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Inspired by applications in which autonomous systems are tasked to operate in

a feedback-denied region, this dissertation focuses on the development of a novel

switched systems-based control framework to allow intermittent state feedback for

systems under such unfavorable scenarios. Specifically, the developed approach utilizes

a model of the controlled systems to predict the state of the systems when feedback is

unavailable. Inherently, the systems can be further divided into subsystems based on

feedback availability, where the behavior of each subsystem is unique. Based on the

design of nonlinear controllers, observers and reset maps, Lyapunov-based, switched

systems stability analysis methods are developed to determine the stabilizing dwell-time

conditions for the subsystems. The stability analysis provides a framework for achieving

operations in the presence of intermittent feedback.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Acquiring state feedback is at the core of ensuring stability in control designs. How-

ever, factors such as the task definition, operating environment, or sensor modality can

result in temporary loss of feedback for autonomous systems. For example, feedback

may be provided by sensors such as cameras which are limited by sensing distance

and field-of-view (FOV) constraints and are vulnerable to occlusions. Inspired by such

factors, previous literature have introduced various path-planning and control methods

seeking uninterrupted feedback (cf., [1–13]). However, the trajectory or behavior of

the system from such results are inherently constrained. For instance, results such

as [14–16] yield sharp-angled and non-smooth trajectories for nonholonomic systems,

such as wheeled mobile robots (WMR), to maintain a landmark in the camera’s FOV in

visual servoing applications. In addition, such designs for control or trajectory may not

be feasible for operations that are confined by the environment. Other applications be-

yond vision-based guidance control are also limited by this restriction. For example, the

operational range of an autonomous vehicle may be hindered in areas with limited feed-

back such as GPS denied regions, poor signal coverage, and communication-restricted

zones. Therefore, despite the best efforts of various solutions, loss of feedback can still

occur for some sensor modalities and environmental factors.

In this dissertation, rather than trying to constrain the system to ensure continuous

feedback is available, a novel framework is developed using a switched systems

approach to relax this constraint and allow for autonomous operations under the

influence of intermittent feedback availability. Navigational tasks can still be potentially

achieved when feedback is not available by utilizing a state estimate to predict the

state during feedback-denied periods. Consequently, the effect of intermittent feedback

divides the system into stable and unstable subsystems for periods with and without
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state feedback, respectively. Specifically, even if the system is exponentially stable

when state feedback is available, the error dynamics are unstable without feedback,

and therefore the overall system may diverge in the limit if the feedback is denied for

sufficiently long periods of time. By leveraging switched systems theory, sufficient

conditions can be developed to maximize the time that the system can spend outside

without state feedback, while guaranteeing the stability of the overall system.

1.2 Literature Review

To compensate for intermittent feedback, a method for state estimation is required

for periods of time when feedback is unavailable. Stability considerations are also

important to ensure the estimation error is bounded. The networked control systems

community has investigated problems such as [17–20] where communication rates

are limited, i.e., a reduced frequency in data transmission. Typically in these results,

state feedback updates are event-triggered, where an independently designed decision

maker is used to broadcast sensor information between systems whenever prescribed

conditions are reached. Other works, such as [21–23], model data loss as random

missing outputs and noisy measurements, where stability is proven in a stochastic

sense. In each case, state estimates are propagated by a model of the controlled

system during the periods when the state measurement is missing. In this dissertation,

the system must be physically within a feedback-available region to receive state

information, introducing a unique challenge where the system’s stability ultimately

depends on its ability to return to the feedback-available region before the prescribed

conditions are reached.

Stability of systems that experience random state feedback has been analyzed in

works such as [22,24–45]. In such results, the intermittent loss of measurement is mod-

eled as a random Bernoulli process with a known probability. Resulting trajectories are

then analyzed in a probabilistic sense, where the expected value of the estimation error
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is shown to converge asymptotically. In addition to the aforementioned physical con-

straint on feedback availability, the framework developed in this dissertation examines

the behavior of the actual tracking and estimation errors where the state measurements

are completely denied for a prescribed time-frame.

Another state estimation application domain is visual-odometry. Methods for

systems using imaging sensors for state feedback have been developed to relax the

requirement of keeping landmarks in the FOV (cf., [46] and [47]). In [46], the topology

of multiple landmarks are related via a daisy-chaining approach where new landmarks

are mapped onto the initial world frame and are used to provide state feedback after

initial landmarks have left the FOV. In [47], a method is presented where feature points

in the background are related to a landmark in a similar fashion to provide state estimate

for a WMR to navigate around a landmark without constantly keeping it in the FOV.

However, the state estimate in both results are treated as state feedback, and the

effects from measurement noise and disturbances are not discussed. Therefore, daisy-

chaining-based approaches may provide local state feedback estimates and may well

in an ideal or simulated scenario; however, the accuracy of the feedback eventually

degrades and diverges in many cases, such as those with measurement noise and

disturbances in the dynamics. This phenomenon is notable in conventional approaches

to the simultaneous localization and mapping (SLAM) problem, such as in [48–50],

which use relationships between features or landmarks to simultaneously estimate the

pose (i.e., position and orientation) of the sensor and the landmarks with respect to

the world frame. For monocular or vision-based sensors, a feature-rich environment

with sufficient measurements are typically required for SLAM methods to perform well.

Similar to the daisy-chaining approaches, a well-known and common drawback with

SLAM algorithms is the drift in estimate due to the accumulation of measurement noise

over time (cf., [51, 52]). The common practice to overcome the error accumulation

is through a global loop closure process that constantly searches for potential loop
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closures to optimize the estimates [53, 54]. However, achieving a global loop closures is

computationally heavy and a bound on the estimate drift is not guaranteed. Motivated

by these drawbacks, the work in this dissertation presents sufficient conditions that

are derived via a Lyapunov-based switched systems analysis to ensure the global

loop closure of the state estimates are achieved, guaranteeing the boundedness of

the estimate errors by a desired bound. While this framework may be integrated with

existing SLAM algorithms, the development in this dissertation utilizes a dead-reckoning

approach to demonstrate the worst case scenario, where only system models are

used to predict the state estimates when state feedback is not available. Applications

that may potentially benefit from this approach include underwater operations where

submerged vehicles must resurface to acquire position information via the Global

Positioning System (GPS) occasionally and exploration of regions where absolute

positioning systems have not been previously established.

As discussed in [55], arbitrary switching between stable subsystems may potentially

lead to instability. The strategy for proving stability for slow switching between stable

subsystems typically involves developing switching conditions to stabilize the overall

system. The results in [55] shows that overall stability can be proven if a common Lya-

punov function exists for all subsystems so that the time derivative of the Lyapunov

function is upper bounded by a common negative definite function. However, multiple

subsystem-specific Lyapunov functions may also be used in cases where a common

Lyapunov function cannot be determined. These Lyapunov functions may be discontinu-

ous and discrete jumps may occur over switching interfaces, requiring the enforcement

of switching conditions to ensure the respective subsystems are decreasing over a cycle

of activation, and switching conditions must be imposed on the subsystems to enforce

a decrease in the subsystem-specific Lyapunov functions over a cycle of successive

activation of the respective subsystems. As described in [55], the switching conditions

typically manifest as (average) dwell-time conditions, which specify the duration for
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which each subsystem must remain active. In [56], a stability analysis is provided for

switched systems with stable and unstable linear time invariant (LTI) subsystems, and

an average dwell-time condition is developed. Similarly, the authors in [57] developed

dwell-time conditions for switched systems with stable and unstable nonlinear subsys-

tems. In [58], the authors developed an observer to estimate the depths of feature points

in a image from a monocular camera and use a predictor to propagate the state esti-

mates when the features are occluded or outside the FOV. Based on the error system

formulation, the subsystem for the observer is stable, while the subsystem for the pre-

dictor is unstable. An average dwell time condition is developed to ensure the stability

of the switched system. However, dwell-time conditions in these results typically require

the stable subsystems to be activated longer than the unstable subsystems, as indicated

in [56].

Motivated by past literature and the prevalent nature of the problem, this disserta-

tion aims to develop a framework for achieving control objectives despite intermittent

loss of feedback. Unlike previous results, the focus in this work is to prolong and maxi-

mize the amount of time a system can spend in a feedback-denied region. Based on a

Lyapunov-based, switched systems analysis, sets of stabilizing dwell time conditions are

developed for stable and unstable subsystems to ensure stability for the overall system.

1.3 Outline of the Dissertation

In Chapter 2 and the development in [59], a novel control method is presented to

relax the aforementioned landmark visibility constraint. In contrast to [47], a switched

systems analysis is used to develop a set of dwell time conditions based on landmark

visibility to ensure stability of the overall observer. Similar to [58], the state estimate

update, governed by a nonlinear observer, is shown to be stable when the landmark is

in the FOV. When the landmark is not in the FOV, a predictor is utilized to update the

state estimates. Specifically, a Lyapunov-based stability analysis is used to determine

the minimum and maximum periods of time the landmark can be in and out of the
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FOV, respectively. To achieve a trajectory tracking objective, a controller similar to the

development in [60] is designed to maintain stability through intermittent periods when

the landmark leaves the FOV. The stability analysis indicates the controller ensures

the tracking error is GUUB despite intermittent landmark sensing. A simulation and an

experiment are provided using a Bézier curve trajectory design, inspired by results such

as [61–64], to demonstrate the performance of the approach.

In Chapter 3 and [65], dwell-time conditions and a control method is developed

for a generic class of holonomic dynamic systems. The novelty of this chapter is the

generalization of the developed approach to allow a system to temporarily leave a

feedback-available region and track a trajectory without state feedback. A simulation

is provided for a nonlinear dynamical system, and an experiment is performed on a

quadcopter to illustrate the robustness and stability of the developed scheme.

In Chapter 4 and [66], a generalized framework for systems operating under

intermittent state feedback is investigated. The development in this chapter improves

on the result of Chapter 3 to eliminate any alteration to the design and stability analysis

when using an existing observer and controller in the presence of intermittent state

feedback. In addition, the development in Chapter 4 also allows for the use of reset

maps when the system is inside a feedback-available region, yielding a much better

performance than the results in Chapter 3. Two experiments are performed. One

experiment uses an observer to yield a continuous state estimate and the other utilizes

reset maps for comparison.

In Chapter 5, a method for assisted path-following in a feedback-denied region

is presented, where a relay agent intermittently updates the state estimation for an

exploring agent operating in the feedback-denied region by traveling back and forth

from the feedback-available region. Expanding on the framework developed in Chapter

4, unknown drift dynamics are assumed for the relay agent. Specifically, a neural

network is utilized to approximate the uncertainty in the dynamics. Similar to previous
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chapters, dwell-time conditions are derived for both agents, and through a Lyapunov-

based, switched systems analysis, the path-following error is shown to be bounded by a

user-defined parameter.

1.4 Notation

In the following, R denotes the set of real numbers, Rn and Rn×m denote the sets

of real n-vectors and n ×m matrices, and R≥a and R>a denote the sets of real numbers

greater than or equal to a and strictly greater than a, respectively, where a ∈ R. The

n × n identity matrix is denoted by In. The n × m matrix of zeros and ones is denoted

by 0n×m and 1n×m, respectively. The notation (·)T denotes the transpose of a matrix or

vector.
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CHAPTER 2
A SWITCHED SYSTEMS APPROACH TO VISION-BASED TRACKING CONTROL OF

WHEELED MOBILE ROBOTS

Conventional methods for image-based guidance, navigation, and control of a WMR

require continuous, uninterrupted state feedback at all times. However, tracked features

may be lost due to occlusions or the trajectory of the WMR. In this chapter and [59],

a set of dwell-time conditions that can be used for trajectory design are developed to

relax the constant visibility constraint, while maintaining the ability to self-localize and

track a desired trajectory. The use of a predictor for state estimates when landmark

features are not visible helps to extend the time before image feedback of landmark

features is required. Using a Lyapunov-based switched systems analysis, maximum and

minimum dwell-time conditions are derived for periods when features are visible or not.

A simulation and an experiment are performed with a trajectory formed by Bézier splines

to demonstrate a globally uniformly ultimately bounded trajectory tracking result despite

intermittent measurements.

2.1 System Model

The kinematic model for a unicycle with an exogenous disturbance is

q̇(t) = S(q)v(t) + d(t) (2–1)

where q(t), q̇(t) ∈ R3 are defined as

q(t) ,

[
x(t) y(t) θ(t)

]T
, q̇(t) ,

[
ẋ(t) ẏ(t) θ̇(t)

]T
, (2–2)

where x(t), y(t), θ(t) ∈ R denote the linear position and orientation of the WMR,

respectively, and ẋ(t), ẏ(t), θ̇(t) ∈ R denote the Cartesian components of the linear

velocity and angular velocity, respectively. The matrix S(q (t)) ∈ R3×2 is defined as
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S(q (t)) ,


cos θ (t) 0

sin θ (t) 0

0 1

 , (2–3)

and the input velocity vector v(t) ∈ R2 is defined as

v(t) ,

[
v1(t) v2(t)

]T
=

[
v1(t) θ̇(t)

]T
, (2–4)

where v1(t), v2(t) ∈ R denotes the input linear and angular velocity of the WMR,

respectively. The disturbance d(t) ∈ R3 is defined as

d(t) ,

[
d1(t) d2(t) d3(t)

]T
, (2–5)

where ‖d(t)‖ ≤ d̄ ∈ R≥0. A reference trajectory for the WMR is generated by

q̇d(t) , S(qd (t))vd(t), (2–6)

where qd(t) , [xd(t) yd(t) θd(t)]
T ∈ R3 denotes the desired Cartesian position and

orientation with respect to time, and vd , [vd1 vd2]T ∈ R2 denotes the desired linear and

angular velocity. The desired Cartesian trajectory and the time-varying velocity signal

are constructed to ensure that vd(t), v̇d(t), qd(t), q̇d(t) ∈ L∞∀t, and that the starting

and ending pose must allow for image feedback of the landmark features. Additionally,

the desired trajectory must satisfy the dwell-time conditions developed in subsequent

analysis.

Based on the WMR kinematic model and subsequent stability analysis, when image

feedback is present an image-based observer is designed as

˙̂q(t) , S(q̂ (t))v(t) +R(t), (2–7)

19



where q̂(t) ,
[
x̂(t) ŷ(t) θ̂(t)

]T
∈ R3 denotes the position and orientation estimates,

respectively, R(t) , [r1(t) r2(t) r3(t)]T ∈ R3 is a subsequently designed update term.

When the landmark features are not available, the state estimates are updated by a

predictor designed as

˙̂q(t) , proj(S(q̂ (t))v(t)), (2–8)

where proj(·) is a smooth projection operator (e.g. [67], [68]).

Assumption 2.1. The states, q(t), can be obtained directly and instantly from image

processing. Methods to obtain the states include geometric reconstruction approach

with a known distance between two features, as described in [69–71], and fiducial

marker systems such as [72,73].

2.2 State Estimate and Control Objective

The relaxation of the constant landmark visibility constraint implies that landmark

features become unavailable when the camera is required to point away from the

landmark, and hence, cannot be used to generate state feedback when the landmark is

not visible. When the landmark returns to the FOV, state feedback is assumed available

under Assumption 2.1. Due to intermittent state feedback, the tracking error is defined

based on state estimate as

e1(t) ,


x̃(t)

ỹ(t)

θ̃(t)

 =


x̂(t)− xd(t)

ŷ(t)− yd(t)

θ̂(t)− θd(t)

 . (2–9)

To facilitate the subsequent development, a state transformation is defined similar to [60]

as
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
w(t)

z1(t)

z2(t)

 ,


−θ̃(t) cos θ̂(t) + 2 sin θ̂(t) −θ̃(t) sin θ̂(t)− 2 cos θ̂(t) 0

0 0 1

cos θ̂(t) sin θ̂(t) 0

 e1 (t) , (2–10)

where w (t) ∈ R and z (t) , [z1 (t) z2 (t)]T ∈ R2 are the auxiliary tracking error variables.

To quantify the state estimation objective, let the state estimate error, e2 (t) ∈ R3 be

defined as,

e2(t) ,


x(t)− x̂(t)

y(t)− ŷ(t)

θ(t)− θ̂(t)

 . (2–11)

2.2.1 Control Development

Taking the time derivative of (2–10) and utilizing (2–1)-(2–6), the open-loop system

of the transformed state error can be expressed as [60]

ẇ(t) = uT (t)JT z(t) + f(t), (2–12)

ż(t) = u(t),

where J ∈ R2×2 is defined as

J ,

 0 −1

1 0

 , JT = −J, JTJ = I2x2, (2–13)

and f(t) ∈ R is defined as

f(t) , 2 (vd2(t)z2(t)− vd1(t) sin z1(t)) + 2
(

sin
(
θ̂(t)

)
r1(t)− cos

(
θ̂(t)

)
r2(t)

)
. (2–14)
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The auxiliary controller u(t) = [u1(t) u2(t)]T ∈ R2 is defined as

u(t) , T−1(t)

 v1(t)

v2(t) + r3(t)

−
 vd2(t)

vd1(t) cos θ̃(t)−
(

cos
(
θ̂(t)

)
r1 +

(
sin θ̂(t)

)
r2

)
 ,

(2–15)

where T (t) ∈ R2×2 is defined as

T (t) ,


(
x̃(t) sin θ̂(t)− ỹ(t) cos θ̂(t)

)
1

1 0

 , (2–16)

and hence, (2–4) can be expressed as

v(t) = T (t)u(t) +

 vd1(t) cos θ̃(t) + vd2(t)
(
x̃(t) sin θ̂(t)− ỹ(t) cos θ̂(t)

)
− L(t)

vd2(t)− r3(t)

 , (2–17)

where L(t) ∈ R is defined as

L(t) ,
(

cos
(
θ̂(t)

)
r1(t) + sin

(
θ̂(t)

)
r2(t)

)
. (2–18)

To facilitate the subsequent development, let z̃(t) ∈ R2 be defined as

z̃(t) , zd(t)− z(t), (2–19)

where zd(t) ∈ R2. Based on the open-loop error system in (2–12) and utilizing (2–

13)-(2–16), the auxiliary controller in [60] can be used to show z̃(t), w(t) are globally

exponentially stable, and hence, e1(t) is globally uniformly ultimately bounded. Specifi-

cally, the auxiliary controller in [60] is designed as
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u(t) , ua(t)− k2z(t). (2–20)

The auxiliary control term ua(t) ∈ R2 is defined as

ua(t) ,

(
k1w(t) + f(t)

δ2
d(t)

)
Jzd(t) + Ω1(t)zd(t), (2–21)

where żd(t) is defined as

żd(t) ,
δ̇d(t)

δd(t)
zd(t) +

(
k1w(t) + f(t)

δ2
d(t)

+ w(t)Ω1(t)

)
Jzd(t), z

T
d (0)zd(0) = δ2

d(0), (2–22)

and Ω1(t) ∈ R and δd(t) ∈ R are defined as

Ω1(t) , k2 +
δ̇d(t)

δd(t)
+ w(t)

(
k1w(t) + f(t)

δ2
d(t)

)
, (2–23)

δd(t) , α0 exp(−α1t) + ε1, (2–24)

where k1, k2, α0, α1, ε1 ∈ R are positive, constant control gains. It was shown in [60]

that zd(t)T zd(t) = δ2
d(t). Substituting in (2–20) and (2–21) into (2–12), the closed-loop

tracking error can be expressed as

 ẇ(t)

˙̃z(t)

 =

 uTa (t)Jz̃(t)− k1w(t)

−k2z̃(t) + w(t)Jua(t)

 . (2–25)

2.2.2 State Estimate

Consider the family of systems

ė2(t) , fp (t, q(t), q̂(t)) , (2–26)
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where fp : [0,∞) × R3 × R3 → R3, p ∈ {a, u}, a is an index referring to when the

features are visible and u is an index referring to the conditions when features are not

visible. After taking the time derivative of (2–11) and substituting in (2–7) and (2–8) for

the periods with and without state feedback, respectively, the family of systems in (2–26)

can be expressed as

fp (t, q(t), q̂(t)) =


S(q(t))v(t) + d(t)− S(q̂(t))v(t)−R(t), p = a,

S(q(t))v(t) + d(t)− proj(S(q̂(t))v(t)), p = u.

(2–27)

When features are visible, R(t) is designed as

R(t) = k3e2(t) + d̄sgn(e2(t)). (2–28)

Substituting (2–28) into (2–27), the family of systems described in (2–26) can be

expressed as

ė2(t) =


−k3e2(t) + d(t)− d̄sgn(e2(t)), p = a,

S(q(t))v(t)− proj (S(q̂(t))v(t)) + d(t), p = u.

(2–29)

2.3 Stability Analysis

To facilitate further analysis for the switched systems, let tai ∈ R>0 denote the

time of the ith instance at which features are visible, and tui ∈ R>0 denotes the time of

the ith instance when the features are not visible, where n ∈ N. The dwell-time in the

ith activation of the subsystem a and u is then defined as ∆tai , tui − tai ∈ R>0 and

∆tui , tai+1 − tui ∈ R>0, respectively. Additionally, consider two candidate Lyapunov

functions for the tracking error and the estimation error, respectively as

V1(w (t) , z̃ (t)) ,
1

2
w2 (t) +

1

2
z̃T (t) z̃ (t) , (2–30)
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V2(e2 (t)) ,
1

2
eT2 (t) e2 (t) , (2–31)

and a switched Lyapunov function for the switched subsystems is designed to capture

both the estimation and control objective as

Vσ (ζ (t)) , V1(w (t) , z̃ (t)) + V2(e2 (t)), (2–32)

where ζ (t) ,
[
w (t) , z̃T (t) , eT2 (t)

]T . To derive the stabilizing dwell-time conditions, a

maximum bound VM ∈ R can be arbitrarily selected based on the desired tolerance for

Vσ (ζ (t)) in the worst case, such that

Vσ(ζ (t)) ≤ VM , ∀t ∈ [tui , t
a
i+1), ∀i, (2–33)

and an arbitrary lower threshold on Vσ(ζ (t)), VT ∈ R where VT < VM such that

Vσ(ζ (tui )) ≤ VT , ∀i. (2–34)

Theorem 2.1. The switched system generated by the family of systems described by

(2–25), (2–29), and a piece-wise constant, right continuous switching signal σ : [0,∞)→

p ∈ {a, u} is globally uniformly ultimately bounded provided that the switching signal,

controlled by a desired trajectory, satisfies the minimum visibility dwell-time condition

∆tai ≥
−1

λs
ln

(
min

(
VT

Vσ(ζ (tai ))
, 1

))
, (2–35)

and the maximum loss of visibility dwell-time condition

∆tui ≤
1

λu
ln

(
VM + ε

λu

Vσ(ζ (tui )) + ε
λu

)
, (2–36)

where λs, λu ∈ R are subsequently defined, known positive constants.

Proof. From [60], the Lyapunov function in (2–30) can be used to show z̃ (t) , w (t) are

globally exponentially stable, regardless of the visibility of the landmark. Specifically,
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V̇1(w (t) , z̃ (t)) ≤ −λV1(w (t) , z̃ (t)), ∀t, (2–37)

where λ , 2min (k1, k2) ∈ R>0. Similar to the analysis in [58], the Lyapunov function in

(2–31) can be used to show e2 (t) is globally exponentially stable when the landmark is

visible and exhibits an exponential growth rate otherwise. Specifically,

V̇2(e2 (t)) ≤


−2k3V2((e2 (t))), t ∈ [tai , t

u
i ),

λuV2((e2 (t))) + ε, t ∈ [tui , t
a
i+1),

∀i, (2–38)

where λu , 2c+ 1 ∈ R>0, ε , 1
2
d̄2 ∈ R>0 is a constant, and c ∈ R>0 is a positive constant

bound.

Taking the time derivative of (2–32) and substituting in (2–25) and (2–29) yield

V̇σ(ζ (t)) ≤


−λsVσ(ζ (t)), t ∈ [tai , t

u
i ),

λuVσ(ζ (t)) + ε, t ∈ [tui , t
a
i+1),

∀i ∈ N, (2–39)

where λs , 2min (k1, k2, k3) ∈ R>0. The solutions to (2–39) for the two subsystems are

given as

Vσ(ζ (t)) ≤ Vσ(ζ (tai ))e
−λs(t−tai ), t ∈ [tai , t

u
i ),

Vσ(ζ (t)) ≤ Vσ(ζ (tui ))e
λu(t−tui ) − ε

λu

(
1− eλu(t−tui )

)
, t ∈ [tui , t

a
i+1), (2–40)

for all i.

Clearly, when the landmark is visible, the bound on the switched Lyapunov function,

containing states w (t) and z̃ (t) is globally exponentially stable, therefore e1(t) is globally

uniformly ultimately bounded. Since e2(t) is globally exponentially stable, the tracking

error between the true state and the desired trajectory, q (t)−qd (t) = e1 (t)+e2 (t), is also

globally uniformly ultimately bounded. From (2–33), the maximum dwell-time condition
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for each of the i unobservable periods is
(
Vσ(ζ (tui )) + ε

λu

)
eλu∆tui − ε

λu
≤ VM , and hence,

∆tui ≤
1

λu
ln

(
VM + ε

λu

Vσ(ζ (tui )) + ε
λu

)
,

and from (2–34),

∆tai ≥
−1

λs
ln

(
min

(
VT

Vσ(ζ (tai ))
, 1

))
.

Since Vσ(ζ (t)) ≤ Vσ(ζ (tai ))e
−λs(t−ta1) when i = 1 implies exponential convergence,

and that Vσ(ζ (t)) ≤ Vσ(ζ (tai ))e
−λs(t−tai ) ≤ Vσ(ζ (tai )) ≤ VM , p = a and Vσ(ζ (t)) ≤

Vσ(ζ (tui ))e
λu(t−tui ) − ε

λu

(
1− eλu(t−tui )

)
≤ Vσ(ζ

(
tai+1

)
) ≤ VM , p = u for all i > 1, then

Vσ(t) ≤ VM , ∀t > tu1 . (2–41)

Hence the switched system generated by (2–25) and (2–29) is globally uniformly

ultimately bounded as depicted in Figure 2-1.

Remark 2.1. A lower threshold on Vσ (ζ (t)) enforces the convergence of ‖e2 (t) ‖ to an

arbitrary small value. The threshold can be selected arbitrarily small, but the resulting

minimum dwell-time condition in (2–35) becomes larger as VT approaches zero. By

choosing a VT very close to VM , the landmark is allowed to leave the FOV almost

immediately upon entering the FOV, which implies that Vσ (ζ (t)) can potentially be very

close to VM and result in a very small maximum dwell-time condition in (2–36). Hence,

the selection on VT varies depending on the application.

2.4 Simulation

A simulation is performed to verify the robustness of the controller design to the loss

of state feedback from the imaging signal. The initial and the desired ending states are

selected as

qinitial =

[
0 0 0

]T
, qdesired =

[
3 1.0 −π

]T
.

The initial state and state estimate for the WMR is
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Figure 2-1. Representative illustration for the evolution of Vσ (ζ (t)) during the interval[
tai , t

a
i+2

]
.
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q (0) =

[
0 0 0

]T
, q̂ (0) =

[
0 0.3 0

]T
.

The disturbance introduced to the system is a 0 mean normal distribution with variance

0.5 and a cut-off at ±1.5, and the viewing angle of the camera is π
3

radians, centered

about the x-axis of the WMR. A cubic Bézier curve is utilized as the desired trajectory

because Bézier curves are continuously differentiable, can specify initial and final

position and orientation through control points, and can be parameterized with respect

to the dwell-time conditions. The gains for the observer and the controller are selected

as

k1 = 10, k2 = 10, k3 = 20, α0 = 2, α1 = 1, ε1 = 0.01.

The initial values for zd (t) are selected as

zd (0) =

[
0.01 0.01

]T
.

Based on the simulation, the system enters the unstable region when the landmark

leaves the simulated FOV and re-enters the stable region once the landmark returns

to the FOV. Figure 2-4 indicates that, the state estimation error ‖e2 (t) ‖ converges

exponentially to zero when the landmark is visible, and the tracking error ‖e1 (t) ‖ is

globally uniformly ultimately bounded between the state estimate and the desired

trajectory, as shown in Figure 2-3. When the landmark is not visible, ‖e1 (t) ‖ remains

globally uniformly ultimately bounded since the controller in (2–17) is enforcing the state

estimate q̂ (t) to track the desired trajectory qd (t). However, ‖e2 (t) ‖ grows when state

feedback is not available. As the landmark reappears in the FOV, ‖e2 (t) ‖ converges to

zero exponentially, implying that q̂ (t) − q (t) → 0 exponentially. Since q deviated from

qd (t) during the period without state feedback, ‖e1 (t) ‖ increases as q̂ (t) − q (t) → 0

and converges as the controller drives q̂ (t) to qd (t). From the simulation, it is clear that
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the switched systems approach presented in this chapter is robust to intermittent state

feedback and disturbances from the system kinematics, and thus a smooth trajectory

can be designed to navigate the WMR without keeping the landmark in the FOV at all

times, as depicted in Figure 2-2.

2.5 Experimental Results

An experimental is performed to demonstrate the control scheme. For the ex-

periment, a Clearpath Robotics Turtlebot 2 with a Kobuki base is used. A landmark

is created by a pentagon prism with fiducial markers, developed by [72], to the sides,

and placed at the origin. A Bézier spline joint by six cubic Bézier curves has a initial

position at (−2, 0) and a final position at (2, 0). The goal of this experiment is to regulate

the WMR to the final position by viewing the landmark and updating the pose informa-

tion while tracking the Bézier spline. The gains for the observer and the controller are

selected as

k1 = 0.2, k2 = 0.8, k3 = 1.2, α0 = 0.3, α1 = 0.2, ε1 = 0.1.

The initial values for zd (t) are selected as

zd (0) =

[
0.2828 0.2828

]T
.

Figure 2-5 represents the tracking result of this experiment, and Figures 2-6 and 2-7

shows evolution of e1 (t) and e2 (t) over time, respectively. In Figure 2-5, large tracking

error is apparent when the predictor is active. An explanation for this behavior is that

there exists a mismatch between the commanded and actual system velocities due

to slip conditions and the controller board’s ability to track the reference velocities.

However, when the WMR senses the landmark between 18 to 21 seconds and 38 to 43

seconds, the state estimate is regulated towards the true state as indicated by Figure 2-

7. As a result, the WMR is able to correct the tracking error and drive in reverse towards

the desired trajectory. In Figure 2-6 and 2-7, predictor is activated for short periods of
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Figure 2-2. The trajectory tracking result. The green and red trajectories indicate
whenever the observer and predictor are activated, respectively. When the
predictor is active, the WMR diverges from the desired trajectory because of
the disturbance. However, when the landmark returns to the FOV, regulation
of the tracking error is achieved.
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Figure 2-3. State estimate tracking error. The estimate tracking error is regulated when
the predictor is activated because the update law propagates the state
estimate using a model of the WMR. When the observer is activated at 2.6
secs, the estimate initially converges towards the true state and eventually
converges to the desired trajectory along with the true state.
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Figure 2-4. State estimation error. The estimate is exponentially regulated to the true
state whenever the observer is active and diverges whenever the predictor is
active.

time during 18 to 21 seconds and 38 to 43 seconds because the fiducial markers are

lost to image blurring despite being in the camera’s FOV.

2.6 Summary

A set of maximum and minimum dwell-time conditions is developed from a

Lyapunov-based, switched systems analysis to ensure a globally uniformly ultimately

bounded error of trajectory tracking for WMR’s despite intermittent state feedback. The

dwell-time conditions allow for a more flexible trajectory design, which can purposefully

turn away from the landmark in order to achieve a smoother path and wider range of

operation. A simulation utilizing a Bézier splines trajectory that satisfies the dwell-time

conditions is performed to illustrate the robustness of the approach.
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Figure 2-5. The trajectory tracking result. The green and red trajectories indicate
whenever the observer and predictor are activated, respectively. When the
predictor is active, the WMR diverges from the desired trajectory because of
the disturbance. However, when the landmark returns to the FOV, the WMR
adjusts its course to compensate for the accumulated error.
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Figure 2-6. State estimate tracking error. During the periods of time between 5 to 18
seconds and 21 to 38 seconds, the estimate tracking error is regulated
because the predictor update law propagates the state estimate using a
model of the WMR. When the observer is active, the state estimate is
regulated towards the true state, and hence, the estimate tracking error may
increase.
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Figure 2-7. State estimation error. When the predictor is active for a prolonged period of
time, the stability of the estimation error is not guaranteed. When the
observer is active, estimation error is regulated.
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CHAPTER 3
A SWITCHED SYSTEMS APPROACH TO PATH-FOLLOWING WITH INTERMITTENT

STATE FEEDBACK

In this chapter, a novel control method is provided for a holonomic system that

exhibits temporary loss of state feedback. Unlike the previous chapter, the problem

considered in this chapter involves a desired (primary) trajectory completely outside

the feedback region. Based on the development in [65], an observer is used while state

feedback is available to reduce estimation error, and a predictor is utilized to propagate

the estimates while state feedback is unavailable. Based on the resulting subsystems,

maximum and minimum dwell time conditions are developed via a Lyapunov-based

switched systems analysis to relax the constraint of maintaining constant feedback. The

dwell times assist in designing a switching trajectory that ensures overall system stability

while tracking a desired primary trajectory outside a feedback region. A scheme for

designing a switching trajectory with smoother-step transition functions is provided, and

simulation results are presented to demonstrate the performance of control design.

3.1 System Model

Consider a dynamic system subject to an exogenous disturbance as

ẋ(t) = f(x(t), t) + v(t) + d(t), (3–1)

where x(t), ẋ(t) ∈ Rn denote a generalized state and its time derivative, f : Rn×R→ Rn

denotes the locally Lipschitz drift dynamics, v(t) ∈ Rn is the control input, and d(t) ∈ Rn

is the exogenous disturbance where the Euclidean norm is bounded as ‖d(t)‖ ≤ d̄ ∈ R≥0

with n ∈ N and t ∈ R≥0.

3.2 State Estimate and Control Objective

The overall objective is to achieve path following under intermittent loss of feedback.

Specifically, a known feedback region is denoted as a closed set F ⊂ Rn, where the

complement region where feedback is unavailable is denoted by F c. That is, feedback is

available when x(t) ∈ F and unavailable when x(t) ∈ F c.
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A desired path is denoted as xd ⊂ F c. It is clear that state feedback is unavailable

while attempting to follow xd, and hence the system must return to the feedback region

F intermittently to maintain stability. Therefore, a switching trajectory, denoted by

x̄d(t) ∈ Rn, is designed to overlay xd while adhering to the subsequently developed dwell

time constraints. To quantify the ability of the controller to track the switching trajectory,

the tracking error e(t) ∈ Rn is defined as

e(t) , e1(t) + e2(t), (3–2)

where the estimate tracking error e1(t) ∈ Rn is defined as

e1(t) , x̂(t)− x̄d(t), (3–3)

and the state estimation error e2(t) ∈ Rn is defined as

e2(t) , x(t)− x̂(t), (3–4)

where x̂(t) ∈ Rn is the state estimate.

Based on (3–3) and (3–4), the control objective is to ensure that e1(t) and e2(t)

converge, and therefore e(t) will converge. To facilitate the subsequent development, let

the composite error vector be defined as z(t) ,

[
eT1 (t) eT2 (t)

]T
.

Assumption 3.1. The system is initialized in a feedback region.

3.3 Controller and Update Law Designs

To facilitate the subsequent analysis, two subsystems are defined to indicate when

the states are inside or outside the feedback region. When x(t) ∈ F , an exponentially

stable observer can be designed using various approaches (e.g., observers such
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as [58, 74, 75] could be used). The subsequent development is based on an observer

update law designed as

˙̂x(t) = f(x̂(t), t) + v(t) + vr(t), (3–5)

where vr(t) ∈ Rn is a high-frequency sliding-mode term designed as 1

vr(t) = k2e2(t) + d̄sgn(e2(t)), (3–6)

where k2 ∈ Rn×n is a constant, positive definite gain matrix. When x(t) ∈ F c, the state

estimate is updated by a predictor designed as

˙̂x(t) = f(x̂(t), t) + v(t). (3–7)

Since the state is required to transition between F and F c, a switched systems

analysis is used to investigate the stability of the overall switched system. To facilitate

this analysis, the error systems for e1(t) and e2(t) are expressed as

ė1(t) = f1p (x̄d(t), x̂(t), t) , (3–8)

ė2(t) = f2p (x(t), x̂(t), t) , (3–9)

where f1p, f2p : Rn × Rn × R≥0 → Rn, p ∈ {a, u}, a is an index for subsystems with

available feedback, and u is an index for subsystems when feedback is unavailable.

Based on (3–8) and the subsequent stability analysis, the controller is designed as

1 In cases where a piece wise-continuous controller is required, the robustifying term in (3–5)
may be designed as vr(t) = k2e2 +

d̄2

ε e2, where ε ∈ R>0 is a design parameter.
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v(t) =


˙̄xd(t)− f(x̂(t), t)− k1e1(t)− vr(t), p = a,

˙̄xd(t)− f(x̂(t), t)− k1e1(t), p = u,

(3–10)

where ˙̄xd(t) ∈ Rn, and k1 ∈ Rn×n is a constant, positive definite gain matrix. By taking

the time derivative of (3–3) and substituting (3–5), (3–7) and (3–10) into the resulting

expression, (3–8) can be expressed as

ė1(t) = −k1e1(t), ∀p. (3–11)

After taking the time derivative of (3–4) and substituting (3–1), (3–5) and (3–7) into the

resulting expression, the family of systems in (3–9) can be expressed as

ė2(t) =


f(x(t), t)− f(x̂(t), t) + d(t)

−d̄sgn(e2(t))− k2e2(t), p = a,

f(x(t), t)− f(x̂(t), t) + d(t), p = u.

(3–12)

3.4 Stability Analysis

To further facilitate the analysis for the switched system, let tai ∈ R≥0 denote the

time of the ith instance when x(t) transitions from F c to F , and tui ∈ R>0 denote the

time of the ith instance when x(t) transitions from F to F c, for i ∈ N. The dwell time

in the ith activation of the subsystems a and u is defined as ∆tai , tui − tai ∈ R>0 and

∆tui , tai+1 − tui ∈ R>0, respectively. By Assumption 3.2 subsystem a is activated when

t = 0, and consequently tui > tai , ∀i ∈ N.

Assumption 3.2. The system is initialized in a feedback region (i.e. x(0) ∈ F).

To analyze the switched system, a common Lyapunov-like function is designed as

Vσ(z(t)) = V1(e1(t)) + V2(e2(t)), (3–13)
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where the candidate Lyapunov functions for the tracking error and the estimation error

are selected as

V1(e1(t)) =
1

2
eT1 (t)e1(t), (3–14)

V2(e2(t)) =
1

2
eT2 (t)e2(t), (3–15)

respectively. The common Lyapunov-like function Vσ(z(t)) globally exponentially

converges while x(t) ∈ F and exhibits an exponential growth when x(t) ∈ F c. Hence, a

desired maximum bound VM and a minimum threshold VT on Vσ(z(t)) may be imposed

such that Vσ(z(t)) ≤ VM and Vσ(z(tui )) ≤ VT . A representative illustration for the evolution

of Vσ(z(t)) is shown in Figure 2-1. A lower threshold, VT , enforces the convergence

of ‖z(t)‖ to an arbitrary small value. When implementing a high-frequency controller,

VT may be selected arbitrarily close to zero. However, the closer VT is selected to

zero, the longer x(t) is required to remain in F , and therefore the selection of VT is

dependent on the individual application tolerance. When a high-gain controller (e.g.,

vr(t) = k2e2(t) + d̄2

ε
e2(t)) is implemented, VT should be selected such that VT ≥ ε, where

ε is a design parameter.

Theorem 3.1. The composite error system trajectories of the switched system gen-

erated by the family of subsystems described by (3–11), (3–12), and a piece-wise

constant, right continuous switching signal σ : [0,∞) → p ∈ {a, u} are globally uni-

formly ultimately bounded provided the switching signal satisfies the minimum feedback

availability dwell time condition

∆tai ≥
−1

λs
ln

(
min

(
VT

Vσ(z(tai ))
, 1

))
(3–16)

and the maximum loss of feedback dwell time condition
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∆tui ≤
1

λu
ln

(
VM + d̄2

2λu

Vσ(z(tui )) + d̄2

2λu

)
, (3–17)

where λs and λu are subsequently defined known positive constants.

Proof. By taking the time derivative of (3–14) and substituting for (3–11) yields

V̇1(e1(t)) ≤ −2k1V1(e1(t)), ∀t, (3–18)

where k1 is the minimum eigenvalue of k1. By using (3–12), the time derivative of (3–15)

can be expressed as

V̇2(e2(t)) ≤


−2(k2 − c)V2(e2(t)), t ∈ [tai , t

u
i ),

λuV2(e2(t)) + 1
2
d̄2, t ∈ [tui , t

a
i+1),

(3–19)

where c ∈ R>0 is a Lipschitz constant, k2 > c ∈ R is the minimum eigenvalue of k2, and

λu , 2c+ 1 ∈ R>0.

From (3–18) and (3–19), the time derivative of the common Lyapunov-like function

can be expressed as

V̇σ(z(t)) ≤


−λsVσ(z(t)), t ∈ [tai , t

u
i ),

λuVσ(z(t)) + 1
2
d̄2, t ∈ [tui , t

a
i+1),

∀i ∈ N, (3–20)

where λs = 2min (k1, (k2 − c)) ∈ R>0. The solutions to (3–20) for the two subsystems are

Vσ(z(t)) ≤ Vσ(z(tai ))e
−λs(t−tai ), t ∈ [tai , t

u
i ), (3–21)

Vσ(z(t)) ≤ Vσ(z(tui ))e
λu(t−tui )

− d̄2

2λu

(
1− eλu(t−tui )

)
, t ∈ [tui , t

a
i+1). (3–22)

The inequality in (3–21) indicates that ‖z(t)‖ ≤ ‖z(tai )‖e
− 1

2
λs(t−tai ), t ∈ [tai , t

u
i ) . The

minimum threshold VT is selected to enforce the convergence of ‖z(t)‖ to desired
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threshold before allowing x(t) to transition into F c. This condition can be expressed as

Vσ(z(tai ))e
−λs∆tai ≤ VT , and therefore the condition in (3–16) is obtained after algebraic

manipulation. If VT
Vσ(tai )

> 1, the value of Vσ(tai ) is already below the threshold and thus no

minimum dwell time is required for the subsystem.

When t ∈ [tui , t
a
i+1), the inequality in (3–22) indicates that ‖z‖ ≤√

‖z(tui )‖2eλu(t−tui ) − d̄2

2λu

(
1− eλu(t−tui )

)
, and hence, the maximum bound VM is selected

to limit the growth of errors, where VM > VT . The maximum dwell time condition for each

of the ith unstable periods is expressed as Vσ(z(tui ))e
λu∆tui − d̄2

2λu

(
1− eλu∆tui

)
≤ VM , and

therefore the condition in (3–17) can be obtained.

Therefore, the composite error system trajectories generated by (3–11) and (3–12)

are globally uniformly ultimately bounded.

Remark 3.1. When using single integrator dynamics, ẋ(t) = u + d(t), the resulting esti-

mation error dynamics for the unstable subsystem is ‖ė2(t)‖ ≤ d̄ , and the corresponding

Lyapunov-like function derivative is V̇σ(t) ≤ d̄‖e2(t)‖. By solving the ordinary differential

equation for ė2(t), the estimation error e2(t) exhibits a linear growth that can be bounded

as e2(t) ≤ e2(tui ) + d̄(t − tui ). After substituting in the linear bound on e2(t), it follows

that V̇σ(t) ≤ d̄‖e2(tui )‖ + d̄2(t − tui ), and solving the ordinary differential equation yields

Vσ(t) ≤ 1
2
d̄2 (t− tui ) 2 + d̄‖e2(tui )‖ (t− tui ) + Vσ(z(tui )). After imposing Vσ(t) ≤ VM as the

upper bound constraint, the maximum dwell time can be derived by solving the quadratic

equation and taking the positive root as

∆tui ≤

(√
‖e2(tui )‖2 − 2 (Vσ(z(tui ))− VM)− ‖e2(tui )‖

)
d̄

.

3.5 Switching Trajectory Design

Since xd lies outside the feedback region, i.e. xd ⊂ F c, ∀t, and cannot be followed

for all time, the switching trajectory x̄d(t) is designed to enable x(t) to follow xd to the

extent possible given the dwell time conditions in (3–16) and (3–17). A design challenge
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for x̄d(t) is to ensure x(t) re-enters F to satisfy the sufficient condition in (3–17). While

x(t) transitions through F c, e(t) may grow as indicated by (3–22), and this growth must

be accounted for when designing x̄d(t). To facilitate the development of the switching

trajectory x̄d(t), xb(t) ∈ Rn is defined as the closest orthogonal projection of x̄d(t) on the

boundary of F .

When the maximum dwell time condition is reached, ‖e(t)‖ ≤ 2
√
VM . This bound

implies there exist a set B =
{
y ∈ Rn|‖y − x̄d(t)‖ ≤ 2

√
VM
}

such that x(t) ∈ B, ∀t.

Therefore, the switching trajectory must penetrate a sufficient distance into F to com-

pensate for the error accumulation. The distance to compensate for error growth

motivates the design of a cushion that ensures the re-entry of the actual states when the

maximum dwell time is reached. To compensate for the potential accumulation of error,

x̄d(t) must penetrate a sufficient distance into F , motivating the design of a cushion

state xε(t) ∈ Rn as

xε(t) , xb(t) + Φ(t),

where Φ(t) ∈ Rn, such that ‖Φ(t)‖ ≥ 2
√
VM and there exist a compact set A =

{y ∈ Rn|‖y − xε(t)‖ ≤ ‖Φ(t)‖} such that A is less than or equal to the inscribed ball of F

in Rn. Therefore, the requirement of x(t) ∈ B ⊆ A ⊆ F can be satisfied if xσ(t) coincides

with xε(t) when the maximum dwell-time is reached.

An example switching trajectory x̄d(t) can be developed utilizing a smoother-step

function described in [76] to transition smoothly between xd and xε(t) while meeting the

dwell time conditions (see Remark 3.2). The smoother-step function is defined in [76] as

S(ρ) = 6ρ5 − 15ρ4 + 10ρ3 (3–23)

where ρ ∈ [0, 1] is the input parameter. Given the transition function in (3–23), the

switching trajectory is designed as

44



x̄d(t) ,



H
(
S(ρai ), xb(t), xε(t)

)
, tai ≤ t < tui ,

H
(
S(ρu1

i ), g (xd, t) , xb(t)
)
, tui ≤ t < tu1

i ,

H
(
S(ρu2

i ), g (xd, t) , g (xd, t)
)
, tu1

i ≤ t < tu2
i ,

H
(
S(ρu3

i ), xε(t), g (xd, t)
)
, tu2

i ≤ t < tu3
i ,

(3–24)

where H (S(·), q (t) , r (t)) , S(·)q (t) + [1− S(·)] r (t) for q(t), r(t) ∈ Rn, g : xd × R → Rn

gives the desired state on xd at time t, ρai , ρu1
i ρu2

i , and ρu3
i are designed as ρai , t−tai

∆tai

and ρuj+1
i ,

t−(tui +
∑j
k=0 pk∆tui )

pj+1∆tui
, j ∈ {0, 1, 2}, the weights used to partition the maximum

dwell time are denoted by pk ∈ [0, 1), and the corresponding partitions are denoted

by tuj+1
i . The final partition, tu3

i , coincides with tai+1. To avoid a singularity in ρai and to

ensure a smooth and continuous switching trajectory, ∆tai must be arbitrarily lower

bounded above zero (see Remark 3.3).

Remark 3.2. Other trajectories satisfying the dwell time conditions in Theorem 3.1 may

also be implemented, such as the work in [59].

Remark 3.3. Lower bounding ∆tai by an arbitrary value, α ∈ R>0, does not violate

Theorem 3.1 since the system is allowed to remain in the feedback region longer than

the minimum dwell time, implying that ∆tai ≤ α ≤ (t− tai ) holds. Other trajectory designs

may not require ∆tai to be lower bounded.

3.6 Simulation

A simulation is performed to illustrate the performance of the controller given

intermittent loss of state feedback. Based on the system model given in (3–1), f(x(t), t)

is selected as f(x(t), t) = Ax where A = 0.5I3, and d(t) is drawn from a uniform

distribution between [0, 0.06] meters per second. The initial states and estimates are

selected as x(0) =

[
0.1m 0.2m 0rads

]
and x̂(0) =

[
0.2m 0.3m π

6
rads

]
.

The observer and the controller gains were selected as k1 = 3I3 and k2 = 3I3,

respectively. The desired upper bound and lower threshold for the composite error
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‖z(t)‖ are selected as 0.9 and 0.02 meters, respectively. Based on the desired error

bound and threshold, the Lyapunov function bound and threshold are determined as

VM = 0.2025 and VT = 1× 10−4.

The desired path xd is selected as a circular trajectory with a radius of 2 meters

centered at the origin. The boundary of the feedback region is selected as a circle

with a 1-meter radius about the origin. The switching trajectory x̄d(t) were designed as

described in Section 3.5 and follows xd at π
5

radians per second, where the partition

weights are selected as p0 = 0, p1 = 0.3, p2 = 0.4, p3 = 0.3 .

Figure 3-1 depicts the agent’s planar trajectory and shows that when the agent was

inside the region with state feedback, both the estimation and tracking errors, ‖e1(t)‖

and ‖e2(t)‖, exponentially converged. When the agent was outside the feedback region,

the tracking error converged while the predictor error exhibited exponential divergence.

The average maximum and minimum dwell times between switches are 2.16 and

0.26 seconds, respectively. Based on the simulation result, the system is allowed

to remain 8.23 times longer outside the feedback region than inside on average.

Furthermore, 40% of the maximum dwell time is dedicated to following the desired path,

which translates to 36% of the combined duration of the maximum and minimum dwell

times per cycle.

In Figure 3-2, the composite error ‖z(t)‖ is shown. Figure 3-2 indicates that ‖z(t)‖

remained below 0.9 meters for all time and less than or equal to 0.02 (indicated by

the black dashed line) by the end of each stable period, which demonstrates the

robustness of the presented control design under the dwell time condition constraints

and disturbances. Since an exact model of the system was used in this simulation,

the resulting tracking error is bounded well below the maximum bound, and hence

emphasizing the conservative nature of the Lyapunov analysis method.
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Figure 3-1. Simulation result for 30 seconds. Both system state x(t) and switching
trajectory x̄d(t) are initialized in the feedback region (gray). During the
minimum dwell time, x(t) converges to x̄d(t) exponentially with the observer
activated. When x(t) transitions into the feedback-denied region (white), the
predictor is activated, and x(t) gradually diverges from x̄d(t) due to
disturbances. Before the maximum dwell time is reached, x(t) re-enters the
feedback region and the observer is re-activated. Hence, x(t) is able to
converge to x̄d(t).
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Figure 3-2. Evolution of ‖z(t)‖. The top dashed line denotes VM and the bottom dashed
line denotes VT .

3.7 Experimental Results

In Section 3.7, an experiment is performed to verify the theoretical results where a

single integrator dynamic is used instead of the exact system model. The overall goal

of the experiment is to represent a scenario where an unmanned air vehicle is tasked

with following a path where feedback is not available (e.g., inside an urban canyon).

Specifically, the objective is to demonstrate the boundedness of the tracking error e(t)

through multiple cycles of switching between the feedback-available and unavailable

regions based on the dwell time constraints established in Section 3.4. A Parrot Bebop

2.0 quadcopter is used as the unmanned air vehicle. The quadcopter is equipped with

a 3-axis gyroscope, a 3-axis accelerometer, an ultrasound sensor, and an optical-flow

sensor. The on-board sensors provide an estimate of the linear and angular velocities

of the quadcopter at 5Hz. To control the quadcopter, the bebop_autonomy package

developed by [77] is utilized to send velocity commands generated from an off-board

computer running Robotic Operating System (ROS) Kinetic in Ubuntu 16.04. The
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communication link between the computer and the quadcopter is established through a

WiFi channel at 5GHz.

A NaturalPoint, Inc. OptiTrack motion capture system is used to simulate a feedback

signal and record the ground truth pose of the quadcopter at a rate of 120Hz. While

the quadcopter is inside the feedback region, pose information from the motion capture

system is directly used as feedback in the controller and update laws designed in

Section 3.3. When the quadcopter operated outside of the feedback region, the pose

feedback is discarded. During these times, the on-board velocity measurements are

used to feed-forward the state estimate. Although the OptiTrack system continue to

record the pose of the quadcopter, the pose information is only used as ground truth for

illustration purposes.

Utilizing the motion capture system, a circular region of available feedback is

centered at the origin of the Euclidean world frame with a radius of 1 meter. Since

torque level control authority is not available, single integrator dynamics, q̇(t) = u(t) +

d(t), are assumed for the quadcopter where q(t) =

[
x(t) y(t) z(t) α(t)

]T
, and

x(t), y(t), z(t), α(t) ∈ R are the 3-D Euclidean coordinates and yaw rotation of the

quadcopter with respect to the inertial frame. The disturbance is assumed to be upper

bounded as d̄ = 0.035. To compensate for the disturbance, a high-gain robust controller

is implemented to ensure a continuous control command. The controller and update law

gains are selected as k1 = 0.4I4, k2 = 0.6I4, and ε = 0.1. To regulate and match the

actual velocity output to the control command, a low level PID controller is implemented.

The desired upper bound and lower threshold on ‖z(t)‖ are selected as 0.9 and

0.14 meters, respectively. Since single integrator dynamics are assumed for the quad-

copter dynamic, a less conservative minimum dwell time condition can be derived

(details are given in Remark 3.1). The desired path is defined as a circular path cen-

tered at the origin with a radius of 1.5 meters as depicted by Figure 3-3. Following

the design method outlined in Section 3.5, a switching trajectory is designed to follow

49



xd with an angular velocity of π
15

radians per second. To prevent the quadcopter from

drifting out of the feedback region prematurely, a intermediate trajectory is design to be

xint(t) = 0.7xb(t) to replace xb(t) in (3–24) as a safety measure. The partitions for the

maximum dwell time are selected as p0 = 0, p1 = 0.4, p2 = 0.2, p3 = 0.4.

Initially, the quadcopter is launched inside F along with the switching trajectory,

which transitions between F and xd over the prescribed time span. The experimental

results demonstrate that the quadcopter is capable of intermittently leaving F to follow

xd for some period of time and then return to F consistently. The supplementary video

accompanying [65], available for viewing at https://www.youtube.com/user/NCRatUF,

gives a recording of the experiment with the motion of the quadcopter and the switching

trajectory projected on the floor. The overall path following plot, including the desired

path, switching trajectory and actual states, is shown in Figure 3-4, where a total of 8

cycles of leaving and re-entering F occurred. During the periods when the quadcopter

is outside the feedback region, large odometry drifts are apparent and the actual track-

ing error diverges as the dynamic models in Section 3.4 indicate. Table 3-1 indicates the

maximum and minimum dwell times for each cycle. On average, the quadcopter was

allowed to reside approximately 6 times longer in F c than F , and 20% of which is ded-

icated to following xd. Specifically, the quadcopter is allowed 19.85 seconds in F c and

is required to remain in F for 3.31 seconds on average. Based on the partition weights

of the maximum dwell time, Table 3-2 describes the partitions and the duration for each

partition. During partition 1, x̄d(t) transitions from the xb(t) to xd where the partition

weight was set to 50%. The relatively large partition allots more time in transition to yield

a slower velocity profile, which produces less overshoot in the tracking performance.

The distance between xd and F is also a major factor in distributing partition weights in

the sense that the closer xd is to F , the less time is required for transition and more time

can be allocated to follow xd.
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Figure 3-3. A representation of the feedback-available region and the desired path. The
gray region denotes the feedback-available region, which is 1.0 meter in
radius, and the black dotted line denotes xd, which is a circular path with a
radius of 1.5 meters.
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Figure 3-4. Actual and switching trajectory over 185 seconds.
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Table 3-1. Minimum and Maximum Dwell Times.
Cycle Max. D. T. (s) Min. D. T. (s)

0 - 3.50
1 19.12 4.55
2 19.38 4.09
3 19.25 3.20
4 19.72 3.34
5 20.21 1.67
6 19.08 2.55
7 19.65 3.73
8 22.35 3.16

Avg 19.85 3.31

Table 3-2. Maximum Dwell Time Partitions.

Cycle Maximum dwell times (s)
Part. 1 (40%) Part. 2 (20%) Part. 3 (40%)

1 7.65 3.82 7.65
2 7.75 3.88 7.75
3 7.70 3.85 7.70
4 7.89 3.94 7.89
5 8.08 4.04 8.08
6 7.63 3.82 7.63
7 7.86 3.93 7.86
8 8.94 4.47 8.94
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To illustrate the stability of the controller, the Euclidean norm of the estimate

tracking error, e1(t), and the estimation error, e2(t), are displayed in Figure 3-5 and 3-6.

The estimate tracking error exponentially converges, reflecting the analysis in (3–18).

The estimation error exhibits growth when x(t) ∈ F c. For a better illustration, the norm

of the composite and actual tracking error are shown in Figure 3-7 and 3-8, respectively,

where the dwell time duration is indicated by vertical dash-dot lines and the upper bound

and lower threshold on the actual tracking error are indicated by horizontal dashed lines.

Over the 8 cycles, ‖z(t)‖ is upper bounded by 0.9 meters at all times, and converges to

below 0.14 meters within the minimum dwell time when x(t) ∈ F . The plots also indicate

that x(t) is able to return to F within the maximum dwell times. This can be verified

by the activation of the observer before the maximum dwell time is reached for every

cycle. In Figure 3-9, the evolution of Vσ is shown along with the calculated VM and VT

as indicated by the horizontal dashed lines. As expected, the Lyapunov-like function Vσ

is upper bounded below VM for all times and converges below VT within the minimum

dwell times. Based on Figure 3-8 and 3-9, the controller and update laws developed

in Section 3.3 demonstrate robustness towards disturbances and a simple assumed

dynamic model. Hence, the trajectory design scheme provided in Section 3.5 is able

to generate a switching signal σ(t) that satisfied the dwell time conditions developed in

Section 3.4 and, therefore, verifying the claim in Theorem 3.1.

3.8 Summary

A novel method that utilizes a switched systems approach to ensure path following

stability under intermittent state feedback is presented. The developed method relieves

the requirement of state feedback at all times. State estimates are used in the tracking

control to compensate for the intermittence of state feedback. A Lyapunov-based,

switched systems analysis is used to develop maximum and minimum dwell time

conditions to guarantee stability of the overall system. The dwell time conditions allow

the desired path to be completely outside of the feedback region, and a switching
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Figure 3-5. Estimate tracking error ‖e1(t)‖. As indicated by the analysis, the estimate
tracking error exhibits exponential stability regardless of feedback availability.

Figure 3-6. Estimation error ‖e2(t)‖. As indicated by the analysis, the estimation error
converges when x(t) ∈ F and diverges when x(t) ∈ F c.
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Figure 3-7. Evolution of ‖z(t)‖. The dash-dot (vertical) lines indicate the switching
interface of minimum and maximum dwell times, and the dashed (horizontal)
lines indicate the prescribed upper bound and lower threshold.

Figure 3-8. Actual tracking error ‖e(t)‖. The dash-dot lines indicate the switching
interface of minimum and maximum dwell times.
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Figure 3-9. Evolution of Vσ(t). The dotted (vertical) lines indicate the time instants when
the quadcopter crossed the feedback region boundary. The dashed
(horizontal) lines indicate the prescribed VM and VT for Vσ.

trajectory is designed to bring the states back into the feedback region before the

error growth exceeds a defined threshold. The candidate switching trajectory switches

between the desired path and the feedback region using smoother-step transition

functions. A simulation and an experiment were performed to illustrate the robustness

of the control and trajectory design. Future research will focus on development of an

approximate optimal control approach using adaptive dynamic programming concepts to

yield approximately optimal results.
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CHAPTER 4
A GENERALIZED FRAMEWORK FOR SYSTEMS TO INTERMITTENTLY OPERATE IN

A FEEDBACK-DENIED ENVIRONMENT

This chapter focuses on a generalized switched systems framework for path-

following with intermittent state feedback. The analytical approach in previous chapters

places constraints in the controller and update law designs, and upon closer exami-

nation, a more generalized approach is explained in this chapter. In addition, analysis

under this approach may support the extension of this framework to include the use

of true states in the controller or reset maps when the system is inside a feedback-

available region, which are not admissible in the previous chapters.

4.1 System Model

Extending from Chapter 3, consider a nonlinear dynamic system subjected to

an exogenous disturbance as described in (3–1), where x(t), ẋ(t) ∈ Rn denote a

generalized state and its time derivative, f : Rn × R → Rn denotes the locally Lipschitz

dynamics, v(x(t), t) ∈ Rn is the control input, and d(t) ∈ Rn is a bounded exogenous

disturbance, where ‖d(t)‖ ≤ d̄ ∈ R>0 with n ∈ N and t ∈ R≥0.

4.2 State Estimation and Control Objective

The objective is to enable an agent to follow a desired path, denoted by xd, that

lies completely outside of a region where feedback is available. Similar to Chapter 3,

the feedback-available and -denied regions are denoted by F ⊂ Rn and F c ⊂ Rn,

respectively. Since the agent is required to intermittently depart from following xd to

obtain feedback, an auxiliary trajectory, denoted by xσ(t) ∈ Rn, is developed to guide

the agent between F and xd. The design of xσ(t) is motivated by the desire to maximize

the time x(t) follows xd, while adhering to subsequently developed dwell-time conditions.

However, in contrast to Chapter 3, three error systems are defined as

e(t) , x(t)− xσ(t), (4–1)
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ê(t) , x̂(t)− xσ(t), (4–2)

ẽ(t) , x(t)− x̂(t), (4–3)

where e(t) is the actual tracking error, ê(t) is the estimate tracking error, and ẽ(t) is

the state estimation error. When x(t) ∈ F , the objective is to regulate all three error

systems. When x(t) ∈ F c, state feedback is no longer available, and the objective is

to regulate ê(t); however, ẽ(t) may become unstable due to the lack of state feedback,

and therefore, e(t) may become unstable. As a result of potential instabilities when

x(t) ∈ F c, another challenge in this chapter is to ensure e(t) does not grow beyond an

application-based, desired bound while simultaneously maximizing the time x(t) ∈ F c

where x(t) follows xd. To facilitate the subsequent development, let p ∈ P , {a, u} ,

where a is an index for the subsystem with available state feedback, and u is an index

for the subsystem without state feedback.

4.3 Stability Analysis

To illustrate framework development, consider any design of nonlinear controllers,

observers (when p = a) and predictors (when p = u) that yield a family of closed-loop

error dynamics of the forms

ė(t) =


ge,p (v(x, t), t) , p = a,

ge,p (v(x̂, t), t) , p = u,

(4–4)

˙̂e(t) =


gê,p (v(x, t), t) , p = a,

gê,p (v(x̂, t), t) , p = u,

(4–5)

˙̃e(t) = gẽ,p (x, x̂, t) , ∀p, (4–6)

where ge,p, gê,p : Rn × [0,∞)→ Rn are nonlinear functions that depend on the controller,

gẽ,p : Rn × Rn × [0,∞) → Rn is a nonlinear function that depends on the observer and

predictor, and satisfy the following assumption.
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Assumption 4.1. The origins of the error systems e(t) = ẽ(t) = 0 are exponentially

stable when p = a, and the origin of the error system ê(t) = 0 is exponentially stable

when p = u. Furthermore, there exist three first-order differentiable, positive-definite

candidate Lyapunov-like functions Ve(e(t)), Vê(ê(t)), Vẽ(ẽ(t)) : Rn → R such that

V̇e(e(t)) ≤ −2λsVe(e(t)), p = a, (4–7)

V̇ê(ê(t)) ≤ −2λsVê(ê(t)), p = u, (4–8)

V̇ẽ(ẽ(t)) ≤


−2λẽVẽ(ẽ(t)), p = a,

2λuVẽ(ẽ(t)) + δ, p = u,

(4–9)

where λs, λẽ, λu, δ ∈ R>0 are known, positive constants.

To further facilitate the analysis for the switched system, let the time of the ith

instance when x(t) transitions from F c to F and from F c to F be denoted by tai ∈ R≥0

and tui ∈ R>0, respectively, for i ∈ N. Based on the switching instants, dwell-time of

the ith activation of the subsystems a and u are defined as ∆tai , tui − tai ∈ R>0 and

∆tui , tai+1 − tui ∈ R>0, respectively. To ensure the tracking error is bounded, a minimum

threshold êT ∈ R>0 on ‖ê(t)‖ and a desired maximum bound eM ≥ 2êT on ‖e(t)‖ may

be imposed such that Ve(e(tai )) ≤ VM and Vê(ê(tui )) ≤ VT , where VM , VT ∈ R>0 are

the respective maximum bound and minimum threshold. The selection on eM is also

dictated by the size of F , where the compact ball of radius eM must be less than or

equal to the inscribed ball of F in Rn.

Theorem 4.1. The trajectories of the switched systems generated by the family of

subsystems described by (4–4)-(4–6), and a piecewise constant, right-continuous

switching signal σ : [0,∞) → p ∈ {a, u} are globally uniformly ultimately bounded

provided the switching signal satisfies the minimum feedback availability dwell-time

condition

∆tai ≥
−1

min (λs, λẽ)
ln

(
min

(
êT

(‖e(tai )‖+ ‖ẽ(tai )‖)
, 1

))
, (4–10)
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and the maximum loss of feedback dwell-time condition

∆tui ≤ ln (Xmin) , (4–11)

where Xmin is a subsequently defined positive constant.

Proof. While p = a, it can be shown from (4–7)-(4–9) that e(t) and ẽ(t) are globally

exponentially stable with the bounds

‖e(t)‖ ≤ ‖e(tai )‖e−λs∆t
a
i , (4–12)

‖ẽ(t)‖ ≤ ‖ẽ(tai )‖e−λẽ∆t
a
i . (4–13)

Utilizing the relationship ê(t) = e(t)− ẽ(t) =⇒ ‖ê(t)‖ ≤ ‖e(t)‖+ ‖ẽ(t)‖ =⇒ ‖ê(t)‖ ≤

‖e(tai )‖e−λs∆t
a
i + ‖ẽ(tai )‖e−λẽ∆t

a
i ≤ ‖e(tai )‖e−min(λs,λẽ)∆t

a
i + ‖ẽ(tai )‖e−min(λs,λẽ)∆t

a
i =⇒

‖ê(t)‖ ≤ (‖e(tai )‖+ ‖ẽ(tai )‖) e−min(λs,λẽ)∆t
a
i . Based on the convergence rate of

‖ê(t)‖, the minimum dwell-time condition can be derived as ‖ê (tui ) ‖ ≤ êT =⇒

(‖e(tai )‖+ ‖ẽ(tai )‖) e−min(λs,λẽ)∆t
a
i ≤ êT , and therefore the minimum dwell-time condition in

(4–10) can be obtained by solving the inequality.

While p = u, it can be shown from (4–7)-(4–9) that the evolution of ê(t) and ẽ(t) are

bounded by

‖ê(t)‖ ≤ ‖ê(tui )‖e−λs∆t
u
i , (4–14)

‖ẽ(t)‖ ≤
√
‖ẽ(tui )‖2e2λu∆tui − δ

2λu
(1− e2λu∆tui ). (4–15)

Utilizing the relationship e(t) = ê + ẽ(t), ‖e(t)‖ ≤ ‖ê(t)‖ + ‖ẽ(t)‖ =⇒ ‖e(t)‖ ≤

‖ê(tui )‖e−λs∆t
u
i +

√
‖ẽ(tui )‖2e2λu∆tui − δ

λu
(1− e2λu∆tui ). Substituting in the desired error

bound of e
(
tai+1

)
≤ eM and performing algebraic manipulations yields ‖ê(tui )‖2X−2λs −

2eM‖ê(tui )‖X−λs − ‖ẽ(tui )‖2X2λu − δ
2λu

X2λu + e2
M + δ

2λu
≥ 0, where X = e∆tui . Numerical
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solutions for X can be computed, and by taking the natural logarithm on the minimum

positive, real solution Xmin ∈ R≥1, the maximum dwell-time condition can be derived.

Remark 4.1. A more conservative bound on the maximum dwell-time condition in

(4–11) for continuous state estimates can be derived by upper bounding ‖ê(t)‖ by

‖ê(t)‖ ≤ ‖ê(tui )‖e−λs∆t
u
i ≤ ‖ê(tui )‖ to yield ∆tui ≤ 1

2λu
ln

(
(eM−‖ê(tui )‖)

2
+ δ

2λu

‖ẽ(tui )‖2+ δ
2λu

)
.

Remark 4.2. With single integrator dynamics, the estimation error dynamics are upper

bounded by ˙̃e(t) ≤ d̄ when p = u, and therefore ẽ(t) exhibits a linear growth that can be

bounded by ‖ẽ(t)‖ ≤ ‖ẽ(tui )‖ + d̄(∆tui ). Following the development, the maximum dwell-

time can be derived by solving the inequality as ‖ê(tui )‖e−λs∆t
u
i + ‖ẽ(tui )‖ + d̄(∆tui ) ≤ eM ,

‖ê(tui )‖+ ‖ẽ(tui )‖+ d̄ (∆tui ) ≤ eM , and therefore ∆tui ≤
eM−‖ê(tui )‖−‖ẽ(tui )‖

d̄
.

Utilizing Reset Maps

The result in Theorem 4.1 relies on an observer to provide state estimates when

x(t) ∈ F , which results in a minimum dwell-time condition. However, the minimum

dwell-time condition can be eliminated by using reset maps. Specifically, it is possible

to exploit reset maps to reset xσ,i to a new path xσ,i+1 and x̂(t) to coincide x(t) at tai ,

i.e., upon every instance of re-entry to F . However, imposing reset maps on xσ and

x̂(t) introduces a discontinuity in the error dynamics; hence, a switched hybrid system

analysis is required. To facilitate the development, let E ⊂ P ×P represent a one-

way transition from p = u to p = a. Let the reset maps for xσ and x̂(t) be denoted

as φσ : E × xσ,i → Rn and φ̂ : E × Rn → Rn, respectively, and be designed as

φσ(E, xσ,i(t)) , xσ,i+1 and φ̂(E, x̂(t)) , x(t).

When xσi and x̂(t) are reset at tai , e(t) = ẽ(t) = 0, and hence, ê(t) = 0. It can be

shown that the switches satisfy the sequence non-increasing condition described in [78],

such that Ve(e(ta−i )) ≥ Ve(e(t
a
i )), Vê(ê(t

a−
i )) ≥ Vê(ê(t

a
i )) and Vẽ(ẽ(ta−i )) ≥ Vẽ(ẽ(t

a
i )),

where ta−i , lim t → tai from the left. Following a similar proof for Theorem 4.1, with the

exception that e(t) = ê(t) = ẽ(t) = 0 when p = a, the same stability conditions can be
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obtained. Since eT > e(t) = 0, the minimum tracking error condition is automatically

and instantaneously satisfied, indicating that x(t) may leave F immediately upon entry,

i.e. ∆tai ≥ 0. Utilizing ‖ê(tui )‖ = 0, the maximum dwell-time condition can then be

solved analytically as ‖ẽ(tui )‖2e2λu∆tui − δ
2λu

e2λu∆tui + e2
M + δ

2λu
≥ 0, and therefore

∆tui ≤ 1
2λu

ln

(
e2M+ δ

2λu

‖ẽ(tui )‖2+ δ
2λu

)
.

4.4 Auxiliary Trajectory Design

Since xd denotes a path that lies outside the feedback region, i.e. xd ⊂ F c,

x(t) must leave F while following xd, resulting in the loss of feedback. Therefore, an

auxiliary trajectory xσ(t) is designed for the agent to track so that x(t) follows xd to the

extent possible given the dwell-time conditions in (4–10) and (4–11). To facilitate the

development of xσ(t), let the closest orthogonal projection of xσ(t) on the boundary of F

be denoted as xb(t) ∈ Rn.

While x(t) ∈ F c, ‖e(t)‖ can be upper bounded by eM when the maximum dwell-time

is reached, implying that there exist a compact set B = {y ∈ Rn|‖y − xσ(t)‖ ≤ eM} such

that x(t) ∈ B, ∀t. To compensate for the potential accumulation of error, xσ(t) must

penetrate a sufficient distance into F , motivating the design of a cushion state xε(t) ∈ Rn

as

xε(t) , xb(t) + Φ(t), (4–16)

where Φ(t) ∈ Rn, such that ‖Φ(t)‖ ≥ eM and there exist a compact set

A = {y ∈ Rn|‖y − xε(t)‖ ≤ ‖Φ(t)‖} such that A is less than or equal to the inscribed ball

of F in Rn. Therefore, the requirement of x(t) ∈ B ⊆ A ⊆ F can be satisfied if xσ(t)

coincides with xε(t) when the maximum dwell-time is reached.

4.5 Design Example

To illustrate the developed framework, consider an example controller designed as

v (xp (t) , t) ,ẋσ (t)−
(
k +

d̄2

ε
In

)
(xp (t)− xσ (t))− f (xp (t) , t) , (4–17)
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where xp (t) = x (t) when p = a and xp (t) = x̂ (t) when p = u, k ∈ Rn×n is a constant,

positive-definite gain matrix, and ε ∈ R>0 a design parameter. In (4–17), the design

structure remains the same for all p, where only the input signal switches between using

x(t) or x̂(t).

Examples of the state estimate update laws for the observer and predictor are given

as

˙̂x(t) ,


f(x̂(t), t) + v(x (t) , t) + vr(ẽ(t)), p = a,

f(x̂(t), t) + v(x̂ (t) , t), p = u,

(4–18)

where vr(ẽ(t)) ∈ Rn contains a high-frequency sliding-mode term to compensate for

disturbances and is designed as

vr(ẽ(t)) , kẽẽ(t) + d̄sgn(ẽ(t)), (4–19)

where kẽ ∈ Rn×n is a constant, positive-definite gain matrix. Unlike the development

in [59] and [65], the controller does not require canceling terms since the controller

receives x(t) as feedback when p = a and the robustifying term is not added to the

predictor when p = u. Additionally, the controller and observer designs are decoupled

and can be designed independently under the framework developed in Section 4.3.

After taking the time derivative of (4–1) - (4–3), substituting in (3–1) and (4–

17) - (4–19) and selecting the candidate Lyapunov-like functions as Ve(e(t)) ,

1
2
eT (t)e(t), Vê(ê(t)) , 1

2
êT (t)ê(t) and Vẽ(ẽ(t)) , 1

2
ẽT (t)ẽ(t), the known, positive constants

in (4–7) - (4–9) are determined as λs = k, λẽ = kẽ − c, λu = c + 1
2
, λs > 0, and δ = 1

2
d̄2,

where k > 0 and kẽ > c are the minimum eigenvalues of k and kẽ, respectively, and

c ∈ R>0 is a Lipschitz constant. The tracking error ‖e(t)‖ is shown to exponentially

converge ∀‖e(t)‖ >
√

ε
4λs

. Hence, the dwell-time conditions can be derived accordingly,

where êT >
√

ε
4λs

.
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To illustrate the design of the auxiliary trajectory, an example of xσ(t) using an

observer is given as

xσ,i(t) ,



ρai xε(t) + (1− ρai )xb(t), tai ≤ t < tui ,

ρu1
i xb(t) + (1− ρu1

i ) g (xd, t) , tui ≤ t < tu1
i ,

g (xd, t) , tu1
i ≤ t < tu2

i ,

ρu3
i g (xd, t) + (1− ρu3

i )xε(t), tu2
i ≤ t < tu3

i ,

(4–20)

where g : xd × R → Rn maps t to the desired state in xd, ρai , ρu1
i , ρ

u2
i and ρu3

i are

time-based ratios designed as ρai , t−tai
∆tai

and ρu(j+1)
i ,

t−(tui +
∑j
k=0 pk∆tui )

pj+1∆tui
, j ∈ {0, 1, 2},

the weights used to partition the maximum dwell-time are denoted by pk ∈ [0, 1), and the

corresponding partitions are denoted by tu(j+1)
i . In addition, tu3

i coincides with tai+1, and

∆tai must be arbitrarily lower bounded above zero to avoid a singularity in ρai .

If a reset map is used instead of the observer, the auxiliary trajectory can be

designed as

xσ,i(t) ,


ρu1
i x(t) + (1− ρu1

i ) g (xd, t) , tui ≤ t < tu1
i ,

g (xd, t) , tu1
i ≤ t < tu2

i ,

ρu3
i g (xd, t) + (1− ρu3

i )xε(t), tu2
i ≤ t < tu3

i .

(4–21)

4.6 Experimental Results

Two experiments are conducted to demonstrate the ability of an unmanned air

vehicle to follow a path that lies outside a feedback region. Specifically, the objective

is to examine the boundedness of the tracking error e(t), and therefore stability of the

system, throughout multiple revisits to the feedback region based on the dwell-time

constraints established in Theorem 4.1. Both experiments use the example controller

and predictor in (4–17) and (4–18), respectively. One experiment uses the observer in

(4–18) and (4–19) with xσ(t) given in (4–20). The other experiment uses a reset map

with xσ(t) given in (4–21).
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For both experiments, the same experimental setup described in Section 3.7 is

utilized, where the feedback available region F is defined as a region inside a 1-meter

circle, and xd is a 1.5-meter circle with the same origin as F . Pose information obtained

from the motion capture system is used as feedback only when the quadcopter is inside

F . Even though the OptiTrack system continues to record pose information when the

quadcopter is outside the feedback region, the information is only used as ground truth

for comparison purposes. For both experiments, on-board velocity measurements are

utilized to match the velocity commands generated by the ground station.

Simplified dynamics of the quadcopter are represented by ẋ(t) = u(t) + d(t),

where x(t) is the composite vector of the Euclidean coordinates of the quadcopter with

respect to the inertial frame. For both experiments, the upper bound of the disturbance

is assumed to be d̄ = 0.05, and the controller and update law are designed as described

in Section 4.5, where f(x, t) = f(x̂, t) =

[
0 0 0

]T
, k = 0.4I3, kẽ = 4I3, and ε = 0.02.

The auxiliary trajectory xσ(t) is designed to follow xd with an angular velocity

of π
15

radians per second during tu1
i ≤ t < tu2

i , and the partitions for the maximum

dwell-time are selected as p0 = 0, p1 = 0.4, p2 = 0.3, p3 = 0.3. The desired error

bound and threshold are selected as eM = 0.9 meters and êT = 0.14 meters. Since

single integrator dynamics are used for the quadcopter, Remark 4.2 provides a less

conservative minimum dwell-time condition that is implemented for both experiments.

Figures 4-1-4-4 illustrate the experimental results using the observer and reset

map, respectively. When using the observer, the quadcopter is allowed to remain in F c

for 16.10 seconds and is required to remain in F for 3.59 seconds on average. When

using the reset map, the quadcopter is allowed 18.00 seconds in F c and no minimum

dwell-times are required. In both experiments, the tracking error converges exponentially

when x(t) ∈ F and exhibits growth when x(t) ∈ F c, reflecting the analysis in Section

4.3. The growth of ‖e(t)‖ can be attributed to the open-loop tracking performance, and

various techniques (e.g., the use of inertial measurement units or visual odometry)
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Figure 4-1. Overall path following result using an observer for the state estimate. The
agent is required to remain inside the feedback-available region for periods
of time as indicated by the green line.

67



Figure 4-2. The evolution of ‖e(t)‖ for continuous state estimates. The tracking error is
regulated below êT (bottom dotted line) before leaving F and remains under
eM (top dotted line) for all times when outside of F . The vertical lines denote
the instants when x(t) enters and leaves F .

can be applied to minimize the open-loop tracking error when x(t) ∈ F c. The goal for

both experiments is to demonstrate the developed switching framework that allows the

quadcopter to compensate for the lack of feedback and achieve timely loop-closures

such that the tracking error growth stays bounded. As shown in Figures 4-2 and 4-4,

‖e(t)‖ is upper bounded by eM , and converges to below êT before leaving F . Therefore,

these experiments demonstrate that the switching signal σ(t) generated by xσ(t)

satisfies the dwell-time conditions developed in Section 4.3 and stabilizes the overall

system.

4.7 Summary

A novel method that establishes a switched systems framework for path following

under an intermittent state feedback constraint is presented. Specifically, the presented

method relieves the requirement of uninterrupted state feedback, and allows the system

to dwell in a feedback-denied region for periods of time. In comparison to Chapter 3,

applicable controllers and observers from existing literature can be directly implemented

68



Figure 4-3. Overall path following result using reset maps. The agent is allowed to leave
the feedback-available region immediately as indicated by the green line.

69



Figure 4-4. The evolution of ‖e(t)‖ for discrete state estimates using a reset map. The
tracking error is regulated below êT (bottom dotted line) before leaving F
and remains under eM (top dotted line) for all times when outside of F . The
vertical lines denote the instants when x(t) enters and leaves F .

without altering the design structure, stability analysis, or gain selection. Maximum and

minimum dwell-time conditions are developed via a Lyapunov-based, switched systems

analysis to guarantee stability of the overall system. Alternatively, the analysis indicates

that reset maps can also be utilized to eliminate the requirement of minimum dwell-time

conditions, which is not previously achievable in Chapter 3. An auxiliary trajectory is

designed based on the dwell-time conditions to regulate the states into the feedback

region before the tracking error exceeds a defined threshold. Two experiments were

performed to illustrate the control development and trajectory design with and without

using reset maps. The results are indicate that using reset maps allows the agent to

spend more time in the feedback denied region and that the agent is not required to

remain in the feedback-available region as it is in Chapter 3.
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CHAPTER 5
ASSISTED PATH-FOLLOWING FOR AGENTS IN A STATE-FEEDBACK-DENIED

REGION

This chapter presents a novel approach to allow an agent to follow a path in a

feedback-denied region with the assist from another agent that intermittently visits the

feedback-available region. In Chapters 3 and 4, the agent is allowed no more than

50% of the time tracking the desired path, and hence, motivating the development of

this chapter to allow the agent to follow the desired path at all times. The focus of this

chapter also includes the development of a switched systems framework for controlling

systems with uncertainty in the dynamics under intermittent state feedback, as opposed

to assuming exact model knowledge in previous chapters.

5.1 System Model

Consider a general nonlinear dynamic system for an exploring agent described as

ẋe (t) = fe(xe (t) , ve(xe (t) , t)) + de (t) , (5–1)

where xe (t) , ẋe (t) ∈ Rn denote the generalized states and its time derivative, fe :

Rn ×Rm ×R→ Rn denotes the known general dynamics, ve(xe (t) , t) ∈ Rm is the control

inputs, and de (t) ∈ Rn is a bounded exogenous disturbance, with n, m ∈ N and t ∈ R≥0.

Consider a control-affine nonlinear dynamic system for a relay agent described as

ẋr (t) = fr(xr (t)) + vr(xr (t) , t) + dr (t) , (5–2)

where xr (t) , ẋr (t) ∈ Rn denote the generalized states and its time derivative, and

fr : Rn×R→ Rn denotes unknown continuous dynamics, vr(xr (t) , t) ∈ Rn is the control

inputs, and dr (t) ∈ Rn is a bounded exogenous disturbance.

Assumption 5.1. The exogenous disturbances de (t) and dr (t) are bounded such that

‖de (t) ‖ ≤ d̄e and ‖dr (t) ‖ ≤ d̄r.

Assumption 5.2. The unknown drift dynamics fr is at least a class C0 function and is

bounded such that ‖fr (xr (t))‖ ≤ f̄r ∈ Rn
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5.2 State Estimation and Control Objective

Similar to Chapters 3 and 4, the feedback-available and -denied regions are defined

as F ⊂ Rn and F c ⊂ Rn, respectively. The objective is to enable the exploring agent

to follow a desired path, xd ⊂ F c, while the relay agent updates x̂e (t) for the exploring

agent by visiting F intermittently. The state estimates, x̂r (t) and x̂e (t), are reset using

subsequently designed reset maps when xr (t) ∈ F and when ‖xr (t) − xe (t) ‖ is less

than a subsequently defined communication radius.

Assumption 5.3. The exploring and relay agents are initialized at t = t0 ∈ R≥0 in a

feedback-available region (i.e. xe(t0), xr(t0) ∈ F ⊂ Rn), where F is a compact set.

Assumption 5.4. The communication range of the relay agent is defined as Rcom ∈ R>0,

and the relationship between xe (t) and xr (t) may be measured and communicated

directly from the relay to the exploring agent when ‖xe (t)− xr (t)‖ ≤ Rcom.

By Assumption 5.4, x̂e (t) may be updated whenever ‖xe (t)− xr (t)‖ ≤ Rcom . To

facilitate the subsequent development, let pe ∈ Se , {ae, ue} , where ae and ue are

the indices for the exploring agent’s subsystems when ‖xe (t)− xr (t)‖ ≤ Rcom and

‖xe (t)− xr (t)‖ > Rcom, respectively. Let pr ∈ Sr , {ar, ur} , where ar and ur are the

indices for the relay agent’s subsystems when xr (t) ∈ F and xr (t) ∈ F c, respectively.

Based on the objectives, three error systems are defined for the exploring agent as

ee (t) , xe (t)− xref (t) , (5–3)

êe (t) , x̂e (t)− xref (t) , (5–4)

ẽe (t) , xe (t)− x̂e (t) , (5–5)

where xref (t) ∈ Rn is a reference trajectory generated by a reference model that follows

the desired path xd.

Similarly, four error systems are defined for the relay agent as
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er (t) , xr (t)− xaux (t) , (5–6)

êr (t) , x̂r (t)− xaux (t) , (5–7)

ẽr (t) , xr (t)− x̂r (t) , (5–8)

f̃r(xr (t)) , fr(xr (t))− f̂r(x̂r (t)) (5–9)

where xaux (t) is a subsequently designed auxiliary trajectory for the relay agent, er (t)

is the actual tracking error, êr (t) is the estimated tracking error, and ẽr (t) is the state

estimation error, and let ζr (t) ,
[
eTr (t) , f̃Tr (t)

]T
.

Assumption 5.5. There exist a set of nonlinear controllers, update laws for f̂r (x̂r (t)),

and reset maps for x̂r(t) and x̂e (t) that exponentially stabilizes the origins of the error

systems described by (5–3)-(5–5) when pe = ae, (5–6)-(5–9) when pr = ar, (5–4) when

pe = ue, and (5–8) when pr = ur. Specifically, there exists first-order differentiable,

positive-definite candidate Lyapunov-like functionals V a
ζ (ζr (t)), V u

r̂ (êr (t)) and V u
ê (êe (t)),

such that, by utilizing the control designs, the respective time derivatives yield

V̇ a
ζ (ζr (t)) ≤ −λarV a

ζ (ζr (t)) + δar , pr = ar, (5–10)

V̇ u
r̂ (êr (t)) ≤ −λarV u

r̂ (êr (t)) , pr = ur, (5–11)

V̇ u
ê (êe (t)) ≤ −λaeV u

ê (êe (t)) , pe = ue, (5–12)

where λar , λae , δar ∈ R are known, positive constants. Furthermore, there exists first-

order differentiable, positive-definite candidate Lyapunov-like functionals V u
r̃ (ẽr (t)) and

V u
ẽ (ẽe (t)) for the state estimates of both agents with exact structures (i.e., V u

r̃ (ẽr (t)) =

V u
ẽ (ẽr (t)) and V u

ẽ (ẽe (t)) = V u
r̃ (ẽe (t)) ), where the time derivatives of V u

r̃ (ẽr (t)) and

V u
ẽ (ẽe (t)) take the forms of
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V̇ u
r̃ (ẽr (t)) ≤ λurV

u
r̃ (ẽr (t)) + δur , pr = ur, (5–13)

V̇ u
ẽ (ẽe (t)) ≤ λueV

u
ẽ (ẽe (t)) + δue , pe = ue, (5–14)

where λur , λue , δur , δue ∈ R are known, positive constants.

5.3 Stability Analysis

In this section, the stability of the switched systems for both the exploring and relay

agent are examined. When xr (t) ∈ F , the objective is to regulate the error systems

in (5–6)-(5–8) and (5–9). Most importantly, the regulation of (5–8) and (5–9) ensures a

better estimate of the dynamics described in (5–2). When xr (t) ∈ F c, state feedback

is no longer available, and the relay agent must rely on the estimated dynamics to

navigate towards the exploring agent. Therefore, the objective is to regulate (5–7)

when xr (t) ∈ F c. Inevitably, the stability of (5–8) cannot be guaranteed during this

phase because state feedback is not available to generate a stabilizing update law,

and consequently, the stability of (5–6) is potentially voided. To compensate for the

potential instabilities, one challenge in this chapter is to determine the bound on the

growth rate of er (t) and ee (t) during the feedback-denied time-frame and develop

stabilizing conditions via a switched systems approach to ensure (5–6) remains within

an application-based, user-defined bound while under the influence of unknown drift

dynamics. For the exploring agent, the objective is for (5–3) to be bounded by a user-

defined threshold, implying the regulation of (5–4) and bounding of (5–5). Similar to the

dynamics of the relay agent, since xe (t) ∈ F c, the stability of (5–3) and (5–5) depends

on stabilizing conditions to ensure boundedness.

To further facilitate the development for the switched systems, let the time of the ith

instance when xr (t) transitions from F c to F and from F to F c be denoted by tar,i ∈ R≥0

and tur,i ∈ R>0, for i ∈ N, respectively. Additionally, let ta−r,i , lim∆t→0 t
a
r,i − ∆t . Based

on the switching instants, dwell-time of the ith activation of the subsystems ar and ur
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are defined as ∆tar,i , tur,i − tar,i ∈ R≥0 and ∆tur,i , tar,i+1 − tur,i ∈ R≥0, respectively.

Similarly, let the time of the jth instance when x̂e (t) is updated (i.e., the time when

‖xr (t) − xe (t) ‖ ≤ Rcom becomes valid) be denoted by tae,j ∈ R≥0 for j ∈ N, and

ta−e,j , lim∆t→0 t
a
e,j − ∆t . Then the dwell-time of the j th activation of subsystem ue is

defined as ∆tue,j , tae,j+1 − tae,j ∈ R≥0.

Inspired by the approach in [66], reset maps are utilized to update x̂e (t) and x̂r (t)

at tae,j and tar,i, respectively. Specifically, it is possible to exploit reset maps to reset

x̂e (t) to x̂r (t) + (xe (t)− xr (t)) and x̂r (t) to xr (t), where the difference, xe (t) − xr (t),

is measurable by Assumption 5.4. To facilitate the analysis, let Er ⊂ Sr × Sr and

Ee ⊂ Ss ×Ss represent a one-way transition from pr = ur to pr = ar and from pe = ue

to pe = ae, respectively. Let the reset maps for x̂e (t), x̂r (t) and xaux (t) be denoted as

φe : Ee × Rn → Rn, φr : Er × Rn → Rn and φaux : Er × Rn → Rn and be designed as

φe(Ee, x̂e (t)) , x̂r (t)+(xe (t)− xr (t)), φr(Er, x̂r (t)) , xr (t) and φaux(Er, xaux (t)) , xr (t),

respectively.

5.3.1 Relay Agent

First, the stability of the system of the relay agent is examined. Given Assumption

5.5 and a desired threshold ‖ẽr (t) ‖ ≤ ẽr,T ∈ R>0, such that V u
r̃,T , V u

r̃ (ẽr,T ) ∈ R>0

and V u
r̃ (ẽr (t)) ≤ V u

r̃,T , the stabilizing dwell-time condition is presented in the following

theorem.

Theorem 5.1. Controllers and update laws satisfying Assumption 5.5 and a piece-wise

constant, right-continuous switching signal σr : [0,∞) → pr ∈ {ar, ur} satisfying the

maximum loss of feedback dwell-time condition for the relay agent,

∆tur,i ≤
1

λur
ln

(
V u
r̃,T + δur

λur
δur
λur

)
, (5–15)

ensures ‖er (t)‖ is globally uniformly ultimately bounded by a design parameter, ẽr,T .

75



Proof. First, the stability over every discrete reset is examined. When reset maps are

invoked at tar,i, it can be shown that V a
ζ (ζr (t)) satisfy the sequence non-increasing

condition described in [78, 79], such that V a
ζ (ζ(ta−r,i )) ≤ V a

ζ (ζr(t
a
r,i)), and hence, is stable

over each switch. By solving (5–10), it is shown that V a
ζ (ζr (t)) is bounded by

V a
ζ (ζr (t)) ≤

(
V a
ζ

(
ζr
(
tar,i
))
− δar
λar

)
e−λ

a
r(t−tar,i) +

δar
λar
,

∀i ∈ N, t ∈ [tar,i, t
u
r,i). Therefore, V a

ζ (ζr (t)) ≤ V a
ζ

(
ζr
(
tar,i
))

and thus ‖er (t) ‖ ≤

‖er
(
tar,i
)
‖,∀i ∈ N, t ∈ [tar,i, t

u
r,i). Next, the proof for the maximum loss of feedback

dwell-time condition in (5–15) is presented. Solving for (5–11) and (5–13) yields

V u
r̂ (êr (t)) ≤ V u

r̂ (êr(t
u
r,i))e

−λar∆tur,i , (5–16)

V u
r̃ (ẽr (t)) ≤ V u

r̃ (ẽr(t
u
r,i))e

λur∆tur,i − δur
λur

(
1− eλur∆tur,i

)
. (5–17)

By the virtue of reset maps, V u
r̂ (êr(t

u
r,i)) = V u

r̃ (ẽr(t
u
r,i)) = 0, and therefore V u

r̂ (êr (t)) =

0 and V u
r̃ (ẽr (t)) ≤ δur

λur

(
eλ

u
r∆tur,i − 1

)
. After imposing an arbitrarily user-defined constraint,

V u
r̃ (ẽr (t)) ≤ V u

r̃,T , the dwell-time condition in (5–15) for pr = ur is obtained. Therefore,

when the dwell-time condition is satisfied, V u
r̃ (ẽr (t)) ≤ V u

r̃,T , and thus ‖ẽr (t) ‖ is

bounded by definition. Since i ∈ N and the dwell-time interval is arbitrary, the result

holds for all i and dwell-time intervals. Since ‖er (t0) ‖ = 0 by Assumption 5.3, ‖er (t) ‖ ≤

‖êr (t) ‖+ ‖ẽr (t) ‖ and ‖êr (t) ‖ = 0 by definition, it can be shown that ‖er (t) ‖ is bounded

by ẽr,T given the dwell-time condition is satisfied.

Theorem 5.1 implies that given any desired bound on V u
r̃ (ẽr (t)), a maximum dwell-

time condition can be derived to satisfy this constraint. Let V u
r̃,I , V u

r̃ (ẽr,I) ∈ R and

V u
r̃,M , V u

r̃ (ẽr,M) ∈ R denote the desired bounds for V u
r̃ (ẽr (t)), where ẽr,I ∈ R and ẽr,M ∈

R are the desired bounds for ‖ẽr
(
tae,j
)
‖ and ‖ẽr

(
tar,i
)
‖, ∀i, j ∈ N, respectively. Then, the

maximum dwell-time condition for both constraints can be derived by substituting V u
r̃,T for

V u
r̃,I and V u

r̃,M , respectively.
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5.3.2 Exploring Agent

A stabilizing dwell-time condition is now investigated for the exploring agent. Similar

to Theorem 5.1, a design parameter V u
ẽ,M , V u

ẽ (ẽe,M) ∈ R>0 is introduced for deriving a

stabilizing condition, where ẽe,M ∈ R>0 is a desired bound on ‖ẽe (t) ‖.

Theorem 5.2. Update laws for ˙̂xe (t) satisfying Assumption 5.5 and a piece-wise

constant, right-continuous switching signal σe : [0,∞) → pe ∈ {ae, ue} that triggers the

reset map φe(Ee, x̂e (t)) , x̂r (t) + (xe (t)− xr (t)) while satisfying the maximum loss of

feedback dwell-time condition for the exploring agent given by,

∆tue,j ≤
1

λue
ln

(
V u
ẽ,M + δue

λue

V u
r̃,I + δue

λue

)
, (5–18)

ensure ‖ẽe (t)‖ is globally uniformly ultimately bounded by a design parameter, ẽe,M .

Proof. The generalized solution to (5–14) is given as

V u
ẽ (ẽe (t)) ≤ V u

ẽ

(
ẽe
(
tue,j
))
eλ

u
e (t−tae,j) − δue

λue

(
1− eλue (t−tae,j)

)
, (5–19)

∀j ∈ N, ∀t ∈ [tae,j, t
a
e,j+1). Since ‖ẽe

(
tae,j
)
‖ = ‖x̂r

(
tae,j
)

+
(
xe
(
tae,j
)
− xr

(
tae,j
))
− xe

(
tae,j
)
‖ =

‖ẽr
(
tae,j
)
‖, V u

ẽ

(
ẽe
(
tae,j
))

= V u
r̃

(
ẽr
(
tae,j
))
≤ V u

r̃,I by Assumption 5.5. By enforcing the

stabilizing constraint, V u
ẽ

(
ẽe
(
tae,j+1

))
≤ V u

ẽ,M , the stabilizing condition described by

(5–18) can be obtained. Therefore, ‖ẽe (t) ‖ ≤ ẽe,M whenever the dwell-time condition is

satisfied.

Naturally, V u
ẽ,M is selected to be greater than V u

r̃,I because V u
ẽ,M is the maximum

tolerance for V u
ẽ (ẽe (t)) and V u

r̃,I is the maximum value V u
ẽ (ẽe (t)) is reset to. Given

the same sets of closed-loop dynamics, the selection on both parameters ultimately

depends on the communication radius Rcom as discussed subsequently.

Remark 5.1. If the drift dynamic is not present, i.e., fr ≡ 0n×1 and the constant λue ≡ 0,

the condition in (5–18) may be further simplified. Utilizing L’Hôpital’s Rule, (5–19) can be
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rewritten when λue approaches zero as

lim
λue→0

V u
ẽ (ẽe (t)) ≤ lim

λue→0
V u
ẽ (ẽe(t

a
e,j))e

λue∆tue,j − lim
λue→0

δue
λue

(
1− eλue∆tue,j

)
,

≤ V u
ẽ (ẽe(t

a
e,j)) + δue∆tae,j.

Then, V u
ẽ (ẽe (t)) ≤ V u

r̃,I + δue∆tae,j, and hence ∆tue,j ≤
V uẽ,M−V

u
r̃,I

δue
.

Based on the dwell-time condition in (5–18), it can then be shown that ee (t) is upper

bounded by a constant.

Theorem 5.3. The piece-wise constant, right-continuous switching signal σe : [0,∞) →

pe ∈ {ae, ue} abiding by the maximum loss of feedback dwell-time condition in Theorem

5.2 ensures ‖ee (t)‖ is globally uniformly ultimately bounded.

Proof. Consider a single cycle of the j th activation of pe = ue, where j ∈ N. By solving

the general solution to (5–13),

V u
ê (êe (t)) ≤ V u

ê

(
êe
(
tae,j
))
e−λ

a
e(t−tae,j), ∀t ∈ [tae,j, t

a
e,j+1). (5–20)

Let a composite candidate Lyapunov-like functional be defined as

V u
e (êe (t) , ẽe (t)) , V u

ê (êe (t)) + V u
ẽ (ẽe (t)) . (5–21)

Then, the upper bound of (5–21) may be written as V u
e (ee(t)) ≤

V u
ê

(
êe
(
tae,j
))
e−λ

a
e(t−tae,j) +

(
V u
ẽ

(
ẽe
(
tae,j
))

+ δue
λue

)
eλ

u
e (t−tae,j) − δue

λue
, ∀t ∈ [tae,j, t

a
e,j+1).

Utilizing the fact that
(
V u
ẽ

(
ẽe
(
tae,j
))

+ δue
λue

)
eλ

u
e (t−tae,j) − δue

λue
≤ V u

ẽ,M , V u
e (ee(t)) ≤

V u
ê

(
êe
(
tae,j
))
e−λ

a
e(t−tae,j) + V u

ẽ,M . The change in V u
e (ee(t)) over the cycle is derived as

V u
e

(
ee
(
ta−e,j+1

))
− V u

e

(
ee
(
tae,j
))
≤ V u

ê

(
êe
(
tae,j
)) (

e−λ
a
e∆tue,j − 1

)
+ V u

ẽ,M − V u
r̃,I . Therefore,

V u
e (ee(t)) proportionally decreases over a single cycle if V u

ê

(
êe
(
tae,j
))
>

V ur̃,I−V
u
ẽ,M

1−exp(−λae∆tue,j)
,

increases if V u
ê

(
êe
(
tae,j
))

<
V ur̃,I−V

u
ẽ,M

1−exp(−λae∆tue,j)
, and remains constant if V u

ê

(
êe
(
tae,j
))

=

V ur̃,I−V
u
ẽ,M

1−exp(−λae∆tue,j)
. Since j ∈ N and the dwell-time interval is arbitrary, the result holds for

all j and dwell-time intervals. Therefore, it can be shown that V u
ê

(
êe
(
tae,j
))

approaches
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V ur̃,I−V
u
ẽ,M

1−exp(−λae∆tue,j)
as t → ∞ and that ‖êe (t) ‖ is bounded. Combined with the result from

Theorem 5.2, it can be shown that ‖ee (t) ‖ ≤ ‖êe (t) ‖+ ‖ẽe (t) ‖ is also bounded.

In Theorem 5.3, the norm of the tracking error ‖ee (t) ‖ is proven to be bounded.

However, the bound may be large. For most applications, it is desirable to allow the user

to prescribe an upper bound such that ‖ee (t) ‖ ≤ ‖êe (t) ‖ + ‖ẽe (t) ‖ ≤ ee,M ∈ R>0.

Therefore, a controller gain selection rule is provided in the following theorem.

Theorem 5.4. The piece-wise constant, right-continuous switching signal σe : [0,∞) →

pe ∈ {ae, ue} abiding by the maximum loss of feedback dwell-time condition in Theorem

5.2 ensures ‖ee (t) ‖ is globally uniformly ultimately bounded by ee,M , provided the

controller gains are selected such that

λae ≥ −
1

∆tue,j
ln

(
V u
ê (ee,M − ẽe,M) + Vr̃,I − V u

ẽ,M

V u
ê (ee,M − ẽe,M)

)
, (5–22)

where ee,M is selected such that V u
ê (ee,M − ẽe,M) ≥ Vr̃,I − V u

ẽ,M .

Proof. By combining (5–19) with (5–20), V u
e (ee(t)) defined in (5–21) may be upper

bounded by V u
e (ee(t)) ≤ V u

ê

(
êe
(
tae,j
))
e−λ

a
e(t−tae,j) +

(
V u
ẽ

(
ẽe
(
tae,j
))

+ δue
λue

)
eλ

u
e (t−tae,j) −

δue
λue
, ∀j ∈ N, ∀t ∈ [tae,j, t

a
e,j+1). After substituting in (5–18) and (5–22), the bound on

V u
e

(
ee(t

a
e,j+1)

)
becomes V u

e

(
ee
(
tae,j+1

))
≤ V u

ê

(
êe
(
tae,j
))( V ue,M−V

u
ẽ,M

V uê (ee,M−ẽe,M)

)
+ V u

ẽ,M , ∀j ∈ N.

Utilizing the fact that V u
e

(
ee
(
tae,j
))
≤ V u

ê

(
êe
(
tae,j
))

+ V u
r̃,I , the change in

V u
e (ee(t)) over a single cycle is bounded by V u

e

(
ee
(
ta−e,j+1

))
− V u

e

(
ee
(
tae,j
))
≤

V uê (ee,M−ẽe,M)+Vr̃,I−V uẽ,M
V uê (ee,M−ẽe,M)

(
V u
ê

(
êe
(
tae,j
)))

+ V u
ẽ,M −

(
V u
ê

(
êe
(
tae,j
))

+ V u
r̃,I

)
, which be-

comes V u
e

(
ta−e,j+1

)
− V u

e

(
tae,j
)
≤
(

1− V uê (êe(tae,j))
V uê (ee,M−ẽe,M)

)(
V u
ẽ,M − V u

r̃,I

)
. Therefore, over

a single cycle, V u
e (ee (t)) decreases if V u

ê

(
êe
(
tae,j
))

> V u
ê (ee,M − ẽe,M), increases if

V u
ê

(
êe
(
tae,j
))
< V u

ê (ee,M − ẽe,M), and remains constant if V u
ê

(
êe
(
tae,j
))

= V u
ê (ee,M − ẽe,M).

Since V u
ê

(
êe
(
tae,j
))

approaches V u
ê (ee,M − ẽe,M) as t → ∞, ‖êe

(
tae,j
)
‖ approaches

ee,M − ẽe,M , and hence, ‖ee
(
tae,j
)
‖ approaches ee,M as t→∞.
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5.4 Design Example

In this section, an example of applying Theorems 5.1-5.4 is presented. Consider

an unmanned ground vehicle (UGV) as the exploring agent and an unmanned airborne

vehicle (UAV) as the relay agent, both equipped with velocity and bearing measurement

units. Specifically, a two-wheeled mobile robot serves as the UGV while a quadcopter

serves as the UAV.

5.4.1 Relay Agent

To control the UAV, a single-layer neural network will be used to learn the drift

dynamics. Let xr (t) = [xrx (t) , xry (t) , xrθ (t)] ∈ R3 denote the UAV’s Euclidean

coordinate and yaw. The UAV is assumed to operate at a fixed height, and hence the

control on altitude is not considered. Under Assumption 5.2 and Assumption 5.3, the

Universal Function Approximation Theorem (cf. [80, 81]) may be invoked to approximate

the drift dynamics as

fr(xr (t)) , W Tσ(xr (t)) + ε(xr (t)) (5–23)

and

f̂r(x̂r (t)) , Ŵ T (t)σ(x̂r (t)), (5–24)

where W, Ŵ (t) ∈ RL×3 are the ideal and estimated weights, σ : R3 → RL is the

activation function, ε : R3 → R3 is the function approximation error bounded by ε̄ ∈ R3,

and L ∈ N is the number of activation functions in the neural network. Hence, the error

between the ideal and estimated weights is defined as

W̃ (t) , W − Ŵ (t) . (5–25)
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Based on (5–23), the dynamics in (5–2) can be expressed as

ẋr (t) = W Tσ(xr (t)) + vr(xr (t) , t) + ε(xr (t)) + dr (t) , (5–26)

Consider the neural network controller designed as

vr (xp (t) , t) ,ẋaux (t)− Ŵ T (t)σ(xp (t))

−

(
kr +

(
ε̄+ d̄r

)2

ε

)
(xp (t)− xaux (t)) , (5–27)

where xp (t) = xr (t) when pr = ar and xp (t) = x̂r (t) when pr = ur, kr ∈ R3×3 is a

constant, positive-definite gain matrix, xaux and ẋaux are subsequently designed, and

ε ∈ (0, 1] is a design parameter. In (5–27), the design structure remains the same for all

pr ∈ Sr, where only the input signal switches between using xr (t) and x̂r (t). The state

estimate update law is designed as

˙̂xr (t) , Ŵ T (t)σ(x̂r (t)) + vr(xo (t) , t). (5–28)

Based on an integral concurrent learning approach described in [82], the parameter

estimation update law is given as

˙̂
W (t) ,



proj(Γσ (xr (t)) eTr (t)), pr = ar ∧ t < T,

0L×3, pr = ur ∧ t < T,

proj(Γσ (xr (t)) eTr (t) + kCLΓG), pr = ar ∧ t ≥ T,

proj(kCLΓG), pr = ur ∧ t ≥ T,

(5–29)

where proj (·) is a smooth projection operator (e.g., [67] and [68]), G ,∑N
l=1 Yl

(∫ tl
tl−∆t

(
ẋTr (τ)− vTr (xr (τ) , τ)

)
dτ − YTl Ŵ (t)

)
∈ RL×3, tl ∈ [t0 + ∆t, t], Γ ∈ RL×L

is a constant, positive definite diagonal gain matrix, kCL ∈ R>0 is a constant, positive

gain, ∆t ∈ R>0 is the integration window, and Yl is the regressor for
∫ tl
tl−∆t

σ(xr(τ))dτ .
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Specifically, the history stacks are collected and updated using the method provided

in [75,83] whenever the relay agent is inside the feedback-available region, and remains

the same throughout ∆tur,i, ∀i ∈ N.

Assumption 5.6. The system of the relay agent is sufficiently excited over a finite

duration of time. Specifically, there exists a λ ∈ R>0 and T ∈ R>∆t such that the

minimum eigenvalue of
∑N

l=1 YlYTl ≥ λ, ∀t ≥ T .

Assumption 5.7. The bound on the ideal weights is known, such that
∥∥∥W − Ŵ (t)

∥∥∥ ≤
W̄ .

After taking the time derivative of (5–6)-(5–8) and substituting in (5–2) and (5–23)-

(5–29), the following closed-loop error dynamics are obtained

ėr (t) = −k̄rer (t) + W̃ Tσ(xr (t)) + ε(xr (t)) + dr (t) , pr = ar, (5–30)

˙̂er (t) = −k̄rêr (t) , pr = ur, (5–31)

˙̃er (t) = W Tσ (xr (t))− Ŵ T (t)σ (x̂r (t)) + ε (xr (t)) + dr (t) , pr = ur, (5–32)

where k̄r ,
(
kr +

(ε̄+d̄r)
2

ε

)
∈ R>0.

When pr = ar, a candidate Lyapunov-like functional is selected

V a
ζ (ζr (t)) ,

1

2
eTr (t) er (t) +

1

2
tr
(
W̃ T (t) Γ−1W̃ (t)

)
. (5–33)

where ζr (t) ,
[
eTr (t) , vec(W̃ T (t))

]T
and vec (·) is the vectorization operator. Based

on Assumption 5.6 and the update law design in (5–29), taking the time-derivative of

(5–33), and substituting in (5–30), (5–32) and (5–29) yield

V̇ a
ζ (ζr (t)) ≤− kr ‖er (t)‖2 + ε, (5–34)
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∀t ∈ [tar,i, t
u
r,i) < T, ∀i ∈ N, and

V̇ a
ζ (ζr (t)) ≤− kr ‖er (t)‖2 − kCLλmintr

(
W̃ T (t) W̃ (t)

)
+ δar

≤− λarV a
ζ (ζr (t)) + δar , (5–35)

∀t ∈ [tar,i, t
u
r,i) ≥ T, ∀i ∈ N, where λar , 2 min (kr, kCLλmin), 0 < λmin ∈ R is the minimum

eigenvalue of
∑N

l=1 YlYTl , and δar , ‖kCL
∑N

l=1

∫ tl
tl−∆t

(
εT (xr(τ)) + dTr (τ)

)
dτW̃ T (t)Yl‖ + ε.

Therefore, (5–10) from Assumption 5.5 is satisfied.

When pr = ur, three candidate Lyapunov-like functionals are selected as

V u
r̂ (êr (t)) ,

1

2
êTr (t) êr (t) , (5–36)

V u
r̃ (ẽr (t)) , ‖ẽr (t)‖ , (5–37)

V u
W̃

(W̃ (t)) ,
1

2
tr
(
W̃ T (t) Γ−1W̃ (t)

)
. (5–38)

After taking the time-derivatives of (5–36)-(5–38) and substituting in (5–31)-(5–29) yields

V̇ u
r̂ (êr (t)) ≤ −k̄r ‖êr (t)‖2 , (5–39)

V̇ u
r̃ (ẽr (t)) ≤ c1 ‖ẽr (t)‖+ ε̄+ d̄r +

∥∥∥W̃ (t)
∥∥∥ (c2 ‖êr (t)‖+ c3) , (5–40)

V̇ u
W̃

(W̃ (t)) ≤


0, ∀t < T,

−kCLλmintr
(
W̃ T (t) W̃ (t)

)
+ c4 ∀t ≥ T,

(5–41)

where c1, c2 ∈ R are known, positive constants, c3 ∈ R is the maximum bound on

σ(xσ (t)), and c4 ,
∥∥∥kCL∑N

i=1

∫ tl
tl−∆t

(
εT (xr(τ)) + dTr (τ)

)
dτW̃ TYi

∥∥∥. The generalized

solutions to (5–39) and (5–41) can be derived as

V u
r̂ (êr (t)) ≤ V u

r̂ (êr(t
u
r,i))e

−2k̄r(t−tui ), (5–42)
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V u
W̃

(W̃ (t)) ≤


V u
W̃

(W̄ ), ∀t < T,

δW +
(
V u
W̃

(W̄ )− δW
)
e−kCLλmin(t−T ), ∀t ≥ T,

(5–43)

where δW , c4
kCLλmin

. Based on (5–42), (5–43) and the projection algorithm, ‖êr (t) ‖ and

‖W̃ (t) ‖ can be upper bounded by

‖êr (t)‖ ≤
∥∥êr(tur,i)∥∥ e−k̄r(t−tur,i), (5–44)

∥∥∥W̃ (t)
∥∥∥ ≤


W̄ , ∀t < T,√
V u
W̃

(W̃ (t)), ∀t ≥ T,

(5–45)

By substituting (5–44) and (5–45) into (5–40) yields

V̇ u
r̃ (ẽr (t)) ≤ c1 ‖ẽr (t)‖+ ε̄+ d̄r +

∥∥∥W̃ (
tur,i
)∥∥∥ (c2

∥∥êr(tur,i)∥∥+ c3

)
,

≤ λurV
u
r̃ (ẽr (t)) + δur, (5–46)

where δur = ‖W̃ (tur,i)‖
(
c2

∥∥êr(tur,i)∥∥+ c3

)
+ ε̄ + d̄r and λur = c1. From here, Equation

5–13 from Assumption 5.5 is satisfied, and hence, Theorem 5.1 may be applied to

obtain the dwell-time conditions for the UGV. Based on Assumption 5.6, Assumption

5.7, and the update law design in (5–29),
∥∥∥W̃ (tur,i)

∥∥∥ ≤ W̄ , ∀t < T and
∥∥∥W̃ (tur,i)

∥∥∥ ≤√(
V u
W̃

(W̄ )− δW
)
e−kCLλmin(t−T ) + δW ,∀t ≥ T . This implies that after a finite time of

excitation, the maximum dwell-time condition in (5–15) is relaxed as the W̃ (t)→
√
δW .

5.4.2 Exploring Agent

Consider a two-wheeled mobile robot serving as the exploring agent. A unicycle

model with an exogenous disturbance is assumed for the UGV as
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q̇e (t) ,


cos qeθ 0

sin qeθ 0

0 1

 ve (q̂e (t)) + de (t) , (5–47)

where qe (t) = [qex (t) , qey (t) , qeθ (t)] ∈ R3 is the two dimensional Euclidean position and

orientation of the UGV with respect to the inertial frame and ve (q̂e (t)) ∈ R2 is the control

input. A reference trajectory is generated by a reference kinematic model given as

q̇ref (t) ,


cos qrθ 0

sin qrθ 0

0 1

 vref (qref (t)) , (5–48)

where qref (t) = [qrx (t) , qry (t) , qrθ (t)] ∈ R3 and vref (qref (t)) ∈ R2 are the desired

Euclidean pose and control input, respectively. The estimate of qe (t) is denoted by q̂e (t)

and its update law is defined as

˙̂qe (t) ,


cos qeθ 0

sin qeθ 0

0 1

 ve (q̂e (t)) , (5–49)

where qeθ (t) is assumed to be measurable.

Assumption 5.8. The orientation with respect to the inertial frame, θe (t), is measurable

through on-board measurement units such as a gyroscope or a compass.

Given (5–48) and (5–49), exponentially stable controllers may be implemented

from existing literature, such as [84, 85]. Since the stability analysis for the error system

‖êe (t)‖ = ‖q̂e (t)− qd (t)‖ is identical with a change of variable from xe (t) to q̂e (t) and

xd (t) to qd (t), it has been omitted to avoid redundancy. To satisfy Assumption 5.5, select

a candidate Lyapunov-like function V u
ẽ (ẽe (t)) , ‖ẽe (t) ‖. By taking time derivative of

85



V u
ẽ (ẽe (t)) and substituting in (5–47) and (5–49) yield,

V̇ u
ẽ (ẽe (t)) ≤ ‖ ˙̃ee (t) ‖,

≤ d̄e (t) .

Therefore, (5–14) in Assumption 5.5 is satisfied. Along with the selection on ẽe,M ,

Theorem 5.2 may be invoked to yield the dwell-time condition. Then, the control gain for

the exploring agent can be determined by selecting a desired bound, ee,M , and applying

Theorem 5.4. Specifically, the selections on ẽr,I and ẽe,M must obey the relationship of

ẽr,I + ẽe,M + ‖x̂e − x̂r‖ ≤ Rcom because ‖xr (t)− xe (t) ‖ = ‖xr (t)− x̂r (t)− xe (t) + x̂e (t) +

x̂r (t)− x̂e (t) ‖ ≤ ‖xr (t)− x̂r (t) ‖+ ‖xe (t)− x̂e (t) ‖+ ‖x̂e (t)− x̂r (t) ‖, which must be less

than Rcom at t = tae,j. However ‖x̂e (t) − x̂r (t) ‖ may be made arbitrarily small (including

zero) by utilizing an auxiliary trajectory design as illustrated in the following subsection.

5.4.3 Auxiliary Trajectory

An auxiliary trajectory xaux (t) is designed for the relay agent to track so that

xr (t) may reach xe(t) within the given dwell-time conditions in (5–15) such that

‖xr (t)− xe (t)‖ ≤ Rcom. While xr (t) ∈ F c, ‖er (t) ‖ can be upper bounded by ẽr,T

when the maximum dwell-time condition in (5–15) is reached, implying that there exists

a bounded set B = {z ∈ R2|‖z − xaux (t) ‖ ≤ ẽr,T} such that xr (t) ∈ B, ∀t. In this case,

let A be defined as the compact set of the inscribed ball of F , ẽr,T be equal to its radius,

and xε be defined as the center of A. Therefore, the requirement of xr (t) ∈ B ⊆ F can

be satisfied if xaux (t) coincides with xε when the maximum dwell-time is reached.

To illustrate the design of the auxiliary trajectory, an example of xaux (t) is given as

xaux (t) ,


ρ1x̂r

(
tae,j − tar,i

)
(t) + (1− ρ1) x̂e (t) , ∀t ∈

[
tae,j − tar,i, tae,j

)
,

ρ2x̂r
(
tar,i+1 − tae,j

)
+ (1− ρ2)xε (t) , ∀t ∈

[
tar,i+1 − tae,j, tar,i+1

)
.

(5–50)
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where ρ1, ρ2 ∈ R are time-based ratios designed as ρ1 ,
t−tar,i
tae,j−tar,i

and ρ2 ,
t−tae,j

tar,i+1−tae,j
.

Using this design, ‖x̂e (t) − x̂r (t) ‖ = 0 at t = tae,j, the condition for parameter selection,

ẽr,I + ẽe,M + ‖x̂e − x̂r‖ ≤ Rcom, is relaxed. Other transition functions may also be utilized

to achieve similar effects, such as the smoother-step function as described in Chapter 4.

5.5 Experimental Results

An experiment is performed to verify the theoretical results and demonstrate the

performance of the developed approach. As depicted by Figure 5-1, a region with state

feedback, F ∈ R2, is defined by a circle with a radius of 0.6 meters centered at the

origin, a desired path, xd ⊂ F c ⊂ R2, is defined by a circular trajectory with a radius of

1.8 meters from the origin, and the communication radius of the relay agent is selected

to be 0.6 meters. The overall goal of this experiment is to represent a scenario where

a two-wheeled mobile robot is utilized as an exploring agent, tasked with following

xd, while a quadcopter is utilized as the relay agent that services the exploring agent

intermittently. Specifically, the objective is to demonstrate the boundedness of the

tracking error ee (t) and verify the results in Theorems 5.1-5.4.

For this experiment, a Parrot Bebop 2.0 quadcopter and a Clearpath Robotics

Turtlebot 2 with a Kobuki base are used for the UAV and UGV, respectively. The exper-

imental setup are described in Chapters 3. Although a single ground station is used,

the respective control algorithms for the relay and exploring agent are implemented to

simulate the behavior and interaction both agents would experience had the algorithms

been implemented separately and on-board the agents. State measurements from the

motion capture system are made available to the quadcopter whenever the quadcopter

is inside the prescribed feedback-available region, and the pose difference between the

two agents are utilized whenever the agents are within the communication range of one

another (i.e., only the vector ‖xe (t)− xr (t) ‖ is made available by Assumption 5.4, rather

than the independent measurements of xe (t) and xr (t)). The measured pose difference
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Figure 5-1. A representation of the experimental setup. The gray region denotes the
feedback-available region, which is 0.6 meters in radius, and the black
dotted line denotes xd, which is a circular path with a radius of 1.8 meters.
As a comparison, the ratio between the radius of the desired path and the
feedback-available region is 300%, versus 150% in Chapter 4 (1 meter
radius for the feedback-available region and 1.5 meters for the desired
circular path).
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is then added to the relay agent’s estimate of its own pose to generate a reset signal

that is communicated to the exploring agent through the WiFi channel.

Dynamics described by (5–26) and (5–47) are used for the relay and exploring

agent, respectively, where the control design described by (5–27)-(5–29) are utilized for

the relay agent, and the control design in [85] and the estimate update law in (5–49) are

implemented for the exploring agent. Specifically, the bound on the disturbances are

assume to be d̄r = 0.01 and d̄e = 0.0067, the gain conditions and parameters for the relay

agent are selected as kr = 0.8I3, ε = 0.01, W̄ = 2.0, kCL = 0.7, and hyperbolic tangent

for the activation function in the neural network. The gain conditions for the exploring

agent are selected to match the selections in [85], such that λae = 0.18. Based on the

experimental scenario, desired error bounds are selected as ẽe,M = 0.4, ẽr,I = 0.2 and

ẽr,M = 0.6. The dwell-time conditions resulting from the selected gain conditions and

parameters are ∆tur,i ≤ 6.97 seconds before the relay agent reaches the exploring agent,

∆tur,i ≤ 17.56 seconds before the relay agent must return to F , and ∆tue,j ≤ 30.0 seconds

between each state estimate update for the exploring agent. Obeying the dwell-time

conditions, an auxiliary trajectory is designed to bring the the estimates of the relay

agent to and from the exploring agent. The results are shown in Figures 5-3-5-6.

Figure 5-2 demonstrates the overall tracking result from a top-down view of the

trajectories generated by the agents. As shown in the figure, the exploring agent is

able to follow the prescribed path by a bounded error, and the relay agent is able to

service the exploring agent and return to the feedback-available region intermittently. To

quantify the performance, Figure 5-3 illustrates the instantaneous values of ‖ee (t) ‖ with

respect to time. Over each state estimate update, ‖ee (t) ‖ becomes discontinuous due

to the use of reset maps. The average path-following error of ‖ee (t) ‖ is calculated to be

0.1257 meters, which translate to approximately 10.5% in ratio compared to the distance

from F . In Figure 5-4, the root-mean-square (RMS) error for ‖ẽe (t) ‖ is 0.1429 meters

and the peak is bounded below the desired threshold ẽe,M = 0.45 meters.
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Figure 5-2. The overall tracking result for the relay and exploring agent. The green and
red lines denote the trajectories of the relay agent when inside and outside
the feedback-available region, respectively. The blue line represents the
trajectory of the exploring agent, which is initialized at (0.5, 1.7).
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Figure 5-3. The tracking performance plot for ‖ee (t)‖. The green and red trajectories
denote the change in ‖ee (t)‖ when the agents are within and outside the
communication range, respectively. The vertical dotted lines denote the time
instances when the relay agent transmitted an estimated pose information to
the exploring agent (i.e., tae,j).
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Figure 5-4. The tracking performance plot for ‖ẽe (t)‖. The green and red trajectories
denote the change in ‖ẽe (t)‖ when the agents are within and outside the
communication range, respectively. The vertical dotted lines denote the time
instances when the relay agent transmitted an estimated pose information to
the exploring agent (i.e., tae,j).
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Figure 5-5. The tracking performance plot for ‖er (t)‖. The green and red trajectories
denote the change in ‖er (t)‖ when the relay agent is inside and outside the
feedback-available region, respectively. The vertical dotted lines denote the
time instances when the relay agent crosses the boundaries of the
feedback-available region (i.e., tar,i and tur,i).
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Figure 5-6. The tracking performance plot for ‖ẽr (t)‖. The green and red trajectories
denote the change in ‖ẽr (t)‖ when the relay agent is inside and outside the
feedback-available region, respectively. The vertical dotted lines denote the
time instances when the relay agent crosses the boundaries of the
feedback-available region (i.e., tar,i and tur,i).

Figure 5-7. The estimated weights of the single-layered neural network.
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Figure 5-5 and 5-6 illustrate the tracking error and the state estimation error for

the relay agent. As the results indicate, both ‖er (t) ‖ and ‖ẽr (t) ‖ are bounded above

by the desired threshold ẽr,M = 0.6 meters, which is a sufficient condition to ensure

stability. The effects of the reset maps can be clearly seen in Figure 5-6 where ‖ẽr (t) ‖

is immediately reset to zero upon every entry to the feedback-available region. Figure

5-7 provides an depiction of the change of Ŵ (t) with respect to time. However, since

the ideal weights W are unknown in neural network, an error plot for ‖W̃ (t) ‖ cannot be

provided.

Based on the results, the experiment illustrated the performance of the developed

method. Compared with the most similar result in [66], the results demonstrated the

ability to operate further away from the feedback-available region. Specifically, the ratio

between the radius of the desired path and the feedback-available region is 300% in this

experiment (1.8 meters versus 0.6 meters), whereas 150% in [66] (1.5 meters versus

1.0 meter). In addition, the path-following error also performs better, where the average

over the distance from F is approximately 10.5% in the developed method versus 34.3%

in [66].

Since the calculated maximum dwell-time condition for the exploring agent is 30

seconds, the relay agent will remain in F for up to 20 seconds because every service

cycle is approximately 10 seconds based on the experimental design. To further demon-

strate the capability of the developed method, an extended experiment is performed in

which three exploring agents are utilized. The gains and parameter selections remains

the same from the previous experiment, and the relay agent cycles through the three

exploring agents, servicing one agent at a time. The overall tracking result in shown in

Figure 5-8. As indicated by 5-8, the exploring agents, whose states are represented by

xe1 (t), xe2 (t) and xe3 (t), respectively, are able to converge towards the desired path,
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despite being initialized away from the path. The extended experiment further demon-

strates the potential applications in formation control and herding problems where a

single leader agent and multiple follower agents are involved.

5.6 Summary

A novel method for using a relay agent to assist an exploring agent to path-follow

in a state feedback-denied region is presented. Specifically, the exploring agent may

remain and operate in the feedback-denied region without having to return to the

feedback-available region, while the relay agent intermittently leaves the feedback-

available region to update state information for the exploring agent. The relay agent

also contains unknown drift dynamics, and a neural-network-based learning method

is utilized to approximate the drift dynamics. Both the exploring and relay agent rely

on a state predictor to generate state estimates while outside the feedback-available

region. Through a Lyapunov-based switched systems analysis, dwell-time conditions

for the relay and exploring agent are developed. Provided that the dwell-time conditions

are satisfied, the dynamical systems for both relay and exploring agents are proven to

be stable, such that the tracking and estimation errors are bounded above by a user

defined parameter.

To demonstrate the application of this method, examples of controller and predictor

update laws for both agents are provided, a single-layer neural network is implemented

using an integral concurrent learning approach, and an auxiliary trajectory for the

relay agent is given to ensure the fulfillment of the dwell-time conditions. Based on

the design examples, an experiment is performed using a two-wheeled mobile robot

as the exploring agent and a quadcopter as the relay agent. The experimental results

and respective error plots are provided, accompanied by discussions to illustrate the

performance of the presented method.
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Figure 5-8. The overall tracking result with one relay agent servicing three exploring
agent.
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CHAPTER 6
CONCLUSION

In many scenarios, factors such as task definition, operating environment, or sensor

modality can result in temporary loss of feedback for autonomous agents (e.g., commu-

nication may be limited or feedback may be provided by sensors such as cameras which

are limited by sensing distance and field-of-view (FOV) constraints, and are vulnerable

to occlusions). Such factors have motivated the development of various path planning

and control methods that seek uninterrupted feedback, where the desired trajectory

or behavior of such systems is inherently constrained. Systems with nonholonomic

constraints may experience limited, sharp-angled or non-smooth trajectories to keep a

navigational landmark in the FOV using a visual servoing approach. In lieu of constrain-

ing the system to ensure uninterrupted feedback, the work in this dissertation allows

intermittent loss of state feedback for systems operating in feedback-denied regions.

Some applications where this framework is useful include underwater operations that

require vehicles to resurface to acquire GPS, navigation within urban canyons where

GPS is occluded, and exploration of areas where absolute positioning systems have not

been established.

Chapter 2, a novel method to WMR vision based trajectory tracking utilizing a

switched systems approach is presented. In contrast to past literature, the approach

presented in this chapter does not require constant image feedback of landmark fea-

tures. State estimates are used for the control input instead of the true states, and are

updated via an observer or a predictor when the landmark is visible or not, respectively.

Chapter 2 represents novel approach to dealing with controlling a dynamical system

under intermittent state feedback, where the system may navigate without state feed-

back for up to a developed dwell-time. It is shown that using the developed dwell time

conditions for the nonlinear observer, trajectories can be designed to allow the landmark
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to leave the FOV for periods of time. The stability analysis indicates the controller en-

sures the tracking error is globally uniformly ultimately bounded. The bounded result

implies that image feedback of landmark features is not required for a duration less than

or equal to the maximum dwell time, allowing for intermittent state feedback. Given that

the landmark may leave the FOV for periods of time, the WMR is able to operate over

larger environments. A simulation and an experiment for the developed control scheme

are provided.

Further extending the result, Chapter 3 aims to achieve a path-following objec-

tive despite intermittent loss of feedback. The novelty of the result in this chapter is

guaranteeing the stability of following a path which lies outside a region with feedback

while maximizing the amount of time the agent spends in the feedback-denied envi-

ronment. Unlike Chapter 2, where the objective is to regulate a nonholonomic vehicle

to a set-point in the presence of intermittent feedback, the difficulty of path following in

this chapter arises when the system is outside the feedback region. Switched systems

methods are used to develop a state estimator and predictor when state feedback is

available or not, respectively. Since switching occurs between a stable subsystem when

feedback is available and an unstable subsystem when feedback is not available, dwell

time conditions are developed that determine the minimum time that the agent must be

in the feedback region versus the maximum time the agent can be in the feedback de-

nied region. Using these dwell time conditions, a switching trajectory is designed based

on the dwell time conditions that leads the agent in and out of the feedback denied

region so that the overall system remains stable. An experiment using a quadcopter is

performed to illustrate this approach.

To generalize the approach developed in the previous chapters, development in

Chapter 4 is focused on the relaxation of the necessity to alter existing controllers

and associated stability analysis, while maximizing the amount of time the agent is

allowed in the feedback-denied environment. Furthermore, the current result allows
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a reset map to be used with no minimum dwell-time condition. These contributions

allow a wide class of controllers, observers, or predictors to be used, and allows the

agent to spend more time following the path in the feedback denied region. Using

Lyapunov-based stability methods, a framework is developed to allow state estimators

and predictors to be used when state feedback is or is not available, respectively, and

switched systems analysis determines the stabilizing dwell-time conditions based on

a prescribed tolerance on the tracking error. According to the developed dwell-time

conditions, an auxiliary trajectory is designed to guide the nonlinear dynamic system in

and out of the feedback denied region so that the overall system remains stable. Two

experiments using a quadcopter are provided to demonstrate the performance of the

approach.

Building on the developed framework and taking into account uncertainty in the

dynamics, Chapter 5 investigates an assisted path-following objective involving a relay

agent and an exploring agent. Specifically, the presented method allows an exploring

agent to remain and operate in the feedback-denied environment indefinitely, while

a relay agent is utilized to intermittently visit the exploring agent to update its state

estimate. The unique challenge in this method is that the relay agent also loses state

feedback once it enters the feedback-denied region, and hence must rely on its state

estimate to reach the exploring agent and then return to the feedback-available region

in time. In addition, the drift dynamics of the relay agent are assumed to be unknown,

and hence, a neural-network-based learning method is utilized to approximate the

drift dynamics. To address the stability of the overall system, a Lyapunov-based,

switched systems approach is used to develop dwell-time conditions to determine

the maximum time the relay agent may remain in the feedback-denied region and the

maximum time an exploring agent is allowed to operate without a state update given a

prescribed tolerance on the estimation error. An experiment is performed, and results

are presented with discussions. As an extension, the experiment is reproduced with
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three exploring agents to demonstrate that under admissible physical conditions (i.e.,

minor environmental disturbances, measurement noise, etc.), the results in Chapter 5

may be extended to include multiple exploring agents.

The developments in this dissertation provides a foundation for various intermit-

tent feedback research problems. One direction to extend is the development of a

generalized path-planning strategy to replace the auxiliary trajectories described in

this dissertation. The auxiliary trajectories described in this dissertation are arbitrarily

designed to satisfy the dwell-time conditions and are ad-hoc in nature. However, a

significant contribution can be made from utilizing (sub)optimal path-planning methods,

such as model predictive control and online approximate optimal control methods, to

yield a more general solution.

Furthermore, the relaxation of the dwell-time conditions may be investigated

through other types of state estimation. As motivated in the literature review, the

development in this dissertation is based on using a predictor to propagate state

estimates when feedback is unavailable to demonstrate stability in the worst case

scenario. However, integration with other sensors may improve state estimation, and

hence, prolong the maximum dwell-time a system can operate without true state update.

For example, although not included in this dissertation, preliminary results during the

development of this work suggest that odometry from encoders on WMR’s may provide

a more accurate estimation than predictors under minimal slip conditions. In addition,

vision-based odometry may also be utilized to update state estimate, which is typically

the case for many commercial quadcopters. However, online quantification of estimation

error accumulation for these methods and integration with the results in this dissertation

are currently open challenges.

While the results of this dissertation involve a known, stationary feedback region,

future research may also focus on time-varying, unknown or multiple regions. Based

on the result in Chapter 5, if the relationship between agents is measurable when the
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agents are sufficiently close, the exploring agent may be treated as a local landmark,

and the relay agent may utilize the measured relationship as a local state feedback

(with respect to the exploring agent). Thus, the local feedback information is similar to

achieving localization with respect to a topology graph in SLAM approaches. Therefore,

future research may potentially investigate global loop-closure techniques to estimate

the topology between non-overlapping feedback-available regions. As a result, formation

control and network problems are also potential research directions stemming from the

development of this dissertation.
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