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Abstract 

A nonlinear adaptive attitude controller is designed in this paper that compensates for
dynamic uncertainties in the spacecraft inertia matrix and unknown dynamic and static
friction effects in the control moment gyroscope (CMG) gimbals. Attitude control torques
are generated by means of a four single gimbal CMG pyramid cluster. The challenges to
develop the adaptive controller are that the control input is multiplied by uncertainties due
to dynamic friction effects and is embedded in a discontinuous nonlinearity due to static
friction effects. A uniformly ultimately bounded result is proven via Lyapunov analysis for
the case in which both static and dynamic gimbal friction is included in the dynamic model,
and an extension is provided that illustrates how asymptotic tracking is achieved when only
dynamic friction is present in the CMG model. 

Introduction

Through ventures such as NASA’s New Millennium Program and DoD’s Opera-
tional Responsive Space [1], the space industry is moving toward smaller satellites
and the buses that support them. Some proposed uses of these small satellites (small-
sats) include astrophysics research, surveillance, and autonomous servicing, all of
which require precision attitude motion. However, due to their smaller sizes, the at-
titude motion of these small-sats is more susceptible to external disturbances than
their larger counterparts. Furthermore, the smaller sizes of these new small-sats limit
the mass, power and size budgets allocated to their attitude control systems (ACS).
These contradictory requirements necessitate novel solutions for the ACS. 

Controllers that are based on the assumption that a torque can be directly applied
about the body-fixed satellite axes (e.g., [2]–[5]) may not be well-suited for appli-
cations that require high-precision attitude control, because the satellite torques are
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generated by actuators with additional dynamics. For example, (especially in small
rigid-body satellites), the desired torques are typically generated by a cluster (e.g.,
[6], [7]) of single gimbal control moment gyroscopes (CMGs) due to their low
mass and low power consumption properties. Unfortunately, the torque producing
capacity of CMGs can deteriorate over time due to changes in the dynamics such
as bearing degradation and increased friction in the gimbals. The ramifications of
CMG friction buildup include increased power consumption due to energy dissipa-
tion. Examples of actual satellite failures resulting from CMG problems are the
Hipparcos satellite and Magellan satellite [8]. Hipparcos failed and “spun down”
due to numerous gyroscope failures. One of these failures was due to high and
variable drag torque in gyro Number 4, which led to premature degradation. The
Magellan satellite was in transit to Venus for five months before it began exhibiting
erratic motor current shifts in one of its gyros [8]. The cause of this failure was
found to be friction buildup due to a manufacturing process error in which the bear-
ing lubricant was contaminated by a solvent. 

Motivated by the aforementioned issues, the problem of satellite attitude control
in the presence of uncertainties has been investigated by several researchers. In [9],
an output feedback structured model reference adaptive controller is developed for
spacecraft rendezvous and docking problems. The adaptive controller in [9] accom-
modates inertia uncertainty in the momentum wheel actuator dynamics; however,
no frictional effects were assumed to be present in the actuator model. A quaternion-
based, full-state feedback attitude tracking controller was designed in [2] for a rigid
satellite in the presence of an unknown satellite inertia matrix. A model-error con-
trol synthesis (MECS) approach was used in [3] to cancel the effects of modelling
errors and external disturbances on the system. The control law proposed in [3] re-
quires a model-error term to cancel the effects of a time delay, which is inherent to
the MECS design. An adaptive control law is designed in [10], which incorporates
a velocity-generating filter from attitude measurements. The controller in [10] is
shown to achieve asymptotic convergence of the attitude and angular velocity track-
ing errors despite uncertainty in the satellite inertia, but it assumes no dynamic un-
certainty in the control torque. While the aforementioned controllers perform well
for applications involving large satellites, they may not be well-suited for attitude
control of CMG-actuated small-sats. In this paper, we develop a more suitable con-
trol design for such small-sats. 

A nonlinear adaptive controller is developed in this paper that compensates for
inertia uncertainties and uncertain CMG gimbal friction. Instead of developing a
control torque to solve the attitude tracking problem, the attitude tracking con-
troller in this paper is developed in terms of the CMG gimbal angular velocity. The
development is complicated by the fact that the control input is multiplied by a
time-varying, nonlinear uncertain matrix. Additional complications arise because
the gimbal velocity control term is embedded inside of a discontinous nonlinear-
ity (i.e., the standard signum function) resulting from the CMG static friction
effects. A robust control method is used to mitigate the disturbance resulting from
the static friction. In addition, potential singularities may exist in the Jacobian that
transforms the torque produced by each CMG to desired torques about the satel-
lite coordinate frame [11]. The singularity problem is circumvented by the use of
a particular Jacobian pseudoinverse, coined the “singularity robust steering law,”
which was introduced in [12], and has been implemented in several aerospace
vehicles (e.g., see [11] and [13]). A uniformly ultimately bounded (UUB) stability
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result is proven via Lyapunov analysis for the case in which both static and
dynamic friction effects are included in the CMG dynamic model. An asymptotic
tracking extension is then formulated for the case where static friction effects
are ignored. 

Dynamic Model 

The dynamic model for a rigid body CMG-actuated satellite can be expressed as
[14], [15] 

(1) 

In (1), represents the positive definite, symmetric satellite inertia
matrix that is a function of the CMG gimbal angular position vector ,

denotes the angular velocity of the satellite body-fixed frame with
respect to expressed in , denotes the torque generated via a CMG
cluster consisting of four single gimbal CMGs, the term represents the time
variation of the satellite inertia matrix due to the motion of the CMGs, and the
notation denotes the skew-symmetric matrix

(2)

The satellite inertia matrix in (1) can be lower and upper bounded as

(3)

where are the minimum and maximum eigenvalues of ,
respectively. The torque generated from the CMG cluster can be modeled as 

(4) 

where , are diagonal matrices whose elements are the unknown con-
stant dynamic and static friction coefficients, respectively, of the four CMG gimbals.
Also in (4), represents the angular momentum of the CMG cluster, and

is modeled as [7] 

(5)

where represents the constant angular momentum of each CMG expressed in
the gimbal-fixed frame (i.e., h is the same for all four CMGs). The CMG torque ex-
pression in (4) and (5) does not explicitly include gimbal acceleration terms, but
under the standard assumption that these sources of error are small by comparison,
these effects are assumed to be included with the other bounded uncertainties, which
contribute to the ultimate bound on the tracking error. In (4) and (5),
denotes the CMG gimbal angular velocity control input, which is defined as

(6)

where denotes the angular velocity of the individual CMG gimbals
denotes a vector form of the standard func-

tion where the is applied to each element of , and denotes
a measurable Jacobian matrix defined as
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(7) 

where is the constant angle (54.74 deg) of each wall of the pyramid-shaped
CMG cluster as depicted in Fig. 1. Since the elements of in equation (7) are
combinations of bounded trigonometric terms, an inequality can be developed as

(8) 

where is a positive bounding constant, and denotes the induced
infinity norm of a matrix. 

Kinematic Model 

The rotational kinematics of the rigid-body satellite can be determined as [2] 

(9) 

(10) 

In equations (9) and (10), represents the unit quater-
nion [14] describing the orientation of the body-fixed frame with respect to ,
subject to the constraint 
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FIG. 1. The University of Florida Space Systems Group Control Moment Gyroscope Model. 



(11) 

Rotation matrices that bring onto and onto (desired body-fixed orienta-
tion), denoted by and , respectively, can be
defined as 

(12)

(13)

where denotes the identity matrix, and 
represents the desired unit quaternion that describes the orientation of the body-
fixed frame with respect to . Using equations (9) and (10), can be
expressed in terms of the quaternion as 

(14) 

The angular velocity of the desired body-fixed frame with respect to expressed
in can also be determined as 

(15) 

The subsequent analysis is based on the assumption that , , and their first
three time derivatives are bounded for all time. This assumption ensures that 
of (15) and its first two time derivatives are bounded for all time. 

Control Objective 

The objective in this paper is to develop a gimbal velocity controller to enable
the attitude of to track the attitude of . To quantify the objective, an attitude
tracking error denoted by is defined that brings onto as 

(16) 

where and were defined in equations (12) and (13), respec-
tively, and the quaternion tracking error , is defined as 

(17) 

(18) 

Based on equation (16), the attitude control objective can be stated as 

as (19) 

Based on the tracking error formulation, the angular velocity of with respect to
expressed in , denoted by , is defined as 

(20)

From the definitions of the quaternion tracking error variables, a constraint is
developed as [2]

(21)

where 
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where represents the standard Euclidean norm. From (21),

(23) 

and hence, equation (16) can be used to conclude that if equation (23) is satisfied,
then the control objective in equation (19) will be achieved. 

Adaptive Control Development 

To facilitate the controller design, an auxiliary signal, denoted by , is
defined as 

(24)

where is a constant, positive definite, diagonal control gain matrix. After
substituting equation (24) into equation (20), the angular velocity tracking error can
be expressed as 

(25) 

Motivation for the design of is obtained from the subsequent Lyapunov-based
stability analysis and the fact that equations (14)–(18) can be used to determine the
open-loop quaternion tracking error as 

(26)

After taking the time derivative of equation (24) and premultiplying by , an
expression can be obtained as

(27)

where the fact that 

was utilized. After using equations (1), (4), (5), (24), and (26), the expression in
equation (27) can be written as 

(28) 

In equation (28), is a known and measurable regression
matrix, and is a vector of unknown constants where 

(29)

The constant is defined based on the number of uncertain parameters in the
parameterization in equation (29). In this case, , corresponding to three
uncertain gimbal inertia parameters, three uncertain satellite inertia parameters,
and four uncertain CMG mass parameters. Also in equation (28),

denotes an auxiliary matrix containing parametric uncer-
tainty defined as 

(30)�1 �̇ � ��J

��
�̇�� 1

2
r � R̃�d � �ev� � AFd �̇

�1�r, ev, e0, t� � �3�4

p1 � 10
p1

Y1�1 � ���J� � J��R̃�d � JR̃�̇d �
1

2
J��ev

� � e0I��̃

p1�1 � �p1

Y1�ev, e0, �, �, t� � �3�p1
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that can be linearly parameterized in terms of a known regression matrix
and a vector of unknown constants as 

(31) 

The constant is defined based on the number of uncertain elements in equation (30).
In this case, , corresponding to two uncertain CMG inertia parameters and
four uncertain dynamic friction coefficients. Some of the control design challenges
for the open-loop system in equation (28) are that the control input is premul-
tiplied by a nonsquare known time-varying matrix plus a nonsquare unknown time-
varying matrix, and is embedded inside of a discontinuous nonlinearity (i.e.,
the signum function). To address the fact that is premultiplied by a nonsquare
unknown time-varying matrix, an estimate of the uncertainty in equation (31), de-
noted by is defined as 

(32) 

where is a subsequently designed estimate for the parametric uncer-
tainty in . Based on equations (31) and (32), equation (28) can be
rewritten as 

(33)

where is defined as 

(34)

and the parameter estimate mismatch is defined as 

(35)

Based on the expression in equation (33) and the subsequent stability analysis,
the control input is designed as 

(36)

where denote positive control gains, and de-
notes a pseudoinverse of defined as [11]–[13] 

(37)

In equation (37), denotes a singularity avoidance parameter. For example,
Nakamura et al. [12] designed as 

(38)

so that is negligible when is nonsingular but
increases to the constant parameter as the singularity is approached. After
substituting the control input expression in equation (36) into equation (33), an
expression is obtained as

(39)

where the parameter estimate mismatch is defined as 
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Based on equation (39) and the subsequent stability analysis, the parameter esti-
mates and are designed as 

(41)

where and denote constant, positive-definite, diagonal
adaptation gain matrices, and denotes a projection algorithm utilized to guar-
antee that the i th element of and can be bounded as 

(42)

where , and denote known, constant lower and upper bounds
for each element of an , respectively. 

Remark 1: While robust or linear control methods (i.e., LQR, , LQG) can be
applied to linearized versions of satellite systems, such controllers are designed
based on worst-case scenarios for the uncertainty in the system. Although high gain
and/or high frequency feedback can be used to compensate for such worst-case sce-
narios, adaptive control has advantages over linear or robust control approaches in
that high gain and/or high frequency feedback is not necessary. 

Stability Analysis 

Theorem 1: Given the closed-loop error dynamics in equation (39), the adaptive
controller of equation (36) and equation (41) ensures global uniformly ultimately
bounded (GUUB) attitude tracking in the sense that 

(43)

where denote positive bounding constants. 
Let be defined as the nonnegative function 
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It follows directly from the bounds given in equations (3), (22), and (42) that
can be upper and lower bound as
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where , , , are known positive bounding constants, and is
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the expression in equation (47) can be written as 

(48) 

where . After completing the squares, equation (48) can be
written as 

(49)

Since the inequality in equation (45) can be utilized to lower bound as 

(50)

the inequality in equation (49) can be expressed as 

(51)

where is a positive constant that is defined as 

(52)

The linear differential inequality in equation (51) can be solved as 

(53)

The expressions in equations (44) and (53) can be used to conclude that 
Thus, from equations (22), (25), and (46), , , and equation (24) can
be used to conclude that . Equation (26) then shows that ,

Hence, equations (29), (32), (34), and (42) can be used to prove that the
control input Standard signal chasing arguments can then be utilized to
prove that all remaining signals remain bounded during closed-loop operation. The
inequalities in equation (45) can now be used along with equations (52) and (53) to
conclude that 

(54)

The result in equation (43) can now be directly obtained from equation (54). 

Asymptotic Tracking Extension 

In this section, a control design is developed for the case when static friction 
is ignored. The following analysis illustrates that the controller developed in the
previous section can be used to achieve asymptotic attitude tracking for this case. 

Closed-Loop Error System 

In the absence of static friction, letting in equation (36) results in an ex-
pression for the closed-loop tracking error system as
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Stability Analysis Ignoring Static Friction 

Theorem 2: Given the closed-loop dynamics given in equation (55), the adaptive
controller of equations (36) and (41) ensures asymptotic attitude tracking in the
sense that 

and (56) 

provided the initial conditions are selected such that 

(57)

and the inertia matrix J satisfies the sufficient condition defined in equation (3). 
To prove Theorem 2, the same procedure as in the previous section can be used

to calculate the time derivative of the function defined in equation (44) as 

(58) 

where z was defined in equation (46), and was defined in equation (48). From
equation (58), is negative semi-definite, and is bounded as shown in equa-
tion (45). Furthermore, equations (22), (24), (41), (42), and (55) can be used to con-
clude that , , . Thus, , and . Barbalat’s
Lemma can now be used to conclude that 

as

Hence, the adaptive control law given by equations (36) and (41) achieves the
asymptotic tracking claim given in equation (56) for the case in which static fric-
tion is ignored in the dynamics. Verification of the boundedness of the remaining
signals during closed-loop operation is similar to that in the previous section. 

Simulation Results 

The attitude controller developed in this paper was simulated based on the model
for the University of Florida CMG (see Fig. 1). Using equation (1), the dynamic
equation of motion in terms of the CMG model can be expressed as 

(59)

where the CMG inertia matrix is defined using the parallel axis
theorem as 
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3The actual values for the parameters , , , , and are used to generate the plant
model in the simulation, but they are not used in the control law. The adaptive control law compensates for
these uncertain parameters. 

giJgi �i � 1, 2, 3, 4mcmgiFsFdJ0



(63) 

(64) 

denotes the inertia matrix of the i th gimbal as ex-
pressed in the CMG body-fixed frame defined as 

(65) 

is defined using equation (5), where , and denotes the 
identity matrix. In equation (65), the coordinate transformation matrix

relates the i th gimbal-fixed frame to the CMG body-
fixed frame, and 

represents the inertia matrix of the i th gimbal as expressed in the i th
gimbal-fixed frame. 

The objective is to regulate a satellite’s attitude to the desired quaternion
defined by 

(66) 

with the initial quaternion orientation of the satellite given by 

and the adaptive estimates initialized as 

Remark 2: In a realistic scenario, the adaptive estimates would be initialized to the
best guess of the actual parameter values. The estimates were initialized to a vector
of zeros in the simulation to test a case when no knowledge of the parameters is
available. The simulation was also run using initial parameter estimates of ten times
their actual value, with no noticeable degradation in controller performance. 

The friction matrices and for the simulated CMG are (e.g., see reference [16]) 

(67) 

To test the scenario when a sudden increase in the friction occurs, an instantaneous
jump (i.e., step function) of 0.3 in the and parameters is programmed to occur
four seconds into the simulation.4 To test a realistic scenario, random number noise
of 10% was added to all sensor measurements in the simulation. In addition, an
input delay of 10 ms was included to simulate the effects of gimbal servo loop
delays. Figures 2–3 show the simulation results of the closed-loop system for this
case with control gains selected as (e.g., see equations (36), (37), (38), and (41))

The steady-state quaternion tracking error is on the order of . Figure 4 illus-
trates the variation in the inertia parameters during closed-loop operation. 

10�3

�2 � 1.1I6�1 � 0.025I10

� � 0.2�0 � 0.2kn � 0.3k � 0.5

FsFd

Fs � 0.4I4Fd � 0.2I4

FsFd

 �̂2�0� � �0 0 0 0 0 0�T

 �̂1�0� � �0 0 0 0 0 0 0 0 0 0�T

q�0� � �1 0 0 0�T

qd � �0.808 �0.174 0.556 �0.091�T

�i � 1, 2, 3, 4

giJgi � diag�4.89 � 10�5 2.49 � 10�4 2.79 � 10�4�kg m2
�i � 1, 2, 3, 4CBgi � SO�3�

n � nInh � 0.078ḣcmg � �3

BJgi �
� �CBgi� �giJgi� �CBgi�T

BJgi��� � �3�3 �i � 1, 2, 3, 4

 r4 �
� �0 �0.1591 0.1000�Tm

 r3 �
� �0 0.1591 0.1000�Tm
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4In a realistic situation, the gimbal friction would most likely increase gradually over time (e.g., due to bearing
degradation, corrosion, etc.), so the sudden spike of friction tested in the simulation tests a worst-case scenario. 
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FIG. 2. Quaternion Tracking Error (no units). 

0 1 2 3 4 5 6 7 8 9 10
2

0

2

. δ 1(t
) [o /s

ec
]

0 1 2 3 4 5 6 7 8 9 10
20

10

0

10

. δ 2(t
) [o /s

ec
]

0 1 2 3 4 5 6 7 8 9 10
5

0

5

. δ 3(t
) [o /s

ec
]

0 1 2 3 4 5 6 7 8 9 10
5

0

5

10

Time [sec]

. δ 4(t
) [o /s

ec
]

FIG. 3. Control Input Gimbal Angular Rates. 



Conclusions and Future Work 

In this paper, a uniformly ultimately bounded attitude tracking controller for a
rigid-body satellite is presented. The controller adapts for parametric uncertainty
in the satellite inertia matrix in addition to the uncertainties in the input torque
caused by unknown CMG gimbal friction. The gimbal rate input controller
achieves uniformly ultimately bounded attitude tracking in the presence of static
and dynamic CMG gimbal friction. In the presence of static friction, the control
design is complicated due to the control input being embedded in a discontinuous
nonlinearity. This difficulty is overcome with the use of a robust tracking control
law. In addition, since a singularity robust steering law was incorporated in the
control design, the proposed approach avoids singular torque directions inherent
to the dynamics of the four single gimbal CMG cluster. Numerical simulation re-
sults were provided to show the efficacy of the proposed controller. An asymptotic
tracking extension is also presented in the absence of static friction in the dynamic
model. Future work will address the issues of explicit gimbal acceleration de-
pendence in the CMG torque model, variations in CMG wheel speed, and hard
stops in the CMG gimbals. 
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