which prevents the explorer leader from deviating

away from the desired trajectory. A distributed formation controller using state estimates is

developed to enable the explorer follower agents to maintain a formation with respect to the

explorer leader while exploring the environment, which significantly increases the exploring

coverage compared to a single agent. To ensure the objective is achievable, a switched systems

approach is also used for the relay agent. The relay agent can travel between a feedback available

and feedback-denied regions, and the state estimate can be updated with the true state while it is

within a feedback available region. To compensate for the lack or inability to use navigational

sensors, state observers are used to propagate state estimates for the relay and explorer agents

(e.g., in sensors feedback-denied regions). Stabilizing dwell-time conditions are determined via a

Lyapunov-based switched systems approach to ensure the trajectory tracking errors are GUUB

defined by user-defined thresholds. Using the developed approach, a MAS’s trajectory tracking

error remains bounded, enabling the exploration of a sensors feedback-denied region for a

predetermined period of time, before acquiring navigational feedback from a relay agent.

2.1 System Model

Consider a MAS with one relay agent and N +1 explorer agents, where N ∈ Z>0.

2.1.1 Relay Agent

A control affine nonlinear dynamic system for the relay agent is described as

ẋr (t)≜ fr (xr (t))+ vr (xr (t))+dr (t) , (2-1)
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where t0 ∈ R≥0 is the initial time. In (2-1), xr, ẋr : [t0,∞)→ Rn denote the generalized state and

its first order time-derivative with n ∈ Z>0, fr : Rn →Rn denotes the drift dynamics, vr : Rn →Rn

is the control input, and dr : [t0,∞)→ Rn is an exogenous disturbance acting on the relay agent.

2.1.2 Explorer Agents

The subscript 0 will be used to denote the leader, which is considered to be independent of

the follower graph structure. The followers that are connected to the leader can continuously

receive information from the leader without latency.

Consider a multi-agent explorer system consisting of the single leader indexed by 0 and the

set of N follower agents contained in V. The nonlinear dynamic system for agent i ∈ V
⋃
{0} is

described as

ẋi (t)≜ fe (xi (t))+ vi (xi (t))+di (t) , (2-2)

where xi, ẋi : [t0,∞)→ Rn denote the generalized state of the ith explorer agent and its first order

time-derivative, respectively, fe : Rn →Rn denotes the explorer drift dynamics, vi : Rn →Rn is the

control input, and di : [t0,∞)→ Rn is an exogenous disturbance acting on the ith explorer agent.

Assumption 2.1. The graph G is connected for all t ∈ [t0,∞) .

Assumption 2.2. The exogenous disturbances acting on the relay and explorer agents are upper

bounded by known positive constants, i.e., ∥dr (t)∥ ≤ d̄r ∈ R>0 and ∥di (t)∥ ≤ d̄i ∈ R>0 for all

t ∈ [t0,∞).

Assumption 2.3. The drift dynamics fr (xr (t)) of the relay agent defined in (2-1) and the drift

dynamics fe (xi (t)) of the ith explorer agent defined in (2-2) are known, locally Lipschitz, and

bounded given a bounded argument (see [55]).

Assumption 2.4. The communication radius of the relay agent is defined as Rcom ∈ R>0. The

relay and explorer leader can communicate when the measurable relative distance, defined as

xr0 (t)≜ x0 (t)− xr (t) , is within communication range, i.e., ∥xr0 (t)∥ ≤ Rcom.
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2.2 Control Design

2.2.1 Control Objective

The objective is to enable the network of explorer agents to explore an unknown

environment where navigational-feedback is unavailable. The explorer agents follow the explorer

leader, which is following a desired trajectory through the unknown environment, and

intermittently receiving state estimate information from the relay agent. The relay agent is

intermittently receiving state information from regions where navigational-feedback is available

and then communicating with the leader of the explorer agents to provide state estimate

information when ∥xr0 (t)∥ ≤ Rcom. Once the explorer leader receives state estimate information

from the relay agent, the follower agent’s state estimate is updated by the explorer leader because

the network is connected.

Assumption 2.5. There exists multiple feedback regions, located outside of the unknown

environment, which are known and stationary. Each of the feedback regions is defined by a

compact set Fk ⊂ Rn, k ∈ O ≜ {1,2, ...,O} , where O ∈ Z>0 denotes the number of regions.

The zone outside of all the feedback regions is defined as Fu ⊂ Rn, where Fu⋂F = { /0} ,

and the union of the feedback regions is defined as F ≜
⋃

k∈O
Fk. State feedback is available if and

only if xr (t) ∈ F .

Assumption 2.6. The relay agent is initialized in a feedback region, i.e., xr (t0) ∈ F , while the

explorer agents may be initialized outside of all the feedback regions, i.e., xi (t0) ∈ Fu, with xi (t0)

available to explorer agent i.

Assumption 2.7. The control and estimated position of the explorer leader are bounded, i.e.,

∥v0 (x̂0 (t))∥ ≤ v̄0 ∈ R>0 and ∥x̂0 (t)∥ ≤ ¯̂x0 ∈ R>0 for all t ≥ 0 (see [55]).

Definition 2.1. Let φr : [t0,∞)→{ar,ur} be a piece-wise constant switching signal for the relay

agent, where ar indicates xr (t) ∈ F and ur indicates xr (t) ∈ Fu. Let ta
l ∈ R≥t0 denote the lth time

instance when φr (t) = ar, where l ∈ Z≥0. Let tu
l ∈ R>t0 denote the lth time instance when
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φr (t) = ur. The dwell-time of the lth instance of each subsystem is defined as ∆ta
l ≜ tu

l − ta
l ∈R>0,

and ∆tu
l ≜ ta

l+1 − tu
l ∈ R>0, respectively.

Definition 2.2. Let φe : [t0,∞)→{ae,ue} be a piece-wise constant switching signal for the

explorer leader, where ae indicates that the explorer leader has received state estimate information

from the relay agent, and ue indicates that communication between the explorer leader and the

relay agent has been lost. Let ta
m ∈ R>t0 denote the mth time instance when φe (t) = ae, where

m ∈ Z≥0. Let tu
m ∈ R>t0 denote the mth time instance when φe (t) = ue. The dwell-time of the mth

instance of each subsystem is defined as ∆ta
m ≜ tu

m − ta
m ∈ R>0, and ∆tu

m ≜ ta
m+1 − tu

m ∈ R>0,

respectively.

Based on the control objective, three error systems are defined for the relay agent as [18]

er (t) ≜ xr (t)− xrd (t) , (2-3)

êr (t) ≜ x̂r (t)− xrd (t) , (2-4)

ẽr (t) ≜ xr (t)− x̂r (t) , (2-5)

where xrd : [t0,∞)→ Rn denotes the desired trajectory for the relay agent, x̂r : [t0,∞)→ Rn

denotes the state estimate of xr (t) , er : [t0,∞)→ Rn is the trajectory tracking error,

êr : [t0,∞)→ Rn is the estimated tracking error, and ẽr : [t0,∞)→ Rn is the state estimation error

of the relay agent, respectively. When φr (t) = ur, state feedback for the relay agent is unavailable,

and an observer is introduced based on (2-1) as

˙̂xr (t)≜ fr (x̂r (t))+ vr (x̂r (t)) , (2-6)

where ˙̂xr : [t0,∞)→ Rn denotes the estimate of ẋr (t) .

Similarly, three error systems are defined for the explorer leader as

e0 (t) ≜ x0 (t)− x0d (t) , (2-7)

ê0 (t) ≜ x̂0 (t)− x0d (t) , (2-8)

ẽ0 (t) ≜ x0 (t)− x̂0 (t) , (2-9)
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where x0 : [t0,∞)→ Rn denotes the generalized state for the explorer leader, x̂0 : [t0,∞)→ Rn

denotes the state estimate of x0 (t) , x0d : [t0,∞)→ Rn denotes the desired trajectory for the

explorer leader, e0 : [t0,∞)→ Rn is the trajectory tracking error, ê0 : [t0,∞)→ Rn is the estimated

tracking error, and ẽ0 : [t0,∞)→ Rn is the state estimation error of the explorer leader,

respectively. When φe (t) = ue, state information for the explorer leader from the relay agent is

unavailable, and an observer is introduced based on (2-2) as

˙̂xi (t)≜ fe (x̂i (t))+ vi (x̂i (t)) , (2-10)

where ˙̂xi : [t0,∞)→ Rn denotes the estimate of ẋi (t) and x̂i : [t0,∞)→ Rn denotes the estimate of

xi (t) . Similarly, an observer for the explorer leader is defined as

˙̂x0 (t)≜ fe (x̂0 (t))+ v0 (x̂0 (t)) . (2-11)

To achieve the formation control and leader tracking objective for the explorer agents, an

auxiliary estimate, êi : [t0,∞)→ Rn is defined for the ith explorer agent as

êi (t)≜ x̂i (t)− x̂0 (t)− pi, (2-12)

where pi ∈ Rn denotes the desired relative position between the explorer leader and the ith

explorer follower. Each pi is fixed and each explorer follower knows pi for all i ∈ V, i.e., each

follower knows the desired formation. The stacked form of (2-12) is defined as

Ê ≜
[
êT

1 (t) , ê
T
2 (t) , ..., ê

T
N (t)

]T ∈ RnN .

Assumption 2.8. The signals xrd (t) , ẋrd (t) , x0d (t) , and ẋ0d (t) are bounded such that

∥xrd (t)∥ ≤ x̄rd ∈ R>0, ∥ẋrd (t)∥ ≤ ¯̇xrd ∈ R>0, ∥x0d (t)∥ ≤ x̄0d ∈ R>0, and ∥ẋ0d (t)∥ ≤ ¯̇x0d ∈ R>0

for all t ∈ [t0,∞) , where x̄rd, ¯̇xrd, x̄0d, ¯̇x0d are known positive constants.
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2.2.2 Control Development

2.2.2.1 Relay Agent

To facilitate the subsequent stability analysis, the relay agent’s control inputs, i.e., vr (xr (t))

when φr (t) = ar and vr (x̂r (t)) when φr (t) = ur, are designed as

vr (xr (t)) ≜ −krer (t)− fr (xr (t))− d̄rsgn(er (t))+ ẋrd (t) , (2-13)

vr (x̂r (t)) ≜ −kr̂êr (t)− fr (x̂r (t))+ ẋrd (t) , (2-14)

respectively, where kr,kr̂ ∈R>0 are constant control gains, d̄r is a known positive constant defined

in Assumption 2.2, and sgn(·) is the signum function. Substituting (2-1) and (2-13) into the

time-derivative of (2-3), and substituting (2-6) and (2-14) into the time-derivative of (2-4) yields

the closed-loop error systems for the relay agent as

ėr (t) = −krer (t)− d̄rsgn(er (t))+dr (t) , (2-15)

˙̂er (t) = −kr̂êr (t) , (2-16)

respectively.

2.2.2.2 Explorer Agents

Similarly, the control input for the explorer leader, i.e., v0 (x̂0 (t)) , is designed as

v0 (x̂0 (t))≜−kê,0ê0 (t)− fe (x̂0 (t))+ ẋ0d (t) , (2-17)

where kê,0 ∈ R>0 is a positive control gain. Substituting (2-11) and (2-17) into the time-derivative

of (2-8) yields the closed-loop error system for the explorer leader as

˙̂e0 (t) =−kê,0ê0 (t) . (2-18)

To achieve the formation control and leader tracking objective, a distributed controller for

explorer follower i ∈ V is designed as

vi (x̂i (t))≜ kê, f ∑
j∈Ni, j ̸=0

(
x̂ j (t)− x̂i (t)− p j + pi

)
+ kê, f (pi + x̂0 (t)− x̂i (t)) , (2-19)
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where kê, f ∈ R>0 is a positive control gain for the ith explorer follower agent, x̂ j : [t0,∞)→ Rn

denotes the state estimate of x j (t) , and p j ∈ Rn denotes the desired relative position between the

explorer leader and the jth explorer follower. Substituting (2-10) and (2-19) into the

time-derivative of (2-12) yields the closed-loop error systems for the ith explorer follower agent as

˙̂ei (t) = fe (x̂i (t))+ kê, f

(
∑

j∈Ni, j ̸=0

(
ê j (t)− êi (t)

))
− kê, f êi (t)− ˙̂x0 (t) . (2-20)

Substituting (2-20) into the time-derivative of Ê and compactly expressing the results with the

Kronecker product yields

˙̂E = Ñ +Nd − kê, f (L⊗ In) Ê − kê, f Ê, (2-21)

where Ñ ≜ F
(

X̂
)
−F

(
X̂0

)
∈ RnN , Nd ≜ F

(
X̂0

)
− ˙̂X0 ∈ RnN ,

F
(

X̂
)
≜
[

f T
e (x̂1 (t)) , f T

e (x̂2 (t)) , ..., f T
e (x̂N (t))

]T ∈ RnN , F
(

X̂0

)
≜ [ f T

e (x̂0 (t)) , f T
e (x̂0 (t)) , ...,

f T
e (x̂0 (t))]T ∈ RnN , X̂0 ≜

[
x̂T

0 (t) , x̂
T
0 (t) , ..., x̂

T
0 (t)

]T ∈ RnN .

To facilitate the subsequent stability analysis, some terms in (2-21) can be upper bounded.

Specifically, given Assumption 2.3, the Mean Value Theorem (MVT) is invoked to conclude that∥∥∥Ñ
∥∥∥≤ c1

∥∥∥Ê
∥∥∥+ c1 ∥P∥ , where c1 ∈ R>0 and P ≜

[
pT

1 , pT
2 , ..., pT

N
]T ∈ RnN . By Assumptions 2.3

and 2.7, if ∥x̂0 (t)∥ ≤ ¯̂x0, then ∥ fe (x̂0 (t))∥ ≤ f̄e,0 for some f̄e,0 ∈ R>0. Since ∥ fe (x̂0 (t))∥ ≤ f̄e,0,

∥v0 (x̂0 (t))∥ ≤ v̄0, then
∥∥ ˙̂x0 (t)

∥∥≤ ¯̂̇x0 for some ¯̂̇x0 ∈ R>0 using (2-11). Therefore, ∥Nd∥ ≤ c2,

where c2 ∈ R>0. In addition, there exists a known bounding constant Λmin ∈ R>0 such that

∥L⊗ In∥ ≥ Λmin for all t ∈ [t0,∞) .

2.2.3 State Estimate

When t = ta
l , a reset map is used to update the estimated state to the true state for the relay

agent, i.e., x̂r (t) = xr (t) . Similarly, when t = ta
m, x̂0 (t) = x̂r (t)+ xr0 (t) for the explorer leader,

where the relative distance xr0 (t) is measurable by Assumption 2.4. However, when state

information is not available, i.e., φr = ur or φe = ue, the state is estimated using the observer in

(2-6) or (2-10), and the following closed-loop error systems must be used in the subsequent
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stability analysis to develop the maximum dwell-time conditions.1

To develop the maximum dwell-time conditions, the time-derivative of the error in (2-5)

must be used in addition to (2-15) and (2-16) to determine the overall state estimation error.

Taking the time-derivative of (2-5) and substituting for the dynamics in (2-1) and the observer in

(2-6) yields

˙̃er (t) = fr (xr (t))− fr (x̂r (t))+ vr (xr (t))− vr (x̂r (t))+dr (t) . (2-22)

Similarly, taking the time-derivative of (2-9) and substituting in the dynamics in (2-2) for i = 0,

and the observer in (2-11) for the explorer leader yields

˙̃e0 (t) = fe (x0 (t))− fe (x̂0 (t))+ v0 (x0 (t))− v0 (x̂0 (t))+d0 (t) . (2-23)

2.3 Stability Analysis

To ensure the overall system stability, six theorems are provided in this section.

2.3.1 Relay Agent

Three theorems are provided in this subsection to analyze the trajectory tracking error of the

relay agent when feedback is available and when feedback is unavailable. Theorem 2.1 shows the

trajectory tracking error of the relay agent er (t) is bounded for all t ∈
[
ta
l , t

u
l

)
when state feedback

is available, then Theorem 2.2 and 2.3 show the trajectory tracking error of the relay agent er (t) is

bounded for all t ∈
[
tu
l , t

a
l+1

)
when state feedback is unavailable, provided the maximum

dwell-time condition is satisfied for the relay agent.

Theorem 2.1. When state feedback for the relay agent is available, i.e., φr = ar for all

t ∈
[
ta
l , t

u
l

)
, the control law given in (2-13) ensures exponential stability of the trajectory tracking

error defined in (2-3) in the sense that

∥er (t)∥ ≤ ∥er (ta
l )∥exp

(
−λr

2
(t − ta

l )

)
, (2-24)

where λr ≜ 2kr ∈ R>0 is a known constant.
1Since the state information from the relay agent is estimated (i.e., operating in a GPS-denied region), even when

the reset map is used to update the explorer leader’s state, all the explorers can only use state estimates instead of their
true states.
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Proof. Let V a
r : Rn → R≥0 be a candidate Lyapunov functional defined as

V a
r (er (t))≜

1
2

eT
r (t)er (t) . (2-25)

While φr = ar, i.e., t ∈
[
ta
l , t

u
l

)
, substituting (2-15) into the time-derivative of (2-25) yields

V̇ a
r (er (t))≤−λrV a

r (er (t)) . (2-26)

Invoking the Comparison Lemma in [56, Lemma 3.4] for (2-26) yields

V a
r (er (t))≤V a

r (er (ta
l ))exp(−λr (t − ta

l )) . (2-27)

Substituting (2-25) into (2-27) yields (2-24), which implies er (t) ∈ L∞ for all t ∈
[
ta
l , t

u
l

)
. By

Assumption 2.2, dr (t) ∈ L∞, and er (t) ∈ L∞, and hence ėr (t) ∈ L∞ for all t ∈
[
ta
l , t

u
l

)
by (2-15).

Additionally, from the time-derivative of (2-3) and the fact that ėr (t) , ẋrd (t) ∈ L∞, then

ẋr (t) ∈ L∞ for all t ∈
[
ta
l , t

u
l

)
. Since xr (t) ∈ L∞, by Assumption 2.3, fr (xr (t)) ∈ L∞ for all

t ∈
[
ta
l , t

u
l

)
. From the relay agent dynamics described in (2-1), vr (xr (t)) ∈ L∞ for all

t ∈
[
ta
l , t

u
l

)
.

The following two theorems are provided to show that the trajectory tracking error of the

relay agent er (t) is bounded for all t ∈
[
tu
l , t

a
l+1

)
when state feedback is unavailable, provided the

maximum dwell-time condition is satisfied.

Theorem 2.2. When state feedback for the relay agent is unavailable, i.e., φr = ur for all

t ∈
[
tu
l , t

a
l+1

)
, the controller in (2-14) ensures exponential stability of the estimated tracking error

defined in (2-4) in the sense that

∥êr (t)∥ ≤ ∥êr (tu
l )∥exp

(
−λr̂

2
(t − tu

l )

)
, (2-28)

where λr̂ ≜ 2kr̂ ∈ R>0 is a known constant.

Proof. Following the same approach in Theorem 2.1 with V u
r̂ : Rn → R≥0 defined as

V u
r̂ (êr (t))≜

1
2

êT
r (t) êr (t) , (2-29)
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while φr = ur, i.e., t ∈
[
tu
l , t

a
l+1

)
, then

V u
r̂ (êr (t))≤V u

r̂ (êr (tu
l ))exp(−λr̂ (t − tu

l )) . (2-30)

Substituting (2-29) into (2-30) yields (2-28). Likewise, using similar arguments from the proof of

Theorem 2.1, êr (t) , ˙̂er (t) , ˙̂xr (t) , fr (x̂r (t)) ,vr (x̂r (t)) ∈ L∞ for all t ∈
[
tu
l , t

a
l+1

)
.

Based on Theorem 2.2, let êM,r ∈ R≥0 denote the upper bound for
∥∥êr
(
tu
l

)∥∥ , i.e.,∥∥êr
(
tu
l

)∥∥≤ êM,r. To ensure the trajectory tracking error for the relay agent er (t) is bounded, a

user-defined maximum bound eM,r ∈ R>0 can be selected to ensure limsup
t→(ta

l+1)
−
∥er (t)∥ ≤ eM,r.

When state feedback for the relay agent is unavailable, the trajectory tracking error

described in (2-3) will increase over time. However, Theorem 2.2 shows that the estimated

trajectory tracking error in (2-4) exponentially converges when φr = ur for all t ∈
[
tu
l , t

a
l+1

)
. To

guarantee (2-3) does not exceed the user-defined threshold eM,r when φr = ur for all t ∈
[
tu
l , t

a
l+1

)
,

the error growth for (2-5) and the relationship er (t) = êr (t)+ ẽr (t) are considered in Theorem 2.3.

Theorem 2.3. For the trajectories of the switched system generated by the switching signal φr,

(2-3)-(2-5) are GUUB provided the switching signal satisfies the maximum loss of feedback

dwell-time condition

∆tu
l ≤ 1

λr̃
ln
(

λr̃

d̄2
r
(eM,r − êM,r)

2 +1
)
, (2-31)

where λr̃ ≜ 2cr +1 ∈ R>0 is a known constant and cr ∈ R>0 is a Lipschitz constant.

Proof. Let V u
r̃ : Rn → R≥0 be a candidate Lyapunov functional defined as

V u
r̃ (ẽr (t))≜

1
2

ẽT
r (t) ẽr (t) . (2-32)

While φr = ur, i.e., t ∈
[
tu
l , t

a
l+1

)
, substituting (2-22) into the time-derivative of (2-32) and

invoking the Comparison Lemma yields

V u
r̃ (ẽr (t))≤

d̄2
r

2λr̃
(exp(λr̃ (t − tu

l ))−1) . (2-33)
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Substituting (2-32) into (2-33) yields

∥ẽr (t)∥ ≤

√
d̄2

r
λr̃

(
exp
(
λr̃
(
t − tu

l

))
−1
)
. (2-34)

Using (2-28) and (2-34) in
∥∥er
(
ta
l+1

)∥∥≤ ∥∥êr
(
ta
l+1

)∥∥+∥∥ẽr
(
ta
l+1

)∥∥≤ eM,r for all t ∈
[
tu
l , t

a
l+1

)
, the

following inequality can be obtained

êM,r +

√
d̄2

r
λr̃

(
exp
(
λr̃∆tu

l

)
−1
)
≤ eM,r. (2-35)

When (2-35) is satisfied,
∥∥êr
(
ta
l+1

)∥∥+∥∥ẽr
(
ta
l+1

)∥∥≤ eM,r for all t ∈
[
tu
l , t

a
l+1

)
, and since∥∥er

(
ta
l+1

)∥∥≤ ∥∥êr
(
ta
l+1

)∥∥+∥∥ẽr
(
ta
l+1

)∥∥ , then
∥∥er
(
ta
l+1

)∥∥≤ eM,r for all t ∈
[
tu
l , t

a
l+1

)
. Using

(2-35), the maximum ∆tu
l can be determined yielding (2-31).

At the time instant t = tu
l , x̂r

(
tu
l

)
= xr

(
tu
l

)
by using a reset map, implying êr

(
tu
l

)
= er

(
tu
l

)
and ẽr

(
tu
l

)
= 0; therefore, the switched system is continuous at t = tu

l because

er
(
tu
l

)
= êr

(
tu
l

)
+ ẽr

(
tu
l

)
. At the time instant t = ta

l+1, given er (t) = êr (t)+ ẽr (t), utilizing (2-35),

then lim
t→(ta

l+1)
−

sup∥er (t)∥ ≤ eM,r; therefore, the trajectory tracking error er (t) is finite.

Theorem 2.1 shows the trajectory tracking error is bounded when φr = ar for all t ∈
[
ta
l , t

u
l

)
,

i.e., ∥er (t)∥ ≤
∥∥er
(
ta
l

)∥∥exp
(
−λr

2

(
t − ta

l

))
. Theorem 2.2 and 2.3 show the trajectory tracking

error is bounded when φr = ur for all t ∈
[
tu
l , t

a
l+1

)
, i.e., ∥er (t)∥ ≤ eM,r, by satisfying the

maximum dwell-time condition in (2-31).

Zeno behavior occurs when the difference between ta
l+1 − ta

l is arbitrarily small, which

implies the relay agent requires continuous state feedback. Since the objective is to ensure the

system is stable while exploring the GPS-denied region, then it is critical to show that the

difference between consecutive return times, i.e., ta
l+1 − ta

l is lower bounded by a finite positive

constant. While φr = ur, let t travel
r ∈

[
tu
l , t

a
l+1

)
represent the minimum time it would take the relay

agent to travel between consecutive feedback regions. Therefore, the maximum dwell-time

condition has a lower constant bound, i.e., t travel
r ≤ ∆tu

l , where t travel
r = dtravel

r
v̄vel,r

, dtravel
r ∈ R>0 denotes

the actual distance the relay agent travels, v̄vel,r ∈ R>0 denotes the maximum velocity of the relay
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agent. By the definition of ∆ta
l and ∆tu

l , ta
l+1 − ta

l = ∆tu
l +∆ta

l . Since t travel
r ≤ ∆tu

l , ta
l+1 − ta

l ≥ t travel
r .

Therefore, Zeno behavior is excluded.

Based on Theorem 2.3, let ẽM,r ∈ R≥0 denote the upper bound for
∥∥ẽr
(
ta
l

)∥∥ , i.e., when

xr (t) ∈ F . The selection of ẽM,r dictates how large the relay agent’s state estimation error may

grow prior to returning to the feedback region, and ẽM,r will be used in Theorem 2.5 to determine

the maximum dwell-time of the explorer leader.

2.3.2 Explorer Agents

Three theorems are provided in this subsection to analyze the trajectory tracking error and

the estimated tracking error of the explorer leader and the formation tracking error of the explorer

followers for all time. Theorem 2.4 shows the estimated tracking error of the explorer leader ê0 (t)

is bounded for all t ∈
[
ta
m, t

a
m+1
)
, and Theorem 2.5 shows the trajectory tracking error of the

explorer leader ẽ0 (t) is bounded for all t ∈
[
ta
m, t

a
m+1
)
, provided the maximum dwell-time

condition is satisfied for the explorer leader. Additionally, Theorem 2.6 shows the explorer agents

achieved formation control and leader tracking with the distributed controller.

Theorem 2.4. When the explorer leader communicates with the relay agent, i.e., φe = ae for all

t ∈ [ta
m, t

u
m) , and when the explorer leader does not communicate with the relay agent, i.e., φe = ue

for all t ∈
[
tu
m, t

a
m+1
)
, the control law given in (2-17) ensures exponential stability of the estimated

tracking error defined in (2-8) in the sense that

∥ê0 (t)∥ ≤ ∥ê0 (ta
m)∥exp

(
−

λê,0

2
(t − ta

m)

)
(2-36)

for all t ∈
[
ta
m, t

a
m+1
)
, where λê,0 ≜ 2kê,0 ∈ R>0 is a known constant.

Proof. Following the same approach in Theorem 2.1 with Vê : Rn → R≥0 defined as

Vê (ê0 (t))≜
1
2

êT
0 (t) ê0 (t) , (2-37)

while φe = ae, i.e., t ∈ [ta
m, t

u
m) , then

Vê (ê0 (t))≤Vê (ê0 (ta
m))exp(−λê,0 (t − ta

m)) . (2-38)
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Substituting (2-37) into (2-38) yields

∥ê0 (t)∥ ≤ ∥ê0 (ta
m)∥exp

(
−

λê,0

2
(t − ta

m)

)
(2-39)

for all t ∈ [ta
m, t

u
m) . Likewise, using similar arguments from the proof of Theorem 2.1,

ê0 (t) , ˙̂e0 (t) , ˙̂x0 (t) , fi (x̂0 (t)) ,vi (x̂0 (t)) ∈ L∞ for all t ∈ [ta
m, t

u
m) . Similarly, using the same

Lyapunov functional (2-37) while φe = ue, i.e., t ∈
[
tu
m, t

a
m+1
)
, then

Vê (ê0 (t))≤Vê (ê0 (tu
m))exp(−λê,0 (t − tu

m)) . (2-40)

Substituting (2-37) into (2-40) yields

∥ê0 (t)∥ ≤ ∥ê0 (tu
m)∥exp

(
−

λê,0

2
(t − tu

m)

)
(2-41)

for all t ∈
[
tu
m, t

a
m+1
)
. Additionally, ê0 (t) , ˙̂e0 (t) , ˙̂x0 (t) , fi (x̂0 (t)) ,vi (x̂0 (t)) ∈ L∞ for all

t ∈
[
tu
m, t

a
m+1
)
. Using (2-39) and (2-41) yields (2-36).

Based on Theorem 2.4, let êM,e ∈ R≥0 denote the upper bound for ∥ê0 (tu
m)∥ , i.e.,

∥ê0 (tu
m)∥ ≤ êM,e. The value of êM,e dictates how large the explorer leader’s estimated tracking

error may grow prior to communicating with the relay agent, which will be used in Theorem 2.5.

When the state estimate for the explorer leader from the relay agent is unavailable, the trajectory

tracking error described in (2-7) will increase over time. However, Theorem 2.4 shows that the

estimated trajectory tracking error in (2-8) exponentially converges when t ∈
[
ta
m, t

a
m+1
)
. To

guarantee (2-7) does not exceed the user-defined threshold for all t ∈
[
ta
m, t

a
m+1
)
, the error growth

for (2-9) and the relationship e0 (t) = ê0 (t)+ ẽ0 (t) are considered in Theorem 2.5.

Remark 2.1. Using the reset map at time t = ta
m may result in an instantaneous growth of (2-37),

e.g., an instantaneous growth of ê0 (t) at ta
m, and therefore Vê (ê0 (t)) by (2-37). However, the jump

is finite using (2-41) and the constraint ∥ê0 (tu
m)∥ ≤ êM,e in Theorem 2.4 implies∥∥ê0

(
ta
m+1
)∥∥≤ êM,e. The value of Vê (ê0 (ta

m)) at the beginning of the current cycle is greater or

equal to the value of Vê
(
ê0
(
ta
m+1
))

at the beginning of the next cycle. Therefore, using the reset

map will not lead to instability.
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To show the trajectory tracking error of the explorer leader ẽ0 (t) is bounded for all

t ∈
[
ta
m, t

a
m+1
)
, the following theorem is provided when the maximum dwell-time condition is

satisfied for the explorer leader.

Theorem 2.5. For the trajectories of the switched system generated by the switching signal φe,

(2-7)-(2-9) are GUUB provided the switching signal satisfies the maximum loss of feedback

dwell-time condition

∆tu
m ≤ 1

λẽ
ln

 ẽ2
M,e +

d̄2
0

λẽ

ẽ2
m,e +

d̄2
0

λẽ

 , (2-42)

where λẽ ≜ 2ce +1 ∈ R>0 is a known constant, ce ∈ R>0 is a Lipschitz constant, and ẽM,e ∈ R>0,

ẽm,e ∈ R>0 are user-defined parameters with ẽM,e > ẽm,e.

Proof. Let Vẽ : Rn → R≥0 be a candidate Lyapunov functional defined as

Vẽ (ẽ0 (t))≜
1
2

ẽT
0 (t) ẽ0 (t) , (2-43)

while φe = ue, i.e., t ∈
[
tu
m, t

a
m+1
)
, substituting (2-23) into the time-derivative of (2-43) and

invoking the Comparison Lemma yields

Vẽ (ẽ0 (t))≤Vẽ (ẽ0 (tu
m))exp(λẽ (t − tu

m))+
d̄2

0
2λẽ

(exp(λẽ (t − tu
m))−1) . (2-44)

Substituting (2-43) into (2-44) yields

∥ẽ0 (t)∥ ≤

√(
∥ẽ0 (tu

m)∥
2 +

d̄2
0

λẽ

)
exp(λẽ (t − tu

m))−
d̄2

0
λẽ

(2-45)

for all t ∈
[
tu
m, t

a
m+1
)
. By enforcing the constraints

∥∥ẽ0
(
ta
m+1
)∥∥≤ ẽM,e and ∥ẽ0 (tu

m)∥ ≤ ẽm,e, the

maximum dwell-time condition in (2-42) can be obtained. When the stabilizing condition

described in (2-42) is satisfied, the error defined in (2-9) remains bounded for all t ∈
[
tu
m, t

a
m+1
)
.

Note that the value of ẽM,e is selected to be larger than that of ẽM,r, i.e., ẽM,e > ẽM,r, and this

allows the relay agent to provide a better state estimate to the explorer leader. Substituting (2-41)
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and (2-45) in
∥∥e0
(
ta
m+1
)∥∥≤ ∥∥ê0

(
ta
m+1
)∥∥+∥∥ẽ0

(
ta
m+1
)∥∥ , yields

∥∥e0
(
ta
m+1
)∥∥≤ êM,e + ẽM,e (2-46)

for all t ∈
[
tu
m, t

a
m+1
)
.

Similarly, while φe = ae, i.e., t ∈ [ta
m, t

u
m) , substituting (2-23) into the time-derivative of

(2-43) and invoking the Comparison Lemma yields

Vẽ (ẽ0 (t))≤Vẽ (ẽ0 (ta
m))exp(λẽ (t − ta

m))+
d̄2

0
2λẽ

(exp(λẽ (t − ta
m))−1) . (2-47)

Substituting (2-43) into (2-47) yields

∥ẽ0 (t)∥ ≤

√(
∥ẽ0 (ta

m)∥
2 +

d̄2
0

λẽ

)
exp(λẽ (t − ta

m))−
d̄2

0
λẽ

(2-48)

for all t ∈ [ta
m, t

u
m) . By enforcing the constraint ∥ẽ0 (tu

m)∥ ≤ ẽm,e, (2-48) shows the error defined in

(2-9) remains bounded for all t ∈ [ta
m, t

u
m) . Substituting (2-39) and (2-48) in

∥e0 (tu
m)∥ ≤ ∥ê0 (tu

m)∥+∥ẽ0 (tu
m)∥ , yields

∥e0 (tu
m)∥ ≤ êM,e + ẽm,e (2-49)

for all t ∈ [ta
m, t

u
m) . Note the upper bounds for the trajectory tracking error of the explorer leader at

ta
m+1 and tu

m are shown in (2-46) and (2-49), respectively. By satisfying the maximum dwell-time

in (2-42), i.e., ẽM,e > ẽm,e, therefore the upper bound of e0
(
ta
m+1
)

is larger than that of e0 (tu
m) , and

this condition allows the explorer leader to navigate the GPS-denied region without

communicating with the relay agent for ∆tu
m. Additionally, by satisfying (2-42), and using (2-46),

(2-49) implies the trajectory tracking error e0 (t) is bounded for all t ∈
[
ta
m, t

a
m+1
)
.

Remark 2.2. To ensure the relay agent can communicate with the explorer leader, the sum of the

state estimation errors for both the relay and the explorer leader must be selected so that the

communication radius, i.e., ẽM,r + ẽM,e ≤ Rcom.

To show the explorer agents achieved formation control and leader tracking with the

distributed controller, the following theorem is provided.
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Theorem 2.6. The controller in (2-19) ensures the stacked leader-follower error Ê is GUUB in

the sense that ∥∥∥Ê
∥∥∥≤√∥∥∥Ê (t0)

∥∥∥2
exp(−2φ (t − t0))+

ε

φ
, (2-50)

where Ê (t0)≜
[
êT

1 (t0) , ê
T
2 (t0) , ..., ê

T
N (t0)

]T ∈ RnN , φ ≜ kê, f Λmin − c1 ∈ R>0, ε ≜ (δ+c2)
2

4kê, f
∈ R>0

are known constants, and δ ≜ c1 ∥P∥ ∈ R>0.

Proof. Let VÊ : RnN → R≥0 be a candidate Lyapunov functional defined as

VÊ

(
Ê
)
≜

1
2

ÊTÊ. (2-51)

Substituting (2-21) into the time-derivative of (2-51) yields

V̇Ê

(
Ê
)
= ÊTÑ + ÊTNd − kê, f ÊT (L⊗ In) Ê − kê, f ÊTÊ, (2-52)

where (2-52) can be upper bounded as

V̇Ê

(
Ê
)
≤
∥∥∥Ê
∥∥∥∥∥∥Ñ

∥∥∥+∥∥∥Ê
∥∥∥∥Nd∥− kê, f ÊT (L⊗ In) Ê − kê, f

∥∥∥Ê
∥∥∥2

. (2-53)

Through the use of the previous bounds at the end of Section 2.2.2.2, (2-53) can be further upper

bounded as

V̇Ê

(
Ê
)
≤−φ

∥∥∥Ê
∥∥∥2

+ ε, (2-54)

where φ and ε are defined in (2-50). Note that the selection of kê, f needs to satisfy kê, f >
c1

Λmin
for

φ to be positive. Substituting (2-51) into (2-54) and invoking the Comparison Lemma yields

VÊ

(
Ê
)
≤VÊ

(
Ê (t0)

)
exp(−2φ (t − t0))+

ε

2φ
. (2-55)

Substituting (2-51) into (2-55) yields (2-50), which implies Ê ∈ L∞. Since the stack error Ê ∈ L∞,

êi (t) ∈ L∞. By (2-12), x̂i (t) , x̂0 (t) ∈ L∞ for all i ∈ V when t ∈ [t0,∞) . Since x̂i (t) , x̂0 (t) ∈ L∞ for

all i ∈ V, the distributed controller for explorer follower vi (x̂i (t)) ∈ L∞ for all i ∈ V.
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2.4 Simulation

To demonstrate the performance of the developed method, a simulation example is

performed using a robotics simulator called Gazebo. A quadrotor is used to model the relay

agent, and three wheeled mobile robots (WMRs) are used to model the explorer agents. The

environmental setup is depicted in Figure 2-1. Section 2.4.1 shows the simulation results of the

errors and trajectories of the relay agent while switching between feedback available region and

feedback-denied region, and Section 2.4.2 shows the simulation results of the errors and

trajectories of the explorer agents while navigating the feedback-denied region under intermittent

communication with the relay agent.

The dynamics and controllers used for the relay agent are

ẋr (t) = vr (xr (t))

and

vr (xr (t)) = −krer (t)− d̄rsgn(er (t))+ ẋrd (t) , φr = ar,

vr (x̂r (t)) = −kr̂êr (t)+ ẋrd (t) , φr = ur,

respectively. The desired velocities for the relay agent are designed as

ẋrd (t) = vr,max
˙̂x0 (t)+ kvrd (x̂0 (t)− xrd (t))∥∥ ˙̂x0 (t)+ kvrd (x̂0 (t)− xrd (t))

∥∥ , (2-56)

ẋrd (t) = vr,max
kvrd

(
xgoal − xrd (t)

)∥∥kvrd
(
xgoal − xrd (t)

)∥∥ , (2-57)

where kvrd ∈ R>0 is a control gain, vr,max ∈ R>0 is the maximum velocity of the relay agent, and

the goal location is selected as xgoal = [5.5,−5.5]T. The expression (2-56) represents the desired

velocity of the relay agent navigates to the explorer leader, and (2-57) represents the desired

velocity of the relay agent travels to the center of the feedback available region. The Euler’s

method is used to integrate the desired velocities designed in (2-56) and (2-57) to get the desired

position for the relay agent. When the relay agent reaches the explorer leader and enters the
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feedback available region, the switching is triggered to set the estimated state to the desired state

for the change of traveling directions, i.e., xrd
(
tswitch,k

)
= x̂r

(
tswitch,k

)
, where tswitch,k ∈ R denotes

the kth switching instances. The dynamics and controller used for the explorer leader are

˙̂x0 (t) = x̂2
0 (t)+ v0 (x̂0 (t))

and

v0 (x̂0 (t)) =−kê,0ê0 (t)− x̂2
0 (t)+ ẋ0d (t) ,

respectively. The desired trajectory x0d (t) is selected as

x0d,x = acos(ωt) ,

x0d,y = asin(ωt) ,

where a = 1 m is the radius, and ω = 0.1 rad/s is the cycle frequency. The dynamics and

controllers used for the explorer followers are

˙̂xi (t) = vi (x̂i (t)) , i = 1,2,

vi (x̂i (t)) = kê, f ∑
j∈Ni, j ̸=0

(
x̂ j (t)− x̂i (t)− p j + pi

)
+ kê, f (pi + x̂0 (t)− x̂i (t)) ,

where the desired relative positions of the explorer followers with respect to the explorer leader

are selected as p1 = [−1.5,−0.86]T and p2 = [−1.5,0.86]T represented in the body coordinate

frame, respectively.

2.4.1 Relay Agent

The relay agent is tasked with servicing the explorer leader agent when the state feedback

for the relay agent is unavailable, so the state estimator developed in [57] is used to update the

state estimate of the relay agent in the feedback-denied region. As shown in Figure 2-2, the

estimated trajectory is depicted with the solid blue line. When the distance between the estimated

state of the relay agent and the estimated state of the explorer leader is within the communication
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range, the relay agent delivers its state estimate to the explorer leader, and the communications

are represented by the green solid lines. After servicing the explorer leader, the relay agent travels

towards the center of feedback available region represented by a dashed red circle centered at

[5.5,−5.5]T with a radius of 1.5 m. When the estimated trajectory of the relay agent is within the

feedback region, true state information is used to update the estimated state of the relay agent.

Figure 2-3 shows the trajectory tracking error er (t), the estimated trajectory tracking error

êr (t), and the state estimation error ẽr (t) of the relay agent are bounded over the simulation time

period from t = 0 to t = 64s. The vertical dashed cyan lines denote the instances at

t = 0s,19s,34s,49s, where the estimated trajectory of the relay agent enters the feedback region,

and all the errors are reset using true sensor feedback at these instances. The vertical dashed black

lines denote the instances at t = 8s,25s,40s,57s, where the relay agent services the explorer

leader, and the errors of the explorer agents are improved as shown in Figures 2-5-2-7. The

simulation parameters are selected as shown in Table 2-1.

2.4.2 Explorer Agents

The explorer leader is tasked with tracking a given desired trajectory (i.e., depicted using

the dashed circle with a radius of 1 m in Figure 2-4) in the feedback-denied region, while the

explorer followers maintain a fixed formation with respect to the explorer leader (i.e.,

p1 = [−1.5,−0.86]T, p2 = [−1.5,0.86]T) by using the distributed controllers designed in (2-19).

Figure 2-5 shows the trajectory tracking error e0 (t), the estimated trajectory tracking error

ê0 (t), and the state estimation error ẽ0 (t) of the explorer leader are bounded. The vertical dashed

black lines denote the servicing instances at t = 8s,25s,40s,57s, where the explorer leader gets

state estimate from the relay agent, and the state estimation error is dropped after the servicing

instances. Similar to the errors of the explorer leader, the errors of the explorer follower 1 and

explorer follower 2 are shown in Figures 2-6 and 2-7, the errors of the corresponding agent are

bounded, and therefore, the stacked error Ê defined in (2-12) is bounded. This simulation

example shows that the developed relay-explorer approach enables multiple explorer agents to

track a given desired trajectory in a feedback-denied environment indefinitely while intermittently
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communicating with a relay agent.

Figure 2-1. The world environmental setup in Gazebo. One quadrotor and three WMRs are used
to represent the relay agent and explorer agents, respectively.
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Figure 2-2. The estimated and the desired trajectories of the relay agent switching between
feedback available and feedback-denied regions.
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Figure 2-3. The trajectory tracking error er (t), the estimated trajectory tracking error êr (t), and
the state estimation error ẽr (t) of the relay agent over the simulation time period from
t = 0 to t = 64s. The vertical dashed cyan lines denote the instances at
t = 0s,19s,34s,49s, where the estimated trajectory of the relay agent enters the
feedback region, and all the errors are reset using true sensor feedback at these
instances. The vertical dashed black lines denote the instances at t = 8s,25s,40s,57s,
where the relay agent services the explorer leader.
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Figure 2-4. The desired and the estimated trajectories of the explorer agents in the
feedback-denied region.
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Figure 2-5. The trajectory tracking error e0 (t), the estimated trajectory tracking error ê0 (t), and
the state estimation error ẽ0 (t) of the explorer leader.
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Figure 2-6. The trajectory tracking error e1 (t), the estimated trajectory tracking error ê1 (t), and
the state estimation error ẽ1 (t) of the explorer follower 1.
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Figure 2-7. The trajectory tracking error e2 (t), the estimated trajectory tracking error ê2 (t), and
the state estimation error ẽ2 (t) of the explorer follower 2.

Table 2-1. Simulation parameters.

Relay Agent Explorer Agents

vr,max = 0.75 m
s Rcom = 1.5 m kr = 0.3 ve,max = 0.4 m

s kê,0 = 0.2 kê, f = 0.4
kr̂ = 0.5 d̄r = 0.001 eM,r = 1.5 m êM,e = 0.08 m ẽM,e = 0.05 m ẽm,e = 0.05 m
êM,r = 1.2 m ẽM,r = 0.13 m
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CHAPTER 3
A SWITCHED SYSTEMS APPROACH TO UNKNOWN ENVIRONMENT EXPLORATION

WITH INTERMITTENT STATE FEEDBACK FOR NONHOLONOMIC SYSTEMS

A method developed in [19] is provided in this chapter to enable a nonholonomic vehicle to

explore an unknown environment with intermittent state feedback. The contributions include

developing a set of stabilizing dwell-time conditions using a Lyapunov-based switched systems

approach to ensure stability of the system while the nonholonomic agent is exploring the

unknown environment. Specifically, a maximum dwell-time condition is developed to allow the

nonholonomic agent to explore the feedback-denied environment for a predetermined period of

time, and a minimum dwell-time condition is developed to compensate for the state estimation

error to ensure the trajectory tracking error converges within a desired neighborhood of the

desired trajectory. Using the proposed maximum and minimum dwell-time conditions, a

nonholonomic vehicle’s tracking error remains GUUB, enabling the exploration of the

feedback-denied region for a predetermined period of time, before acquiring state feedback.

3.1 System Model

The kinematic model for a unicycle with an exogenous disturbance from [24] is

q̇(t) = S (q(t))v(t)+d (t) , (3-1)

where t ∈ R≥t0 is the time and R≥t0 ≜ [t0,∞) . Let t0 ∈ R≥0 denote the initial time and

q : [t0,∞)→ R3 denote the state, which is defined as

q(t)≜
[

x(t) y(t) θ (t)

]T

, (3-2)

where x(t) ,y(t) denote the planar position and θ (t) denotes the orientation of the nonholonomic

vehicle. The matrix S : R3 → R3×2 is defined as

S (q(t))≜


cos(θ (t)) 0

sin(θ (t)) 0

0 1

 , (3-3)
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and the input velocity vector v : [t0,∞)→ R2 is defined as

v(t)≜
[

v1 (t) v2 (t)

]T

, (3-4)

where v1 (t) ,v2 (t) denote the linear and angular velocity inputs of the nonholonomic vehicle,

respectively, and v2 (t)≜ θ̇ (t) . The exogenous disturbance d : [t0,∞)→ R3 is defined as

d (t)≜
[

d1 (t) d2 (t) d3 (t)

]T

, (3-5)

where d1,d2,d3 : [t0,∞)→ R.

Assumption 3.1. The system disturbances are upper bounded by known positive constants

d̄1, d̄2, d̄3, d̄4, d̄ ∈ R>0, where R>0 ≜ (0,∞) , such that ∥d1 (t)∥ ≤ d̄1, ∥d2 (t)∥ ≤ d̄2, ∥d3 (t)∥ ≤ d̄3,

∥d (t)∥=
√

d2
1 +d2

2 +d2
3 ≤ d̄ for all t ≥ t0. In addition, d̄4 satisfies d̄4 > d̄1 + d̄2 (see (3-48)).

3.2 Control Design

3.2.1 Control Objective

The control objective is to enable a nonholonomic vehicle to explore an unknown

environment, where feedback is unavailable by intermittently following a trajectory through the

unknown environment and intermittently into regions, where feedback is available.

Assumption 3.2. There are multiple stationary known feedback zones in the unknown

environment. Each of the feedback regions is defined by a compact set F j ⊂ R3,

j ∈N ≜ {1,2, ...,N}, where N denotes the number of regions and N ∈ Z>0.

Assumption 3.3. The nonholonomic vehicle is initialized in a feedback region, i.e.,

q(t0) ∈
⋃

j∈N
F j.

Assumption 3.4. The feedback regions are adequately spaced so that a vehicle can move between

the regions while satisfying the subsequently defined dwell-time conditions. The zone outside all

the feedback regions is defined as Fu ≜ R3\

( ⋃
j∈N

F j

)
. Feedback is available to the

nonholonomic agent if and only if q ∈
⋃

j∈N
F j. If q ∈ Fu, then the nonholonomic agent does not

have access to feedback.
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Definition 3.1. Let φ : [t0,∞)→{a,u} be a switching signal, where a indicates q ∈
⋃

j∈N
F j and u

indicates q ∈ Fu. Let ta
i ∈ R≥t0 denote the time of the ith instance when φ (t) = a, i.e.,

ta
i ≜ inf

{
t > ta

i−1|φ (t) = a
}
, where i ∈ Z≥0. Let tu

i ∈ R>t0 denote the time of the ith instance

when φ (t) = u, i.e., tu
i ≜ inf

{
t > tu

i−1|φ (t) = u
}
. The dwell-time of the ith instance of each

subsystem is defined as ∆ta
i ≜ tu

i − ta
i ∈ R>0 and ∆tu

i ≜ ta
i+1 − tu

i ∈ R>0.

A reference trajectory for the nonholonomic vehicle is generated by

q̇d (t) = S (qd (t))vd (t) , (3-6)

where qd : [t0,∞)→ R3 denotes the desired position and orientation, and is defined as

qd (t)≜
[

xd (t) yd (t) θd (t)

]T

. (3-7)

Let xd,yd,θd : [t0,∞)→ R and the matrix S : R3 → R3×2 be defined as

S (qd (t))≜


cos(θd (t)) 0

sin(θd (t)) 0

0 1

 . (3-8)

The term vd : [t0,∞)→ R2 denotes the desired linear and angular velocity defined as

vd (t)≜
[

vd1 (t) vd2 (t)

]T

, (3-9)

where vd1,vd2 : [t0,∞)→ R.

Remark 3.1. The design of the desired trajectory could include various survey/exploration

trajectories generated in a variety of ways. Specifics of such trajectory designs do not impact the

development in this chapter provided the trajectories are sufficiently smooth (see Assumption 3.5)

and that the trajectory satisfies the subsequent developed dwell-time conditions (i.e., the trajectory

visits a known landmark location within the maximum dwell-time).

Assumption 3.5. The signals vd (t) , v̇d (t) ,qd (t) , and q̇d (t) are upper bounded for all time such

that ∥vd (t)∥ ≤ v̄d ∈ R>0, ∥v̇d (t)∥ ≤ ¯̇vd ∈ R>0, ∥qd (t)∥ ≤ q̄d ∈ R>0, and ∥q̇d (t)∥ ≤ ¯̇qd ∈ R>0 for
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all t ≥ t0, where v̄d, ¯̇vd, q̄d, ¯̇qd are known positive constants.

Assumption 3.6. The maximum velocity of the nonholonomic agent can be upper bounded by a

known positive constant v(t)≤ v̄max ∈ R>0.

Since feedback is available while φ (t) = a, a trajectory tracking error e : [t0,∞)→ R3, is

defined as

e(t)≜
[

xe (t) ye (t) θe (t)

]T

, (3-10)

where e(t)≜ q(t)−qd (t) . When φ (t) = u, feedback is unavailable, and a predictor model is

introduced based on (3-1) as

˙̂q(t)≜ proj(S (q̂(t))v(t)) , (3-11)

where proj(·) denotes the continuous projection algorithm defined in [58, Section 4] and

q̂ : [t0,∞)→ R3 denotes the position and orientation estimates, which is defined as

q̂(t)≜
[

x̂(t) ŷ(t) θ̂ (t)

]T

. (3-12)

The matrix S : R3 → R3×2 is defined as

S (q̂(t))≜


cos
(
θ̂ (t)

)
0

sin
(
θ̂ (t)

)
0

0 1

 . (3-13)

While qd (t) ∈ Fu, the estimated trajectory tracking error ê : [t0,∞)→ R3 is used to track a

desired trajectory and is defined as

ê(t)≜
[

xê (t) yê (t) θê (t)

]T

, (3-14)

where ê(t)≜ q̂(t)−qd (t) . The state estimation error ẽ : [t0,∞)→ R3 is defined as

ẽ(t)≜
[

xẽ (t) yẽ (t) θẽ (t)

]T

, (3-15)

where ẽ(t)≜ q(t)− q̂(t) .1

1Unless otherwise specified, time dependence is suppressed in equations and definitions.
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To facilitate the development, state transformations for (3-10) and (3-14) are defined

according to [24] as


we

z1e

z2e

≜


−θecθ +2sθ −θesθ −2cθ 0

0 0 1

cθ sθ 0

e, (3-16)


wê

z1ê

z2ê

≜


−θêc

θ̂
+2s

θ̂
−θês

θ̂
−2c

θ̂
0

0 0 1

c
θ̂

s
θ̂

0

 ê, (3-17)

respectively, where we,wê,z1e,z2e,z1ê,z2ê : [t0,∞)→ R, sθ ≜ sin(θ) , and cθ ≜ cos(θ) for all

θ ∈ R. Let the auxiliary tracking errors ze,zê : [t0,∞)→ R2 be defined as ze ≜

[
z1e z2e

]T

and

zê ≜

[
z1ê z2ê

]T

, respectively.

3.2.2 Control Development

Substituting (3-1)-(3-10) into the time-derivative of (3-16), and substituting (3-4),

(3-6)-(3-9), and (3-11)-(3-14) into the time-derivative of (3-17), the open-loop system of the

transformed state errors can be obtained as

 ẇe

że

 =

 uT
e JTze + fe +χ1

ue +χ2

 , (3-18)

 ẇê

żê

 =

 uT
ê JTzê + fê

uê

 . (3-19)

In (3-18) and (3-19), the matrix J ∈ R2×2 is defined as

J ≜

 0 −1

1 0

 , (3-20)
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which satisfies JT =−J, JTJ = I2×2. Moreover, fe, fê : [t0,∞)→ R are defined as

fe ≜ 2(vd2z2e − vd1sz1e) , (3-21)

fê ≜ 2(vd2z2ê − vd1sz1ê) , (3-22)

respectively. In (3-18), χ1 : [t0,∞)→ R, χ2 : [t0,∞)→ R2 are auxiliary signals defined as

χ1 ≜ 2(d1sθ −d2cθ )+d3

(
z2e +

z1e

2
(we + z1ez2e)

)
− z1e (d1cθ +d2sθ ) , (3-23)

χ2 ≜

 d3

d1cθ +d2sθ − d3
2 (we + z1ez2e)

 , (3-24)

respectively. Auxiliary controllers ue,uê : [t0,∞)→ R2 motivated by [24], are defined as

ue ≜ T−1
e ve −

 vd2

vd1cθe

 , (3-25)

uê ≜ T−1
ê vê −

 vd2

vd1cθê

 , (3-26)

respectively. Note that ue =

[
u1e u2e

]T

and uê =

[
u1ê u2ê

]T

. The matrices

Te,Tê : [t0,∞)→ R2×2 are motivated by [24], where

Te ≜

 (xesθ − yecθ ) 1

1 0

 , (3-27)

Tê ≜

 (xês
θ̂
− yêc

θ̂

)
1

1 0

 . (3-28)
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The auxiliary signals ve,vê : [t0,∞)→ R2 are designed to be the implementable input velocities to

the system, specifically,

v =


ve, φ = a,

vê, φ = u,
(3-29)

Substituting (3-27) into (3-25) and substituting (3-28) into (3-26) yields

ve = Teue +

 vd1cθe + vd2 (xesθ − yecθ )

vd2

 , (3-30)

vê = Têuê +

 vd1cθê + vd2
(
xês

θ̂
− yêc

θ̂

)
vd2

 , (3-31)

respectively. To facilitate the subsequent development, let z̃e, z̃ê : [t0,∞)→ R2 be defined as

z̃e ≜ zde − ze, (3-32)

z̃ê ≜ zdê − zê, (3-33)

respectively, where auxiliary signals zde,zdê : [t0,∞)→ R2 are subsequently designed. The

auxiliary controllers ue and uê in (3-25) and (3-26) are designed as

ue ≜ uae − k2eze, (3-34)

uê ≜ uaê − k2êzê, (3-35)

respectively, where the auxiliary control terms uae,uaê : [t0,∞)→ R2 are defined as

uae ≜

(
k1ewe + fe

δ 2
de

)
Jzde +Ω1ezde, (3-36)

uaê ≜

(
k1êwê + fê

δ 2
dê

)
Jzdê +Ω1êzdê, (3-37)
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respectively. In (3-36) and (3-37), motivated by [24], the time-derivative of zde and zdê can be

designed as

żde ≜
δ̇de

δde
zde +

(
k1ewe + fe

δ 2
de

+weΩ1e

)
Jzde, (3-38)

żdê ≜
δ̇dê

δdê
zdê +

(
k1êwê + fê

δ 2
dê

+wêΩ1ê

)
Jzdê, (3-39)

respectively, where

zT
de (t

a
i )zde (ta

i ) = δ
2
de (t

a
i ) , zT

dê (t
u
i )zdê (tu

i ) = δ
2
dê (t

u
i ) . (3-40)

As described in [59], zd
Tzd = δ 2

d , implying

zT
dezde = δ

2
de, zT

dêzdê = δ
2
dê. (3-41)

The auxiliary terms Ω1e,Ω1ê,δde,δdê : [t0,∞)→ R in (3-36)-(3-39) are defined as

Ω1e ≜ k2e +
δ̇de

δde
+we

(
k1ewe + fe

δ 2
de

)
, (3-42)

Ω1ê ≜ k2ê +
δ̇dê

δdê
+wê

(
k1êwê + fê

δ 2
dê

)
, (3-43)

δde ≜ α0 exp(−α1 (t − ta
i ))+ ε1, (3-44)

δdê ≜ α2 exp(−α3 (t − tu
i ))+ ε2, (3-45)

respectively, where k1ê,k2ê,α0,α1,α2,α3,ε1,ε2 ∈ R>0 are constant parameters [59]. Let

k1e,k2e : [t0,∞)→ R>0 be time-varying control parameters designed as

k1e ≜ ks +2kn2κ
2
1 , (3-46)

k2e ≜ ks +2kn2κ
2
2 , (3-47)

respectively, where ks,kn2 ∈ R>0 are constant control parameters. Let κ1,κ2 : [t0,∞)→ R>0 be

bounding functions such that
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κ1 ≤ 2d̄4 +

(
d̄3 + d̄4 +

d̄3

2
∥we∥

)
(∥zde∥+∥z̃e∥)+

d̄3

2
(∥zde∥+∥z̃e∥)3 , (3-48)

κ2 ≤

√
d̄2

3 +

(
d̄4 +

d̄3

2
(∥zde∥+∥z̃e∥)2 +

d̄3

2
∥we∥

)2

. (3-49)

Based on the upper bounds in (3-23) and (3-24),

∥χ1∥ ≤ κ1, ∥χ2∥ ≤ κ2. (3-50)

Substituting (3-32), (3-34), (3-36), (3-38), (3-41) and (3-42) into (3-18) yields the closed-loop

trajectory tracking error

 ẇe

˙̃ze

=

 −k1ewe +uT
aeJz̃e +χ1

−k2ez̃e +weJuae −χ2

 . (3-51)

Similarly, substituting (3-33), (3-35), (3-37), (3-39), (3-41) and (3-43) into (3-19) yields the

closed-loop estimated trajectory tracking error

 ẇê

˙̃zê

=

 −k1êwê +uT
aêJz̃ê

−k2êz̃ê +wêJuaê

 . (3-52)

3.2.3 State Estimate

When φ = a, a reset map (cf., [18, 20, 17]), ψ : q̂(t) 7→ q(t), is used. During this time, the

closed-loop error system in (3-51) is used for analysis given the error in (3-15) is zero. However,

when φ = u, the state is estimated using the predictor in (3-11) and the closed-loop error system

must be used for analysis to develop the subsequent maximum dwell-time condition. To develop

the maximum dwell-time condition, the time-derivative of the error in (3-15) must be used in

addition to (3-52) to determine the overall error. Taking the time-derivative of (3-15) and

substituting in the dynamics (3-1) and the predictor (3-11) yields
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˙̃e = S (q)v−proj(S (q̂)v)+d, φ = u. (3-53)

3.3 Stability Analysis

In the analysis, the stability of e(t) is analyzed for all time, and ê(t) and ẽ(t) are included

to facilitate the stability analysis. The following theorem is provided to show the trajectory

tracking error defined in (3-10) is bounded when feedback is available.

Theorem 3.1. When feedback is available, i.e., φ = a for all t ∈ [ta
i , t

u
i ) , the control laws given in

(3-30), (3-34), (3-36), (3-38), (3-42), (3-44), (3-46), and (3-47) ensure the trajectory tracking

error defined in (3-10) is GUUB in the sense that

∥e(t)∥ ≤
√

3
√

β0
(
ta
i
)

exp
(
−λe

(
t − ta

i
))

+β1 +
√

3(β2 (ta
i )exp(−λe (t − ta

i ))+β3) , (3-54)

where λe ∈ R>0 is a known constant, β0 (ta
i )≜

(3
2 +α0 + ε1

)2
(
∥ρe (ta

i )∥
2 − 1

2λekn2

)
,

β1 ≜
(3

2 +α0 + ε1
)2 1

2λekn2
, β2 (ta

i )≜
(

1
2 ∥ρe (ta

i )∥
2 − 1

4λekn2

)
, and

β3 ≜
1

4λekn2
+ 1

2ε2
1 + ε1 +

(1
2α2

0 +α0ε1 +α0
)
.

Proof. Let the candidate Lyapunov functional Ve : R×R2 → R≥0 be defined as

Ve (we (t) , z̃e (t))≜
1
2

w2
e (t)+

1
2

z̃T
e (t) z̃e (t) . (3-55)

While φ = a, i.e., t ∈ [ta
i , t

u
i ) , taking the time-derivative of (3-55) and substituting (3-46), (3-47),

(3-50) and (3-51), yields

V̇e (t)≤−λeVe (t)+
1

4kn2
, (3-56)

where λe ≜ 2ks ∈ R>0. Invoking the Comparison Lemma in [56, Lemma 3.4] on (3-56) yields

Ve (t)≤Ve (ta
i )exp(−λe (t − ta

i ))−
1

4λekn2
(exp(−λe (t − ta

i ))−1) . (3-57)

Let ρe : [t0,∞)→ R3 denote a composite error for the trajectory tracking error defined as

ρe (t)≜
[

we (t) z̃T
e (t)

]T

. (3-58)
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Using (3-55) and (3-58), the inequality in (3-57) can be written as

∥ρe (t)∥ ≤
√∥∥ρe

(
ta
i
)∥∥2 exp

(
−λe

(
t − ta

i
))

− 1
2λekn2

(
exp
(
−λe

(
t − ta

i
))

−1
)
. (3-59)

From (3-58) and (3-59), the error signals we (t) , z̃e (t) ∈ L∞. Since δde (t) ∈ L∞ by (3-44), using

(3-41) leads to zde (t) ∈ L∞. Since z̃e (t) , zde (t) ∈ L∞, using (3-32) implies ze (t) ∈ L∞.

Specifically, using (3-32), (3-41), (3-44), (3-58), and (3-59) along with the triangle inequality, it

follows that ze (t) defined in (3-16) is GUUB as

∥ze∥ ≤ ∥zde∥+∥z̃e∥

≤ α0 exp(−α1 (t − ta
i ))+ ε1 +√∥∥ρe

(
ta
i
)∥∥2 exp

(
−λe

(
t − ta

i
))

− 1
2λekn2

(
exp
(
−λe

(
t − ta

i
))

−1
)
. (3-60)

The inverse of (3-16) yields the trajectory tracking error in (3-10) as

e =


xe

ye

θe

=


1
2sθ 0 1

2 (θesθ +2cθ )

−1
2cθ 0 −1

2 (θecθ −2sθ )

0 1 0




we

z1e

z2e

 . (3-61)

Using (3-60), ze (t) ∈ L∞, and therefore z1e (t) ,z2e (t) ∈ L∞, (3-61) implies θe (t) ∈ L∞. Given

ρe (t) , θe (t) ∈ L∞, using (3-61) implies xe (t) , ye (t) ∈ L∞. Specifically, using (3-58)-(3-61), each

component of e(t) can be bounded as

∥xe(t)∥,∥ye(t)∥,∥θe(t)∥≤
√

β0
(
ta
i
)

exp
(
−λe

(
t − ta

i
))

+β1 +β2 (ta
i )exp(−λe (t − ta

i ))+β3.

(3-62)

Using (3-10) and (3-62), the result in (3-54) follows. From Assumption 3.5, vd (t) , v̇d (t) , qd (t) ,

q̇d (t) ∈ L∞, so the signal fe (ze,vd) ∈ L∞. Using (3-46)-(3-49), k1e (t) , k2e (t) ∈ L∞, and since

we (t) , δde (t) , δ̇de (t) ∈ L∞, then Ω1e (t) ∈ L∞ based on (3-42). Given k1e (t) , we (t) , fe (t) ,

δde (t) , J, zde (t) , Ω1e (t) ∈ L∞, uae (t) ∈ L∞. Therefore, given uae (t) , k2e (t) , ze (t) ∈ L∞,

ue (t) ∈ L∞. Given xe (t) , ye (t) ∈ L∞, (3-27) implies Te (t) ∈ L∞. Given Te (t) , ue (t) , vd (t) ,

xe (t) , ye (t) ∈ L∞, (3-30) implies ve (t) ∈ L∞. Finally, (3-29) implies v(t) ∈ L∞ because
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ve (t) ∈ L∞ for φ = a.

While Theorem 3.1 proves the stability of e(t) when φ = a, Theorems 3.2 and 3.3 prove the

stability of e(t) when φ = u.

Theorem 3.2. When feedback is unavailable, i.e., φ = u for all t ∈
[
tu
i , t

a
i+1
)
, the control laws

given in (3-31), (3-35), (3-37), (3-39), (3-43), and (3-45) ensure the estimated trajectory tracking

error defined in (3-14) is GUUB in the sense that

∥ê(t)∥ ≤
√

3
(√

β4
(
tu
i
)

exp
(
−λê

(
t − tu

i
)))

+
√

3(β5 (tu
i )exp(−λê (t − tu

i ))+β6) , (3-63)

where λê ∈ R>0 is a known constant, β4 (tu
i )≜

(3
2 +α2 + ε2

)2 ∥ρê (tu
i )∥

2 , β5 (tu
i )≜

1
2 ∥ρê (tu

i )∥
2 ,

and β6 ≜
1
2ε2

2 + ε2 +
(1

2α2
2 +α2ε2 +α2

)
.

Proof. Let the candidate Lyapunov functional Vê : R×R2 → R≥0 be defined as

Vê (wê (t) , z̃ê (t))≜
1
2

w2
ê (t)+

1
2

z̃T
ê (t) z̃ê (t) . (3-64)

While φ = u, i.e., t ∈
[
tu
i , t

a
i+1
)
, taking the time-derivative of (3-64) then substituting (3-52),

yields

V̇ê (t)≤−λêVê (t) , (3-65)

where λê ≜ 2min(k1ê,k2ê) ∈ R>0. The solution to (3-65) is obtained by the Comparison Lemma

in [56, Lemma 3.4] yielding

Vê (t)≤Vê (tu
i )exp(−λê (t − tu

i )) . (3-66)

Let ρê : [t0,∞)→ R3 denote a composite error for the estimated trajectory tracking error defined

as

ρê (t)≜
[

wê (t) z̃T
ê (t)

]T

. (3-67)

Using (3-64) and (3-67), the inequality in (3-66) can be written as

∥ρê (t)∥ ≤
√∥∥ρê

(
tu
i
)∥∥2 exp

(
−λê

(
t − tu

i
))
. (3-68)
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From (3-67) and (3-68), the error signals wê (t) , z̃ê (t) ∈ L∞. Since δdê (t) ∈ L∞ by (3-45), using

(3-41) leads to zdê (t) ∈ L∞. Since z̃ê (t) ,zdê (t) ∈ L∞, using (3-33) implies zê (t) ∈ L∞.

Specifically, using (3-33), (3-41), (3-45), (3-67), and (3-68) along with the triangle inequality, it

follows that zê (t) defined in (3-17) is GUUB as

∥zê∥ ≤ ∥zdê∥+∥z̃ê∥

≤ α2 exp(−α3 (t − tu
i ))+ ε2 +

√∥∥ρê
(
tu
i
)∥∥2 exp

(
−λê

(
t − tu

i
))
. (3-69)

The inverse of (3-17) yields the estimated trajectory tracking error in (3-14) as

ê =


xê

yê

θê

=


1
2s

θ̂
0 1

2

(
θês

θ̂
+2c

θ̂

)
−1

2c
θ̂

0 −1
2

(
θêc

θ̂
−2s

θ̂

)
0 1 0




wê

z1ê

z2ê

 . (3-70)

Using (3-69), zê (t) ∈ L∞, and therefore z1ê (t) ,z2ê (t) ∈ L∞, (3-70) implies θê (t) ∈ L∞. Given

ρê (t) ,θê (t) ∈ L∞, using (3-70) implies xê (t) ,yê (t) ∈ L∞. Specifically, using (3-67)-(3-70), each

component of ê can be bounded by

∥xê(t)∥,∥yê(t)∥,∥θê(t)∥≤
√

β4
(
tu
i
)

exp
(
−λê

(
t − tu

i
))

+β5 (tu
i )exp(−λê (t − tu

i ))+β6. (3-71)

Using (3-14) and (3-71), the result in (3-63) can now be obtained. Using a similar approach as in

Theorem 3.1, vê (t) ∈ L∞; therefore, v(t) ∈ L∞ while φ = u.

Remark 3.2. While φ = a, i.e., t ∈ [ta
i , t

u
i ) , the trajectory tracking error e(t) is bounded as shown

in (3-54), and the state estimate error ẽ(t) is reset to zero, i.e., q̂(t) = q(t) . Since

e(t) = ê(t)+ ẽ(t) , the estimated tracking error ê(t) is bounded for φ = a.

Theorem 3.3. For the trajectories of the switched system generated by the switching signal φ ,

(3-15) is GUUB provided the switching signal satisfies the maximum loss of feedback dwell-time

condition

∆tu
i ≤ 1

λu
ln
(

λu

2ε
(eM −β7 (tu

i ))
2 +1

)
, (3-72)

where λu ∈R>0 is a known constant, ε ≜ 1
2 d̄2 ∈R>0, eM > eT ∈R>0 is a user-defined parameter,
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eT ∈ R>0 is a subsequently defined constant (see Theorem 3.4), and

β7 (tu
i )≜

√
3
(√

β4
(
tu
i
)
+β5 (tu

i )+β6

)
.

Proof. Let the candidate Lyapunov functional Vẽ : R3 → R≥0 be defined as

Vẽ (ẽ(t))≜
1
2

ẽT (t) ẽ(t) . (3-73)

While φ = u, i.e., t ∈
[
tu
i , t

a
i+1
)
, taking the time-derivative of (3-73) and substituting (3-53) yields

V̇ẽ (t)≤ λuVẽ (t)+ ε, (3-74)

where λu ≜ 2c+1 ∈ R>0, and c ∈ R>0. The solution to (3-74) is obtained by the Comparison

Lemma in [56, Lemma 3.4] yielding

Vẽ (t)≤
ε

λu
(exp(λu (t − tu

i ))−1) . (3-75)

From (3-73), the inequality in (3-75) can be written as

∥ẽ(t)∥ ≤
√

2ε

λu

(
exp
(
λu
(
t − tu

i
))

−1
)
. (3-76)

To ensure the state estimation error e(t) is bounded, a user-defined maximum bound eM ∈ R>0

can be selected to ensure
∥∥e
(
ta
i+1
)∥∥≤ eM. Using (3-63) and (3-76) in∥∥e

(
ta
i+1
)∥∥≤ ∥∥ê

(
ta
i+1
)∥∥+∥∥ẽ

(
ta
i+1
)∥∥ , the following inequality can be obtained

√
3
(√

β4
(
tu
i
)
+β5 (tu

i )+β6

)
+

√
2ε

λu

(
exp
(
λu∆tu

i
)
−1
)
≤ eM. (3-77)

When (3-77) is satisfied,
∥∥ê
(
ta
i+1
)∥∥+∥∥ẽ

(
ta
i+1
)∥∥≤ eM, and since∥∥e

(
ta
i+1
)∥∥≤ ∥∥ê

(
ta
i+1
)∥∥+∥∥ẽ

(
ta
i+1
)∥∥ , therefore

∥∥e
(
ta
i+1
)∥∥≤ eM. Using (3-77), ∆tu

i can be

determined, yielding (3-72).

To ensure ∥e(t)∥ does not grow beyond a user-defined parameter eM ∈ R>0 when φ = u,

the dwell-time condition in (3-72) is developed. Since e(t) = ê(t)+ ẽ(t) , by Theorem 3.2 and

3.3, the maximum dwell-time in (3-72) ensures e(t) ∈ L∞ for φ = u.

At the time instant t = tu
i , q̂(tu

i ) = q(tu
i ) by design, implying ê(tu

i ) = e(tu
i ) and ẽ(tu

i ) = 0.
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Therefore, the switched system is continuous at t = tu
i because e(tu

i ) = ê(tu
i )+ ẽ(tu

i ) . At the time

instant t = ta
i+1, given e(t) = ê(t)+ ẽ(t) , using (3-77), then limsup

t→ta
i+1

∥e(t)∥ ≤ eM. Therefore, the

trajectory tracking error e(t) is finite.

Zeno behavior occurs when the difference between ta
i+1 − ta

i is arbitrarily small, which

implies the agent requires continuous state feedback. Since the objective is to explore the

feedback-denied region for a finite time period, then it is critical to show that the difference

between consecutive return times, i.e., ta
i+1 − ta

i is lower bounded by a finite positive constant.

While φ = u, let ttravel ∈
[
tu
i , t

a
i+1
)

represent the minimum time it would take the nonholonomic

agent to travel between consecutive feedback regions. Therefore, the maximum dwell-time

condition has a lower constant bound, i.e. ttravel ≤ ∆tu
i , where ttravel =

dk
v̄max

, dk ∈ R>0 denotes the

actual distance the nonholonomic agent travels, and k ∈ Z≥0. By the definition of ∆ta
i and ∆tu

i ,

ta
i+1 − ta

i = ∆tu
i +∆ta

i . Since ttravel ≤ ∆tu
i , ta

i+1 − ta
i ≥ ttravel. Therefore, Zeno behavior is excluded.

The following theorem is provided to ensure the trajectory tracking error converges within a

desired neighborhood.

Theorem 3.4. Given trajectories of the switched system generated by the switching signal φ ,

(3-10) is GUUB provided the switching signal satisfies the minimum feedback availability

dwell-time condition given by

∆ta
i > max

 2
λe

ln


√

β0
(
ta
i
)
+β2 (ta

i )

eT√
3
−
√

β1 −β3

 ,0

 , (3-78)

where eT >
√

3
(√

β1 +β3

)
∈ R>0 is a user-defined constant.

Proof. While φ = a, i.e., t ∈ [ta
i , t

u
i ) , the upper bound of the trajectory tracking error, e(t) , is

given by (3-54). This inequality is used to ensure e(t) converges within a desired neighborhood

eT ∈ R>0, i.e., ∥e(t)∥ ≤ eT . Using the user-defined lower threshold eT ∈ R>0, ∆ta
i is determined

to satisfy

√
3
(√

β0
(
ta
i
)

exp
(
−λe∆ta

i
)
+β1

)
+
√

3(β2 (ta
i )exp(−λe∆ta

i )+β3)≤ eT . (3-79)
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Hence, (3-79) holds provided (3-78) is satisfied.

As described in Assumption 3.3, the vehicle initially starts inside a feedback zone where it

then starts tracking the desired trajectory to reach a different feedback zone before exceeding the

maximum dwell-time described in Theorem 3.3. During exploration, without absolute feedback,

i.e., dead-reckoning, the state estimate error is upper bounded as in (3-76). Once the agent

reaches a feedback zone, the estimated state is instantaneously reset to the true state as described

in Section 3.2.3, and the state estimate error ẽ(t) is reset to zero. While the agent has feedback,

the relative position of the feedback zones are known. With this approach, the objective of

exploring unknown regions with intermittent state feedback of a nonholonomic vehicle can be

achieved provided the exploration trajectory enables the agent to satisfy the maximum and

minimum dwell-time conditions.

3.4 Experiment

An experiment is performed using a WMR with Kobuki base. In lieu of using motion

capture system to determine the actual pose of the agent, an attention guided camera localization

(AtLoc) architecture developed in [60] is used to estimate the pose of the agent by keeping a

known landmark within the FOV of an onboard monocular camera. As depicted in Figure 3-1, a

ground WMR is used to model the nonholonomic kinematics described in (3-1). To acquire the

pose estimates of the WMR, five customized landmarks are placed at centers of the feedback

regions. The WMR tracks a circle trajectory centered at each of the feedback regions with radius

of 0.8 m. A differentiable time-varying controller proposed in [61] is used to track the circle

trajectory as  v1

v2

=

 −k1e1 + v1r cos(e3)

−v1r
sin(e3)

e3
e2 − k2e3 + v2r

 , (3-80)

where k1,k2 ∈ R>0 are constant control gains selected as k1 = 0.5 and k2 = 3, v1r,v2r ∈ R are the

desired linear and angular velocities, respectively, selected as v1r

v2r

=


√

(−r sin(2π f )2π f )2 +(r cos(2π f )2π f )2

2π f

 ,
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and r, f ∈ R>0 denote the radius and frequency of the circle trajectory, respectively, selected as

r = 0.8 m and f = 0.05. The errors e1,e2,e3 ∈ R in (3-80) are defined as
e1

e2

e3

=


cos(θ) x̃+ sin(θ) ỹ

−sin(θ) x̃+ cos(θ) ỹ

θ̃

 ,

where x̃, ỹ, θ̃ ∈ R are defined as

x̃ = x− xd

ỹ = y− yd

θ̃ = θ −θd.

While the WMR is tracking the circle trajectory with respect to a landmark, the viewing

direction of onboard monocular camera is set to be perpendicular to the x direction of the WMR

(i.e., keeping a landmark within the FOV). To pretrain the network using AtLoc, high definition

images of the landmarks, true pose of the WMR (i.e., provided by a NaturalPoint, Inc. OptiTrack

motion capture system), pose of the landmarks are recorded. The recorded data is used as input to

the customized AtLoc architecture for pretraining. The loss function used for the training is

selected as

L= e−α ∥x̂− x∥+α + e−β ∥ŷ− y∥+β + e−γ
∥∥θ̂ −θ

∥∥+ γ,

where α,β ,γ ∈ R>0 are the training parameters initialized with α0 = 0, β0 = 0, γ0 =−2,

x,y,θ ∈ R are the actual state information provided by the motion capture system, x̂, ŷ, θ̂ are the

outputs from the pretrained network, and the learning rate is selected to be 0.001.

Figures 3-2a-3-4b show the results of pose estimates generated from the pretrain AtLoc

model and the actual pose information provided by the motion capture system. Specifically,

Figure 3-2a shows the estimated and actual pose states of the WMR while keeping one of the five

landmarks within the FOV in x and y directions. Figures 3-2b-3-4b show the generated estimated

pose and the actual pose of the WMR for each of the landmarks in x, y, and θ directions. Table
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3-1 shows the comparison between the tested and AtLoc results in [60], and we achieved better

performance in position estimation, but we didn’t achieve better result in orientation estimation.

Figure 3-1. The experimental setup using one WMR with an onboard monocular camera and five
customized landmarks. The centroid of each landmark is at the center of a feedback
available region, and the radius of each feedback available region is selected as 0.8 m.
The WMR can obtain pose estimates (i.e., true state information) when one of the
landmarks is within the FOV of the monocular camera.
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Figure 3-2. Pose estimation using the AtLoc model versus the pose information provided by
motion capture system for (a) five landmarks, and (b) landmark 1.
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Figure 3-3. Pose estimation using the AtLoc model versus the pose information provided by
motion capture system for (a) landmark 2, and (b) landmark 3.
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Figure 3-4. Pose estimation using the AtLoc model versus the pose information provided by
motion capture system for (a) landmark 4, and (b) landmark 5.

Table 3-1. Results comparison.
AtLoc Tested (Ours)

Median Error in Position 0.21m 0.15m
Median Error in Orientation 7.56◦ 10.41◦
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CHAPTER 4
LYAPUNOV-BASED REAL-TIME AND ITERATIVE ADJUSTMENT OF DEEP NEURAL

NETWORKS

A real-time DNN adaptive control architecture developed in [54] is included in this chapter

for general uncertain nonlinear dynamical systems to track a desired time-varying trajectory. The

contributions include developing a multiple timescale learning DNN adaptive control architecture

for general uncertain nonlinear dynamical systems. Specifically, the unknown drift dynamics are

approximated using a universal function approximator (i.e., a feedforward fully connected DNN).

A Lyapunov-based real-time adaptation law is developed to update the output-layer weights of the

DNN, and a batch optimization (i.e., minimize the mean squared error (MSE)) is used to

periodically update the inner-layer weights of the DNN. The output-layer weights are updated

continuously to ensure system stability, while the inner-layer weights are updated when a

sufficient number of data are collected and trained to improve the approximation of the DNN. The

multiple timescale learning adaptive control architecture enables the general uncertain nonlinear

dynamical systems to track a desired trajectory, while using a DNN to iteratively improve the

control performance. A nonsmooth Lyapunov-based analysis is used to prove semi-global

asymptotic tracking of the desired trajectory. Numerical simulation examples are included to

validate the results, and the Levenberg-Marquardt algorithm is used to train the weights of the

DNN. The developed DNN architecture is shown in Figure 4-1.

4.1 System Dynamics

Consider a control-affine nonlinear dynamic system modeled as

ẋ(t) = f (x(t))+g(x(t))u(t) , (4-1)

where x : [t0,∞)→ Rn denotes the generalized state, t0 ∈ R≥0 denotes the initial time,

f : Rn → Rn denotes the unknown drift dynamics, g : Rn → Rn×m denotes the uncertain control

effectiveness matrix, and u : [t0,∞)→ Rm denotes the control input. To facilitate the control

development, the following assumption is made.

Assumption 4.1. The product of the uncertain control effectiveness matrix and control input can
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be linearly parametrized as

g(x(t))u(t) = Y (x(t),u(t), t)θ , (4-2)

where Y : Rn ×Rm × [t0,∞)→ Rn×q denotes a measurable regression matrix, and θ ∈ Rq denotes

a vector of constant unknown parameters.

4.2 DNN Approximation and Update Policy

Let Ω ⊂ Rn be a compact simply connected set with x(t) ∈ Ω, and define Sn (Ω) as the

space where f (x(t)) is continuous. There exists ideal weights, ideal basis functions, and an ideal

pre-trained DNN such that the drift dynamics f (x(t)) ∈ Sn (Ω) can be represented as [62]

f (x(t)) =W ∗T
σ (Φ∗ (x(t)))+ ε (x(t)) , (4-3)

where W ∗ ∈ RL×n is an unknown bounded ideal output-layer weight matrix, σ : Rp → RL is a

user-defined bounded vector of activation functions, Φ∗ : Rn → Rp is the ideal unknown DNN,

ε : Rn → Rn is the bounded unknown function reconstruction error associated with the ideal

weights, activation functions, and DNN. The ideal unknown DNN Φ∗ can be expressed as

Φ∗ (x(t)) =
(
W T

k φk ◦W T
k−1φk−1 ◦ ...◦W T

1 φ1
)
(x(t)), where k ∈ Z denotes the number of

inner-layers of the DNN, the symbol ◦ denotes function composition, W and φ (·) denote the

corresponding inner-layer weights and activation functions of the DNN, respectively.

The DNN is updated using a multiple timescale approach. The DNN is trained a priori

using data sets collected from previous experiments, simulation data, etc. Ideally, large data sets

from the same dynamic system operating under the same environmental conditions will be

available for training the DNN. However, the developed strategy of real-time (Lyapunov-based)

adjustment of the output-layer weights provides an advantage of significant flexibility in the

training data. For example, as observed in the subsequent simulation, the training data could be

from a dynamic system with different parameters (i.e., transfer learning), or could also be

initialized with random weights.

Based on (4-3), the DNN approximation of the drift dynamics f̂i : Rn → Rn can be

represented as f̂i (x(t)) = Ŵ T (t)σ

(
Φ̂i (x(t))

)
, where Ŵ : [t0,∞)→ RL×n is the estimate of the
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ideal output-layer weight matrix, Φ̂i : Rn → Rp is the ith estimates of Φ∗, and i ∈ N is the DNN

estimate update index.1 The mismatch between the ideal output-layer weights and the weight

estimates W̃ : [t0,∞)→ RL×n is defined as

W̃ (t)≜W ∗−Ŵ (t) . (4-4)

Assumption 4.2. Using the universal function approximation property there exists known

constants W ∗, σ , ε ∈ R>0 such that the unknown ideal weights W ∗, user-selected activation

functions σ (·) , the unknown ideal DNN Φ∗ (·) , and the function reconstruction error ε (·) can be

upper bounded such that supx(t)∈Ω ∥W ∗∥ ≤W ∗, supx(t)∈Ω ∥σ (·)∥ ≤ σ ,2 and supx(t)∈Ω ∥ε (·)∥ ≤ ε.

A priori training provides Φ̂1 (·) and Ŵ (t0) . The offline DNN training can be achieved by

using different techniques. For example, [1] and [2] use a Stochastic Gradient Descent (SGD)

based generative network architecture to generate estimates of matched system uncertainty, and

the SGD update policy depends on a stochastic estimation of the expected value of the gradient of

the loss function over a training set. When the offline DNN training phase is completed, an

adaptive control law will be implemented for the system described in (4-1) to generate the

output-layer DNN weight estimates, i.e., Ŵ (t) for all t ≥ t0. Simultaneous to the online execution,

data is collected and offline function approximation methods are used to update estimates on the

inner-layer DNN weights.

4.3 Control Design

4.3.1 Control Objective

The control objective is to ensure the trajectory of the system in (4-1) tracks a desired

sufficiently smooth time-varying trajectory xd : [t0,∞)→ Rn. To quantify the tracking objective, a

1The subscript i on Φ̂ represents the ith training iteration of the estimated DNN. The explicit expression for
Φ̂i (x(t)) can be expressed as Φ̂i (x(t)) =

(
Ŵ T

i,kφi,k ◦Ŵ T
i,k−1φi,k−1 ◦ ...◦Ŵ T

i,1φi,1

)
(x(t)), where Ŵ and φ (·) denote

the corresponding estimated inner-layer weights and activation functions of the corresponding training iteration,
respectively.

2For common activation functions, e.g., hyperbolic tangent function, sigmoid function, radial basis function, σ = L.
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tracking error e : [t0,∞)→ Rn is defined as

e(t)≜ x(t)− xd (t) . (4-5)

4.3.2 Control Development

To facilitate the subsequent control development, the product of the estimated control

effectiveness matrix and the control input can be written as

ĝ(x(t))u(t) = Y (x(t),u(t), t) θ̂ (t) , (4-6)

where ĝ : Rn → Rn×m denotes the estimate of the control effectiveness matrix. The parameter

estimation error θ̃ : [t0,∞)→ Rq is defined as

θ̃ (t)≜ θ − θ̂ (t) , (4-7)

where θ̂ : [t0,∞)→ Rq denotes the parameter estimate.

Assumption 4.3. The estimate of the control effectiveness matrix ĝ is a full-row rank matrix for

t ≥ t0, and the right pseudo inverse of ĝ(·) is denoted by ĝ+ : Rn → Rm×n, where

ĝ+ (·)≜ ĝT (·)
(
ĝ(·) ĝT (·)

)−1 is bounded given a bounded argument.

Based on the subsequent stability analysis, the control input is designed as

u(t)≜ ĝ+ (x(t))
[
−ke(t)− kssgn(e(t))+ ẋd (t)−Ŵ T (t)σ

(
Φ̂i (x(t))

)]
, (4-8)

where k,ks ∈ R>0 are constant control gains, and sgn(·) denotes the signum function. The weight

estimate adaptation law is designed as

˙̂W (t)≜ ΓW σ

(
Φ̂i (x(t))

)
eT (t) , (4-9)

where ΓW ∈ RL×L denotes a user-defined positive definite, diagonal control gain matrix. The

adaptation law for the parameter estimate in (4-6) is designed as

˙̂
θ (t)≜ ΓθY T (x(t),u(t), t)e(t) , (4-10)
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where Γθ ∈ Rq×q denotes a user-defined positive definite, diagonal control gain matrix. Taking

the time-derivative of (4-5) and substituting in (4-1)-(4-3) and (4-6)-(4-8) yields the closed-loop

error system

ė(t) = W ∗T
σ (Φ∗ (x(t)))−Ŵ T (t)σ

(
Φ̂i (x(t))

)
+ε (x(t))− ke(t)− kssgn(e(t))+Y (x(t),u(t), t) θ̃ (t) . (4-11)

Recall the initially trained DNN provides initial estimates Φ̂1 (·) and Ŵ (t0) . During

implementation of the real-time controller, the output-layer weights of the DNN are estimated

online. Concurrently, the data generated in real-time is stored for additional DNN training. Once

a sufficient amount of data (user-defined) is collected to improve the function approximation

performance, the inner-layer weights of the DNN will be updated to generate Φ̂i+1 (·) for all i,

i.e., (4-8)-(4-10).

4.4 Stability Analysis

The stability of the DNN-based adaptive tracking controller is established in the following

theorem.

Theorem 4.1. Consider a general nonlinear system modeled by the dynamics in (4-1) with

x(t0) ∈ Ω and satisfying Assumptions 4.1-4.3. The control input in (4-8), the output-layer weight

adaptation law in (4-9), and the parameter estimate adaptation law in (4-10) ensure the

trajectory tracking error defined in (4-5) yields semi-global asymptotic tracking in the sense that

limt→∞ ∥e(t)∥→ 0, t ≥ t0, provided the following gain condition is satisfied

ks > 2σW ∗+ ε. (4-12)

Proof. Consider the candidate Lyapunov-like function VL : Rn(L+1)+q × [t0,∞)→ R≥0 defined as

VL (z, t)≜
1
2

eTe+
1
2

θ̃
T
Γ
−1
θ

θ̃ +
1
2

tr
(

W̃ T
Γ
−1
W W̃

)
, (4-13)

where z : [t0,∞)→ Rn(L+1)+q is defined as z ≜
[

eT, θ̃ T, vec
(

W̃
)T
]T

and vec(·) denotes the

vectorization operator. Let ζ : [t0,∞)→ Rn(L+1)+q be a Filippov solution to the differential
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inclusion ζ̇ ∈ K [h] (ζ ) , where ζ (t) = z(t) , the calculus of K [·] is used to compute Filippov’s

differential inclusion as defined in [63], and h : Rn(L+1)+q → Rn(L+1)+q is defined as

h(ζ )≜
[

ėT, ˙̃
θ T, vec

(
˙̃W
)T
]T

. The time-derivative of VL exists almost everywhere (a.e.),

i.e., for almost all t ∈ [0,∞) , V̇L (ζ )
a.e.
∈ ˙̃V L (ζ ) , where ˙̃V L (ζ ) is the generalized time-derivative of

VL along the Filippov trajectories of ζ̇ = h(ζ ) . By [64, Equation 13],

˙̃V L (ζ )≜
⋂

ξ∈∂VL(ζ )

ξ T
[
K [h]T (ζ ) ,1

]T
, where ∂VL (ζ (t)) denotes the Clarke generalized gradient

of VL (ζ ) . Since VL (ζ ) is continuously differentiable in ζ , then ∂VL (ζ ) = {∇VL (ζ )} , where ∇

denotes the gradient operator.

Taking the generalized time-derivative of (4-13), then substituting in the mismatch between

the ideal output-layer weight and the weight estimate in (4-4), the output-layer adaptation law in

(4-9), the parameter estimate adaptation law in (4-10), and the closed-loop error system in (4-11)

yields

˙̃V L (ζ ) ⊆ eT
(

W ∗T
σ (Φ∗ (x))−Ŵ TK

[
σ

(
Φ̂i (x)

)])
+eT (ε (x)− ke− ksK [sgn(e)])− tr

(
W̃ TK

[
σ

(
Φ̂i (x)

)]
eT
)
. (4-14)

Using the trace operator property3, the estimated mismatch for the ideal output-layer weight in

(4-4), and adding and subtracting eTW ∗TK
[
σ

(
Φ̂i (x)

)]
in (4-14) yields

˙̃V L (ζ ) ⊆ −keTe− kseTK [sgn(e)]+ eT
ε (x)

+eTW ∗T
(

σ (Φ∗ (x))−K
[
σ

(
Φ̂i (x)

)])
. (4-15)

Hence, using the definition of K [sgn(e)] and Assumption 4.2, (4-15) can be upper bounded as

V̇L
a.e.
≤ −k∥e∥2 −

(
ks −2σW ∗− ε

)
∥e∥ . (4-16)

By satisfying the gain condition described in (4-12), (4-16) can be further upper bounded as

V̇L
a.e.
≤ −k∥e∥2 . (4-17)

3For real column matrices a,b ∈Rn, the trace of the outer product is equivalent to the inner product, i.e., tr
(
baT
)
=

aT b.
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Using (4-13) and (4-17) implies VL ∈ L∞, which implies z ∈ L∞. The definition of z(t) implies

e, θ̃ ,W̃ ∈ L∞. Using (4-4), (4-5) and (4-7) implies x, θ̂ ,Ŵ ∈ L∞. Using Assumptions 4.2 and 4.3

implies σ (·) ,ε (x) , ĝ+ (x) , ĝ(x) ∈ L∞. Since e, ĝ+ (x) ,Ŵ ∈ L∞, using (4-8) implies u ∈ L∞. Since

ĝ(x) ,u, θ̂ ∈ L∞, using (4-6) yields Y (x,u) ∈ L∞. Furthermore, by the extension of the

LaSalle-Yoshizawa theorem for non-smooth systems in [65] and [66], k∥e∥2 → 0, which implies

∥e(t)∥→ 0 as t → ∞ and x(t) ∈ Ω for all t ≥ t0.

4.5 Simulation

To demonstrate the effectiveness of the developed method, a simulation is performed on a

control-affine realization of a two-state Van der Pol oscillator. The dynamics used in the

simulation are

f (x) =

 µ
(
x1 − 1

3x3
1 − x2

)
1
µ

x1

 , (4-18)

g(x) =

 5 0

0 3

 , (4-19)

where x = [x1,x2]
T and µ = 10. The desired trajectory is xd = [5cos(t) ,5sin(t)]T . The initial

conditions of the system were x(0) = [−5,8]T and θ̂ (0) = [6,6]T . The user-defined parameters

were selected as k = 75, ks = 0.05, ΓW = 500 · I13, and Γθ = diag([0.1,0.05]) .

The DNN used in this simulation was composed of 4 layers, each with 10, 5, 8, and 2

neurons, respectively. The DNN architecture is illustrated in Figure 4-2. Each layer is linear and

the first, second, and third layers have tangent-sigmoid, logarithmic-sigmoid, and tangent-sigmoid

activation functions, respectively. The learning rate (i.e., the learning gain parameter used to

determine the step size in retraining the DNN weights at each iteration) was fixed as η = 0.001.

The mean squared error (MSE) was used as the loss function for training. Each training iteration

lasted until the MSE (i.e., the loss) was less than 10−3. The Levenberg-Marquardt algorithm was

used to train the weights of the DNN. For each DNN training iteration, 70% of the data was used

for training, 15% was used for validation, and 15% was used for testing.
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To pre-train the DNN, a 600 second simulation of a system with dynamics in (4-18) and

µ = 10 was performed. Training statistics for the offline training are shown in Figure 4-3. The

real-time controller and the update laws in (4-8)-(4-10) are used to update their respective

parametric estimates. Concurrent to the real-time controller execution, input-output data is

collected to retrain the DNN. As shown in Figures 4-4-4-6, the training start time is denoted by

the red dashed vertical line and the training completion time is denoted by the black dashed

vertical line. The time (and corresponding amount of data) between retraining the inner-layer

weights is a user-defined parameter of the simulation. After the prescribed time between

retraining elapses, the inner-layer DNN weights begin updating via retraining. In this simulation,

the time between retraining is 25 seconds. The first retraining starts at t = 25 seconds and ends at

t = 37.4 seconds. The second retraining starts at t = 62.4 seconds and ends at t = 68.3 seconds.

While the retraining is in process, the real-time controller and update laws continue uninterrupted

as described in (4-8)-(4-10). Once the retraining is completed, the new inner-layer DNN weights

are updated, overwriting the previous values.

As shown in Figures 4-4-4-6, the time for the MSE to be less than 10−3 took 12.4 seconds

to complete. After the DNN has completed retraining, the controller implements the inner-layer

weights at t = 37.4 seconds. After implementing the updated DNN weights, new data is collected

for another 25 seconds. To further improve the DNN estimate, a second retraining is performed.

During the second training iteration, data from the first 25 seconds and the second 25 seconds are

both used. The second retraining took 5.9 seconds. The inner-layer weights from the second

retraining are implemented at t = 68.3 seconds.

The tracking error performance in Figure 4-4 indicates that discretely retrained DNNs with

an online adaptive output-layer weights are a viable method to perform trajectory tracking. The

first iteration of the DNN (DNN1) is the offline generated DNN, DNN2 is the model after the first

retraining, and DNN3 is the model after the second retraining. As shown by the root mean

squared error (RMSE) in Table 4-1 (A), each subsequent DNN training iteration yielded improved

performance, where e ≜
[

e1 e2

]T

. The decrease in error after each retraining is expected since
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a larger set of system data was used to train the DNN during each retraining. Figure 4-7 shows the

phase plot of the system, and compares the performance of the tracking during the application of

each DNN. DNN1 has the worst estimate of the system dynamics. DNN2 and DNN3 show

significantly better tracking behavior, which is also reflected in Figure 4-4. Figure 4-6 presents

the control input to the system for the duration of the simulation. DNN1 poorly approximates the

dynamics near x = [−3.5,3.5]T , and this error is further reflected in Figure 4-6 with the spikes in

control input approximately at t = 2 seconds and t = 8 seconds.

4.5.1 Transfer Learning & Random Weights

To further demonstrate the flexibility of the developed real-time Lyapunov-based

adjustment of the output-layer weights, two additional simulations were performed. In this

section, transfer learning-based and randomly initialized DNN weights simulations were

investigated. Transfer learning in this context is applying the learned DNN model of one system

to another system. In the simulation, transfer learning is demonstrated by training a DNN model

on a dataset of a system described by the dynamics in (4-18) with parameter µ = 1, whereas the

simulated system has parameter µ = 10.

In the transfer learning-based approach, the DNN is pre-trained with 600 seconds of

simulated data from a system with dynamics in (4-18), but parametrized with µ = 1. Figures

4-8(a), 4-9(a), and Table 4-1 (B) show the tracking error, phase plot, and RMSE of the transfer

learning approach over three iterations of DNN training, respectively. For situations where data

cannot be collected a priori, initial inner-layer DNN weights can be selected by the user. In the

third simulation, instead of pre-training the DNN, a simulation was performed with the initial

DNN randomly selected weights. Figures 4-8(b), 4-9(b), and Table 4-1 (C) show the tracking

error, phase plot, and RMSE of this approach over three iterations of DNN training, respectively.

The performance of the transfer learning-based approach and initial randomly selected

DNN weights simulations are depicted in Figures 4-8 and 4-9. Iterations in the inner-layer

weights are shown to improve performance. The first simulation, which was trained with 600

seconds of offline data using the dynamics in (4-18) with µ = 10 has the best performance with
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respect to the smallest RMSE within 25 second intervals compared to transfer learning and initial

randomly selected DNN weights. Nevertheless, the proposed real-time Lyapunov-based

adjustment of the output-layer weights accommodates for different methods to initialize the DNN

inner-layer weights.

Figure 4-1. Multiple timescale learning architecture.

Figure 4-2. The DNN is composed of 4 layers, each with 10, 5, 8, and 2 neurons, respectively.
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Figure 4-3. The MSE for the offline trained DNN with learning rate η = 0.001 for 535 epochs in
logarithmic scale. The best validation performance for DNN1 is MSE = 0.00093357.
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Figure 4-4. The tracking error over three iterations of DNN training, i.e., DNN1, DNN2, DNN3.
At t = 0 seconds, the first iteration of the DNN (DNN1) is deployed. The red dashed
line at t = 25 seconds represents the beginning of the first retraining (DNN2), and the
black dashed line at t = 37.4 seconds represents the end of the first retraining. The red
dashed line at t = 62.4 seconds represents the beginning of the second retraining
(DNN3), and the black dashed line at t = 68.3 seconds represents the end of the
second retraining.
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Figure 4-5. Weight estimates over three iterations of DNN training, i.e., DNN1, DNN2, DNN3.
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Figure 4-6. Applied control input over three iterations of DNN training, i.e., DNN1, DNN2,
DNN3.
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Table 4-1. Root Mean Squared Errors (RMSE)

RMSE e1 RMSE e2 RMSE e

A
DNN1 0.18 0.18 0.25
DNN2 0.01 0.02 0.02
DNN3 0.01 0.00 0.01

B
DNN1 0.17 0.18 0.24
DNN2 0.06 0.02 0.07
DNN3 0.01 0.01 0.02

C
DNN1 0.21 0.22 0.29
DNN2 0.02 0.00 0.02
DNN3 0.01 0.01 0.01

RMSE of the tracking error for each simulation: (A) DNN pre-trained with dynamics in (4-18)
parametrized with µ = 10, (B) DNN pre-trained with dynamics in (4-18) parametrized with µ = 1,
(C) DNN initialized with randomly selected inner-layer weights.
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Figure 4-7. Phase plot of the dynamics in (4-18) over three iterations of DNN training, i.e.,
DNN1, DNN2, DNN3.
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Figure 4-8. Tracking error for (a) transfer learning, and (b) randomly selected initial inner-layer
weights.
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Figure 4-9. The phase plot for (a) transfer learning, and (b) randomly selected initial inner-layer
weights.
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CHAPTER 5
CONCLUSIONS

Many autonomous applications experience intermittent state feedback due to practical

reasons, e.g., the operating environment, task definition, system constraint. To compensate for the

intermittency, a switched systems approach is leveraged to enable the state of a nonlinear

dynamical system to switch between feedback available and feedback-denied environments.

While state feedback is unavailable, state predictors or observers can be used to predict the state

using estimated information. A stabilizing maximum dwell-time condition is developed using a

Lyapunov-based analysis, which allow the autonomous agent to explore the feedback-denied

environment for a pre-determined period of time before going to a feedback available region.

While state feedback is available, the estimated state is reset to the true state to compensate for

the state estimation error.

In Chapter 2, a relay-explorer control method is developed enabling a multi-agent system to

explore an unknown environment using a switched systems approach. Specifically, a relay agent

is switching between the feedback available and feedback-denied regions, providing state

estimates to the explorer leader. The contributions in this chapter include developing a distributed

formation controller using state estimates for the explorer follower agents to maintain a fixed

formation with respect to the explorer leader agent, which significantly increases the exploring

coverage compared to a single agent. The developed method also enables the relay and explorer

agents to only use state estimates while operating in the feedback-denied environment by

satisfying the designed parameters and the developed stabilizing dwell-time conditions. Future

efforts could focus on extending the result to account for multiple relay servicing agents, where

each relay agent is tasked with servicing multiple explorer agents. For example, the current result

could combine with the preliminary results developed in [67] to incorporate more relay agents to

increase the exploring coverage in the feedback-denied environment. Incorporating multiple relay

agents could easily complicate the problem by introducing potential servicing responsibility

conflicts. However, the robustness of the system can be improved provided coordination of the

responsibilities of the relay agents can be carefully designed. Another future research direction is

to consider incorporating multiple feedback regions, where the relay agent could select a specific
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feedback region to get state update based on a designed cost function to either minimize travelling

distance or control efforts.

In Chapter 3, a novel method that utilizes a switched systems approach to achieve unknown

region exploration for nonholonomic systems under intermittent state feedback is presented. The

approach relaxes the requirement of continuous state feedback and allows an agent to

intermittently explore a feedback-denied environment. State estimates are used in the tracking

controller to compensate for intermittence of state feedback. A controller design for a

nonholonomic vehicle with an exogenous disturbance is developed to ensure the agent can track a

desired trajectory in both position and orientation. The contributions in this chapter include

developing a set of stabilizing dwell-time conditions via a Lyapunov-based analysis. A maximum

dwell-time condition is developed to enable the nonholonomic agent exploring a feedback-denied

region for a pre-determined time period before requiring state feedback information. A

minimum-dwell time condition is developed to allow the nonholonomic agent to reduce the state

estimation error within a desired value. Future efforts could focus on combining the current result

with an existing localization method developed in [60] to use a monocular camera to localize the

pose of the nonholonomic agent. Specifically, the poses of the nonholonomic agent, a set of

images of landmarks, and the poses of landmarks are recorded and used as inputs to a DNN.

Similar to [60], the DNN architecture consists of a visual encoder, an attention module, and a

pose regressor. After the pre-training DNN phase, the outputs, i.e., pose of the nonholonomic

agent, can be used as state feedback information for the control objective. With the proposed

approach, the nonholonomic agent could use a monocular camera to obtain state feedback

information by keeping a landmark within the FOV while implementing the pre-trained DNN.

The nonholonomic agent will able to navigate the unknown environment using the developed

method while acquiring the state information by using the onboard monocular camera. Another

future research direction could be investigating a general method of optimal path planning while

satisfying the maximum and minimum dwell-time conditions, so the agent can efficiently explore

the unknown environment. Specifically, sampling-based algorithms (e.g., probabilistic roadmap,
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rapidly-exploring random tree) can be used to design the optimal path for the agent to track, and a

local planner using cubic Bezier curves can be used to compensate the nonholonomic constraint.

However, it is not clear how to incorporate the maximum and minimum dwell-time conditions

into the planning schemes. Therefore, some research efforts are required to achieve the proposed

plan.

Uncertainties in dynamical systems are often experienced in practical autonomous

applications, Chapter 4 developed a multiple timescale DNN-based adaptive control architecture

for general nonlinear dynamical systems with unknown drift dynamics and uncertain control

effectiveness matrix. The contributions in this chapter include a Lyapunov-based adaptive update

law is developed to estimate the unknown output-layer weights of the DNN and the uncertain

control effectiveness matrix in real-time. Simultaneous to real-time execution, data is collected

and offline function approximation methods are used to update estimates of the inner-layer

weights. Simulation examples showed promising results in improving the control performance

while guaranteeing the system is stable with the Lyapunov-based stability analysis. Future efforts

could focus on investigating dynamic NNs with feedback connections such as long short-term

memory (LSTM) to not only process static data points, but also process the entire sequences of

data. Using dynamic NNs to process and make predictions based on time series data while

guaranteeing the system stability using a Lyapunov-based method, the results could be impactful

for many practical applications. Furthermore, data-based learning methods developed in [50]-[52]

could be combined with the developed approach to achieve system identification. However, the

FE condition assumption made in the previous results might not be satisfied in the iterative

training processes for the DNN update. Therefore, additional research efforts are needed to

achieve the proposed objective.
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[15] D. Tolić and S. Hirche, Networked Control Systems with Intermittent Feedback. CRC
Press, 2017.

89



[16] H.-Y. Chen, Z. I. Bell, R. Licitra, and W. E. Dixon, “A Switched Systems Approach to
Vision-Based Tracking Control of Wheeled Mobile Robots,” in Proc. IEEE Conf. Decis.
Control, 2017, pp. 4902–4907.

[17] H.-Y. Chen, Z. Bell, P. Deptula, and W. E. Dixon, “A Switched Systems Approach to Path
Following with Intermittent State Feedback,” IEEE Trans. Robot., vol. 35, no. 3, pp.
725–733, 2019.

[18] H.-Y. Chen, Z. I. Bell, P. Deptula, and W. E. Dixon, “A Switched Systems Framework for
Path Following with Intermittent State Feedback,” IEEE Control Syst. Lett., vol. 2, no. 4, pp.
749–754, Oct. 2018.

[19] R. Sun, Z. Bell, F. Zegers, and W. E. Dixon, “A Switched Systems Approach to Unknown
Environment Exploration with Intermittent State Feedback for Nonholonomic Systems,” in
Proc. Am. Control Conf., 2020, pp. 5275–5280.

[20] F. Zegers, H.-Y. Chen, P. Deptula, and W. E. Dixon, “A Switched Systems Approach to
Consensus of a Distributed Multi-Agent System with Intermittent Communication,” in Proc.
Am. Control Conf., 2019, pp. 2372–2377.

[21] R. Sun, C. Harris, Z. Bell, and W. E. Dixon, “Relay-Explorer Approach for Multi-Agent
Exploration of an Unknown Environment with Intermittent Communication,” in Proc. IEEE
Conf. Decis. Control, 2020, pp. 5218–5223.

[22] R. T. M’closkey and R. M. Murray, “Exponential Stabilization of Driftless Nonlinear
Control Systems using Homogeneous Feedback,” IEEE Trans. Autom. Control, vol. 42,
no. 5, pp. 614–628, 1997.

[23] C. Samson, “Velocity and Torque Feedback Control of a Nonholonomic Cart,” in Adv.
Robot Control. Springer, 1991, pp. 125–151.

[24] W. E. Dixon, D. M. Dawson, E. Zergeroglu, and A. Behal, Nonlinear Control of Wheeled
Mobile Robots, ser. Lecture Notes in Control and Inf. Sci. Springer-Verlag London Ltd,
2000, vol. 262.

[25] S. Hutchinson, G. Hager, and P. Corke, “A Tutorial on Visual Servo Control,” IEEE Trans.
Robot. Autom., vol. 12, no. 5, pp. 651–670, Oct. 1996.

[26] N. Gans, G. Hu, J. Shen, Y. Zhang, and W. E. Dixon, “Adaptive Visual Servo Control to
Simultaneously Stabilize Image and Pose Error,” Mechatron., vol. 22, no. 4, pp. 410–422,
2012.

[27] N. R. Gans, G. Hu, and W. E. Dixon, “Keeping Multiple Objects in the Field of View of a
Single PTZ Camera,” in Proc. Am. Control Conf., St. Louis, Missouri, Jun. 2009, pp.
5259–5264.

[28] G. Hu, N. Gans, and W. E. Dixon, “Quaternion-Based Visual Servo Control in the Presence
of Camera Calibration Error,” Int. J. Robust Nonlinear Control, vol. 20, no. 5, pp. 489–503,
2010. [Online]. Available: http://ncr.mae.ufl.edu/papers/RNC10.pdf

90

http://ncr.mae.ufl.edu/papers/RNC10.pdf


[29] G. Hu, N. Gans, N. Fitz-Coy, and W. E. Dixon, “Adaptive Homography-Based Visual Servo
Tracking Control Via A Quaternion Formulation,” IEEE Trans. Control Syst. Technol.,
vol. 18, no. 1, pp. 128–135, 2010. [Online]. Available:
http://ncr.mae.ufl.edu/papers/CST10.pdf

[30] G. Hu, W. Mackunis, N. Gans, W. E. Dixon, J. Chen, A. Behal, and D. Dawson,
“Homography-Based Visual Servo Control with Imperfect Camera Calibration,” IEEE
Trans. Autom. Control, vol. 54, no. 6, pp. 1318–1324, 2009. [Online]. Available:
http://ncr.mae.ufl.edu/papers/tac09.pdf

[31] J. Chen, D. M. Dawson, W. E. Dixon, and V. Chitrakaran, “Navigation Function Based
Visual Servo Control,” Autom., vol. 43, pp. 1165–1177, 2007. [Online]. Available:
http://ncr.mae.ufl.edu/papers/auto07.pdf

[32] J. Chen, D. M. Dawson, W. E. Dixon, and A. Behal, “Adaptive Homography-Based Visual
Servo Tracking for Fixed and Camera-in-Hand Configurations,” IEEE Trans. Control Syst.
Technol., vol. 13, pp. 814–825, 2005. [Online]. Available:
http://ncr.mae.ufl.edu/papers/cst05.pdf

[33] G. Palmieri, M. Palpacelli, M. Battistelli, and M. Callegari, “A Comparison Between
Position-Based and Image-Based Dynamic Visual Servoings in the Control of a Translating
Parallel Manipulator,” J. Robot., vol. 2012, 2012.

[34] N. R. Gans and S. A. Hutchinson, “A Stable Vision-Based Control Scheme for
Nonholonomic Vehicles to Keep a Landmark in the Field of View,” in Proc. IEEE Int. Conf.
Robot. Autom., Roma, Italy, Apr. 2007, pp. 2196–2201.

[35] G. Lopez-Nicolas, N. R. Gans, S. Bhattacharya, C. Sagues, J. J. Guerrero, and
S. Hutchinson, “Homography-Based Control Scheme for Mobile Robots With
Nonholonomic and Field-of-View Constraints,” IEEE Trans. Syst. Man Cybern., vol. 40,
no. 4, pp. 1115–1127, Aug. 2010.

[36] S. Mehta, G. Hu, N. Gans, and W. E. Dixon, Robot Localization and Map Build. InTech,
2010, ch. A Daisy-Chaining Visual Servoing Approach with Applications in Tracking,
Localization, and Mapping, pp. 383–408. [Online]. Available:
http://ncr.mae.ufl.edu/papers/sid-chap.pdf

[37] G. Dubbelman and B. Browning, “COP-SLAM: Closed-Form Online Pose-Chain
Optimization for Visual SLAM,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1194–1213, Oct
2015.

[38] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A Versatile and Accurate
Monocular SLAM System,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1147–1163, Oct 2015.

[39] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source SLAM System for
Monocular, Stereo, and RGB-D Cameras,” IEEE Trans. Robot., vol. 33, no. 5, pp.
1255–1262, Oct 2017.

91

http://ncr.mae.ufl.edu/papers/CST10.pdf
http://ncr.mae.ufl.edu/papers/tac09.pdf
http://ncr.mae.ufl.edu/papers/auto07.pdf
http://ncr.mae.ufl.edu/papers/cst05.pdf
http://ncr.mae.ufl.edu/papers/sid-chap.pdf


[40] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual SLAM Algorithms: A Survey from 2010
to 2016,” IPSJ Trans. on Comput. Vis. and Appl., vol. 9, no. 1, p. 16, 2017.

[41] M. Karrer, P. Schmuck, and M. Chli, “CVI-SLAM Collaborative Visual-Inertial SLAM,”
IEEE Robot. and Autom. Lett., vol. 3, no. 4, pp. 2762–2769, Oct 2018.

[42] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553, pp.
436–444, 2015.

[43] Q. Teng and L. Zhanga, “Data Driven Nonlinear Dynamical Systems Identification using
Multi-Step CLDNN,” AIP Adv., 2019.

[44] F. L. Lewis, “Nonlinear Network Structures for Feedback Control,” Asian J. Control, vol. 1,
no. 4, pp. 205–228, 1999.

[45] P. M. Patre, W. MacKunis, K. Kaiser, and W. E. Dixon, “Asymptotic Tracking for Uncertain
Dynamic Systems via a Multilayer Neural Network Feedforward and RISE Feedback
Control Structure,” IEEE Trans. Autom. Control, vol. 53, no. 9, pp. 2180–2185, 2008.

[46] P. Patre, S. Bhasin, Z. D. Wilcox, and W. E. Dixon, “Composite Adaptation for Neural
Network-Based Controllers,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 944–950,
2010.

[47] W. Mackunis, F. Leve, P. Patre, N. Fitz-Coy, and W. E. Dixon, “Adaptive Neural
Network-Based Satellite Attitude Control in the Presence of CMG Uncertainty,” Aerosp. Sci.
Technol., vol. 54, pp. 218–228, 2016.

[48] G. V. Chowdhary and E. N. Johnson, “Theory and Flight-Test Validation of a
Concurrent-Learning Adaptive Controller,” J. Guid. Control Dynam., vol. 34, no. 2, pp.
592–607, Mar. 2011.

[49] G. Chowdhary, T. Yucelen, M. Mühlegg, and E. N. Johnson, “Concurrent Learning Adaptive
Control of Linear Systems with Exponentially Convergent Bounds,” Int. J. Adapt. Control
Signal Process., vol. 27, no. 4, pp. 280–301, 2013.

[50] A. Parikh, R. Kamalapurkar, and W. E. Dixon, “Integral Concurrent Learning: Adaptive
Control with Parameter Convergence using Finite Excitation,” Int. J. Adapt. Control Signal
Process., vol. 33, no. 12, pp. 1775–1787, Dec. 2019.

[51] Z. Bell, J. Nezvadovitz, A. Parikh, E. Schwartz, and W. Dixon, “Global Exponential
Tracking Control for an Autonomous Surface Vessel: An Integral Concurrent Learning
Approach,” IEEE J. Ocean Eng., vol. 45, no. 2, pp. 362–370, Apr. 2020.

[52] R. Sun, C. Riano-Rios, R. Bevilacqua, N. G. Fitz-Coy, and W. E. Dixon, “Cubesat Adaptive
Attitude Control with Uncertain Drag Coefficient and Atmospheric Density,” AIAA J. Guid.
Control Dyn., vol. 44, no. 2, pp. 379–388, 2021.

[53] G. Joshi, J. Virdi, and G. Chowdhary, “Asynchronous Deep Model Reference Adaptive
Control,” in Conf. on Robot Learn., 2021, pp. 984–1000.

92



[54] R. Sun, M. Greene, D. Le, Z. Bell, G. Chowdhary, and W. E. Dixon, “Lyapunov-Based
Real-Time and Iterative Adjustment of Deep Neural Networks,” IEEE Control Syst. Lett.,
vol. 6, pp. 193–198, 2021.

[55] F. Zegers, M. Hale, J. M. Shea, and W. E. Dixon, “Reputation-Based Event-Triggered
Formation Control and Leader Tracking with Resilience to Byzantine Adversaries,” in Proc.
Am. Control Conf., 2020, pp. 761–766.

[56] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002.

[57] J. H. Ramos, P. Ganesh, W. Warke, K. Volle, and K. Brink, “REEF Estimator: A Simplified
Open Source Estimator and Controller for Multirotors,” in 2019 IEEE Natl. Aerosp. and
Electron. Conf. (NAECON). IEEE, 2019, pp. 606–613.

[58] W. E. Dixon, A. Behal, D. M. Dawson, and S. Nagarkatti, Nonlinear Control of Engineering
Systems: A Lyapunov-Based Approach. Birkhauser: Boston, 2003.

[59] W. E. Dixon, Z. P. Jiang, and D. M. Dawson, “Global Exponential Setpoint Control of
Wheeled Mobile Robots: A Lyapunov Approach,” Autom., vol. 36, pp. 1741–1746, 2000.
[Online]. Available: http://ncr.mae.ufl.edu/papers/auto00.pdf

[60] B. Wang, C. Chen, C. X. Lu, P. Zhao, N. Trigoni, and A. Markham, “AtLoc: Attention
Guided Camera Localization,” in Proc. of the AAAI Conf. on Artif. Intell., vol. 34, no. 06,
2020, pp. 10 393–10 401.

[61] C. Samson, “Control of Chained Systems Application to Path Following and Time-Varying
Point-Stabilization of Mobile Robots,” IEEE Trans. Autom. Control, vol. 40, no. 1, pp.
64–77, 1995.

[62] F. L. Lewis, S. Jagannathan, and A. Yesildirak, Neural Network Control of Robot
Manipulators and Nonlinear Systems. Philadelphia, PA: CRC Press, 1998.

[63] B. E. Paden and S. S. Sastry, “A Calculus for Computing Filippov’s Differential Inclusion
with Application to the Variable Structure Control of Robot Manipulators,” IEEE Trans.
Circuits Syst., vol. 34, no. 1, pp. 73–82, Jan. 1987.

[64] D. Shevitz and B. Paden, “Lyapunov Stability Theory of Nonsmooth Systems,” IEEE Trans.
Autom. Control, vol. 39 no. 9, pp. 1910–1914, 1994.

[65] N. Fischer, R. Kamalapurkar, and W. E. Dixon, “LaSalle-Yoshizawa Corollaries for
Nonsmooth Systems,” IEEE Trans. Autom. Control, vol. 58, no. 9, pp. 2333–2338, Sep.
2013.

[66] R. Kamalapurkar, J. A. Rosenfeld, A. Parikh, A. R. Teel, and W. E. Dixon, “Invariance-like
Results for Nonautonomous Switched Systems,” IEEE Trans. Autom. Control, vol. 64, no. 2,
pp. 614–627, Feb. 2019.

[67] R. Sun, S. Bharadwaj, Z. Xu, U. Topcu, and W. E. Dixon, “Reactive Synthesis for
Relay-Explorer Consensus with Intermittent Communication.”

93

http://ncr.mae.ufl.edu/papers/auto00.pdf


BIOGRAPHICAL SKETCH

Runhan Sun received his bachelor’s degree in mechanical engineering in 2015 from the

University of California, Santa Barbara. He then worked as a mechanical engineer in Dimension

Robotics LLC. in Beijing for a year. He received his master’s degree in mechanical engineering in

2018 from the University of Florida. In the same year, he joined the Nonlinear Controls and

Robotics group under the supervision of Dr. Warren E. Dixon. He received his Ph.D. in

mechanical engineering from the University of Florida in 2022. His research focused on

nonlinear and adaptive control, switched systems, deep neural network control, and image-based

control systems.

94


	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	Background
	Outline of the Dissertation
	Preliminaries
	Notation
	Graphs


	RELAY-EXPLORER APPROACH FOR MULTI-AGENT EXPLORATION OF AN UNKNOWN ENVIRONMENT WITH INTERMITTENT COMMUNICATION
	System Model
	Relay Agent
	Explorer Agents

	Control Design
	Control Objective
	Control Development
	State Estimate

	Stability Analysis
	Relay Agent
	Explorer Agents

	Simulation
	Relay Agent
	Explorer Agents


	A SWITCHED SYSTEMS APPROACH TO UNKNOWN ENVIRONMENT EXPLORATION WITH INTERMITTENT STATE FEEDBACK FOR NONHOLONOMIC SYSTEMS
	System Model
	Control Design
	Control Objective
	Control Development
	State Estimate

	Stability Analysis
	Experiment

	LYAPUNOV-BASED REAL-TIME AND ITERATIVE ADJUSTMENT OF DEEP NEURAL NETWORKS
	System Dynamics
	DNN Approximation and Update Policy
	Control Design
	Control Objective
	Control Development

	Stability Analysis
	Simulation
	Transfer Learning & Random Weights


	CONCLUSIONS
	REFERENCES
	BIOGRAPHICAL SKETCH

