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A B S T R A C T

In this paper, a set of low Earth orbiting spacecraft consisting of multiple chasers and a single cooperative or
unknown target, is considered for rendezvous and along-orbit formation maneuvers. Each maneuverable
spacecraft can change its experienced atmospheric drag acceleration by extending/retracting dedicated surfaces.
A Lyapunov-based adaptive controller is designed using an Integral Concurrent Learning (ICL)-based adaptive
update law and the Schweighart-Sedwick equations of relative motion to regulate the in-plane relative states of
each target-chaser pair. The controller is designed to compensate for uncertainties in atmospheric density, drag
or ballistic coefficient and the velocity relative to the atmosphere of each spacecraft in the fleet. When the system
is sufficiently excited, the controller also provides estimation of the uncertain parameters. Numerical simulations
using nonlinear dynamics for each spacecraft and the NRLMSISE-00 atmospheric density model, are conducted
to validate the performance of the controller.

1. Introduction

As the interest in exploiting natural forces for orbital maneuvering
increases due to its potential for propellant cost savings, the use of these
forces to maneuver fleets with several spacecraft for missions in Low
Earth Orbit (LEO) has increasing interest. Atmospheric drag is the
greatest non-gravitational force acting on a spacecraft in LEO, and the
difference in acceleration due to drag (differential drag) between two
spacecraft has been used to perform relative maneuvering. The differ-
ential drag has been successfully used in the ORBCOMM constellation
of satellites to save propellant in thruster-based formation keeping
maneuvers [1], and in the large fleet of Planet Labs satellites for pro-
pellant-less phasing maneuvers along the same orbit [2].

The introduction of differential drag for formation keeping control
dates back to 1989, when the Clohessy-Wiltshire (CW) linear equations
for relative motion between two spacecraft was used to design an al-
gorithm to control the relative in-plane motion by transforming the
dynamics into a double integrator and a harmonic oscillator. This
model was used to obtain a closed-form solution under the assumption
of constant differential drag and a control algorithm was developed to
regulate the states with a discrete input [3].

Atmospheric drag and lift were exploited to control in-plane and
out-of-plane motion between two spacecraft in Ref. [4]. Independent

control algorithms were developed for the in-plane and out-of-plane
motion using differential drag and lift, respectively. Based on the re-
quired inputs, an algorithm computed the orientation of a flat plate
attached to each spacecraft. The Schweighart-Sedwick (SS) linear
equations for relative motion that include the J2 perturbation [5] were
used to develop a discrete control algorithm for rendezvous maneuvers
based on closed form solutions in Ref. [6].

A Lyapunov-based control strategy was implemented in Ref. [7] to
achieve spacecraft rendezvous using differential drag. The in-plane
unstable SS dynamic model was initially stabilized using a Linear
Quadratic Regulator (LQR) and then a Lyapunov-based controller was
designed using the error between the relative states and the stabilized
dynamics, the control commands were also restricted to discrete values.
An adaptive capability to change controller parameters depending on
the critical value of differential drag was also included. In Ref. [8], the
attitude of a spacecraft was used to change the experienced drag instead
of dedicated actuators for drag surfaces. An LQR controller was de-
signed to drive the system to a desired relative motion using a state
space representation of the error. The control command was then used
to compute a normal vector to the drag surface attached to the body
that served as reference for an attitude determination and control
system (ADCS).

Research has also been conducted to include multiple spacecraft in
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simultaneous relative maneuvers with respect to a single target. A
centralized heuristic control logic was used in Ref. [6] to give priority
to a specific chaser in the fleet, then the target set its control command
to meet the control requirements of the prioritized chaser. Only chasers
that required the same sign for their corresponding inputs were able to
satisfy the control command simultaneously, while the others remain
with zero differential drag until a new priority was established. In Ref.
[9], the formulation of an optimization problem was presented to find
the minimum time required to achieve rendezvous with any number of
spacecraft by using an augmented state space representation. Simula-
tions with 2, 5 and 12 spacecraft were conducted using linearized dy-
namics.

An adaptive sliding mode strategy was used in Ref. [10] to control
the relative dynamics using a continuous differential drag input. The
controller was simulated for formation keeping as well as re-
configuration maneuvers using two spacecraft. A heuristic algorithm for
multiple spacecraft was developed and applied to an along-orbit for-
mation keeping maneuver with four spacecraft. In this algorithm, each
chaser changes its drag acceleration to satisfy its control command and
the target changes its drag acceleration each orbit to sequentially satisfy
the differential drag requirement of each chaser.

One of the main challenges of differential-drag based relative
maneuvers is that the controller is required to be robust to uncertainty
in parameters such as atmospheric density and the drag coefficient,
which are required to compute the drag acceleration experienced by a
spacecraft. Models for atmospheric density such as the 1976 U S
Standard [11], Harris-Priester [12] and NRLMSISE-00 [13], among
others, are commonly used to estimate the local density. Some of the
more complex density models include spacecraft position, date, time,
and solar and geomagnetic indices as input parameters. On the other
hand, the drag coefficient is calculated using theoretical [14,15] or
numerical models for simple spacecraft shapes [16,17]. However, the
level of uncertainty is still significant even when using complex models
[18].

Lyapunov-based adaptive control techniques have been successfully
used in the past for differential-drag based relative maneuvering,
achieving state regulation despite some system uncertainties [7,19].
However, the adaptive update laws did not ensure convergence of the
parameter estimates to their true values. Various adaptive controllers
have been developed under the assumption of persistence of excitation
(PE) [20–22] to achieve simultaneous error regulation and system
identification. Nevertheless, this can only be ensured under PE which
cannot be guaranteed and is difficult to verify on-line for general
nonlinear systems. A concurrent learning (CL) adaptive update law was
developed in Ref. [23,24] to achieve state regulation or tracking and
on-line parameter estimation while relaxing the PE requirement, which
became a verifiable condition of finite excitation, assuming the highest
order states were measurable. A modification to the CL update law,
called integral concurrent learning (ICL), was presented in Refs. [25,26]
to achieve estimation convergence without measuring the highest order
states.

In this paper, a Lyapunov-based adaptive control algorithm that
incorporates an ICL update law is developed. Unlike the preliminary
efforts in Ref. [19] where only regulation of the in-plane relative states
between chaser and target in LEO was ensured, the result in this paper
shows simultaneous state regulation and online identification of un-
certain parameters, including the drag or ballistic coefficient, the
magnitude of the spacecraft-atmosphere relative velocity and the at-
mospheric density. The developed controller exploits the use of an LQR
control law to address the problem of regulating the four in-plane states
of the SS dynamics with a single input. This input is then modified to
include an adaptive term that provides the adaptation and online esti-
mation capability. The use of a linearly parameterizable time-varying
atmospheric density model enables the development of an ICL-based
adaptive update law that also estimates this highly uncertain parameter
online. The controller designed in this paper is intended to provide

robustness to uncertainty as well as an improved insight about the
uncertain parameters as compared to a priori information, without re-
lying on complex models or computationally expensive operations.

Numerical simulations for rendezvous and along-orbit formation are
performed using a fleet of multiple chasers maneuvering with respect to
a cooperative and an unknown target, respectively. Each maneuverable
spacecraft is assumed to be equipped with the Drag Maneuvering
Device (DMD) developed at the University of Florida ADvanced
Autonomous Multiple Spacecraft (ADAMUS) laboratory.

The paper is organized as follows: Section 2 presents the dynamic
models used for control design and numerical simulations, Section 3
shows the control design, Section 4 presents the corresponding stability
analysis, Section 5 explains the multiple spacecraft rendezvous and
along-orbit formation maneuvers and Sections 6 and 7 show the nu-
merical simulations and conclusions, respectively.

2. Dynamics modeling

2.1. Spacecraft relative dynamics

In LEO, the dynamics of a spacecraft can be modeled considering the
gravitational influence of the Earth including J2 and the non-gravita-
tional influence of atmospheric drag and lift. In the Earth Centered
Inertial (ECI) coordinate system, the acceleration of the spacecraft can
be written as
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, , , are the accelerations
due to atmospheric drag and lift expressed in the ECI coordinate
system, respectively. In (1)–(3), G is the universal gravitational con-
stant, =r x y z[ , , ]T is the ECI position of the spacecraft, J2 is the coef-
ficient that represents the second order harmonic of gravitational po-
tential field of the Earth, and M and R are the mass and radius of the
Earth, respectively.

Assumption 1. Each maneuverable spacecraft is ram-aligned and all
objects are in circular LEO, the inter-spacecraft distance is small
compared to the radius of the orbit.

Under Assumption 1, the relative motion between any chaser and
the target can be expressed in the Local-Vertical/Local-Horizontal
(LVLH) coordinate system (Fig. 1) using the SS dynamic model that
includes the influence of J2 perturbation as follows:
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where is the constant angular velocity of the orbit of the chaser,
=r x y z[ , , ]T is the LVLH position of the target, =u u u u[ , , ]x y z
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where rref and iref are the radius and inclination of the orbit of the
chaser. The parameters , l and q in the decoupled out-of-plane equa-
tion of motion in (6) are defined in Ref. [5].

The LVLH coordinate system attached to the chaser spacecraft is
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defined with origin at its center of mass as follows: the unit vector x̂
points from the center of the Earth towards the origin of the system, the
unit vector ẑ is aligned with the orbit angular momentum vector and
the unit vector ŷ completes a right-hand Cartesian coordinate system.

2.2. Drag Maneuvering Device

The Drag Maneuvering Device (DMD) [27] originally designed at
the University of Florida ADAMUS laboratory for spacecraft controlled
re-entry [28–30], has also shown to have potential for spacecraft re-
lative maneuvers [19,31] and passive attitude stabilization [32,33].
The device consists of four 3.7 m long repeatedly deployable/re-
tractable surfaces offset 90° from each other and inclined 20° and is
mounted on the anti-ram face of a CubeSat spacecraft providing addi-
tional cross-sectional area up to 0.5 m2, see Fig. 1.

2.3. Differential drag and lift

Each maneuverable spacecraft in the fleet is capable of changing its
experienced atmospheric drag and lift using the DMD. The contribution
of each DMD surface on the atmospheric drag acceleration experienced
by a spacecraft can be expressed as

r V
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where the subscript j indicates the jth DMD surface on the spacecraft,
t( ) is the time-varying atmospheric density, CD j, is the drag coefficient,

CL j, is the lift coefficient, n̂ is the unit vector normal to the surface, Sj is
the cross-sectional area of the surface, and m is the mass of the space-
craft. Therefore, a DMD-equipped spacecraft can change its experienced
atmospheric drag and lift by varying Sj, i.e. extending/retracting the
DMD surfaces. The vector Vr represents the velocity of the spacecraft
relative to the atmosphere which is assumed to be attached to the Earth
and is defined as

×V r rr (10)

where is the angular velocity of the Earth. The total experienced

atmospheric drag and lift can then be computed by adding the con-
tribution of all DMD surfaces mounted on the spacecraft as follows:
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The drag and lift coefficients for the jth surface mounted on a DMD-
equipped spacecraft can be computed using the analytical expressions
from Ref. [14,15] which consider a flat plate in a free molecular flow:
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where ( )erf represents the error function [34], =s V m k T/(2 )r B a , kB is
the Boltzmann constant, in is the principal rotation angle between V̂r
and n̂, Ta is the ambient atmosphere temperature, and Tk out, is the re-
flected kinetic temperature of particles at the surface defined as

+T m
k

V T
3

(1 )k out
B

r s,
2
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where Ts is the temperature of the surface, and α is an accommodation
coefficient that represents the influence of the surface material prop-
erties. In this work the commonly used value of = 0.9 is adopted.

In a fleet with N chasers and one target, the differential atmospheric
drag and lift between the ith chaser and the target are given by

r r r¨ ¨ ¨D i D t D i, , , (16)

r r r¨ ¨ ¨L i L t L i, , , (17)

where the subscripts t and i represent the target and the ith chaser, re-
spectively.

Fig. 1. LVLH coordinate system.
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3. Control design

3.1. Control objective

The control objective is to perform rendezvous and along-orbit
formation maneuvers between a DMD-equipped spacecraft (chaser) and
a target that could be either cooperative or unknown, using the dif-
ferential drag as the control input. The challenge of this problem is that
the time-varying local atmospheric density t( ), drag coefficients CD
and the magnitude of spacecraft-atmosphere velocity Vr are uncertain
for both spacecraft. In addition, for the unknown target case, its area-to-
mass ratio, e.g. the physical properties of the target, are also unknown.
The following assumptions are made to simplify the control design
process but are not used in the numerical simulations.

Assumption 2. Since the accommodation coefficient is 1, the
resulting lift coefficients CL and accelerations r̈L are very small
compared with those for drag. Therefore, the lift acceleration is
neglected.

Assumption 3. The direction of each spacecraft-atmosphere relative
velocity V̂r is opposite to the ŷ direction.

Considering Assumptions 2 and 3, the auxiliary control input in
(4)–(6) can be written as
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where =u S m/(2 )i i represents the area-to-mass ratio of the i ht chaser
spacecraft, which is the actual control input. The drag coefficient for
the target CD

t and for the ith chaser CD
i are defined as the summation of

the drag coefficient of its DMD surfaces and are given by
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From the definition of u, although the DMD surfaces on the target
spacecraft could be maneuverable, meaning that St can also change for
the cooperative case, the chaser will be the one responsible of achieving
the required differential drag provided a known area-to-mass ratio
S m/(2 )t t of the cooperative target or an estimate of this ratio for the
unknown target. Also, given the direction of u, its magnitude is given
entirely in the component uy as
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Inspired by the results in Ref. [35], where the differential drag was
modeled as a time-varying function with its two principal Fourier
components at 0 and , and considering that the behavior over time of
the differential drag in that case was dominated by the variation of the
atmospheric density, the atmospheric density can be modeled as

+ + =t D D t D t k t i( ) sin( ) cos( ) , ,k k k k1, 2, 3, (21)

where D k1, , D k2, , D k3, are unknown constants.

3.2. Control development

Considering that uy is the only nonzero component of the auxiliary
control input u, and given that the out-of-plane ( z) dynamics are
decoupled (see (4)–(6)), then only the in-plane motion can be affected
by means of differential drag. The in-plane SS dynamics can be re-
presented in state space form as
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where a c2 and b c(5 2) 2 are known positive constants.
To compensate for the uncertain parameters in the auxiliary control

input uy, (20) can be linearly parameterized as
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where Y 6 denotes the measurable regression matrix
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and the vector of uncertain constant parameters 6 is defined as
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For the unknown target case, the area to mass ratio S m/(2 )t t can be
moved from the regression matrix Y to the last three entries of the
uncertain vector , meaning that its entire ballistic coefficient

=C C S m/(2 )b
t

D
t

t t is uncertain.
Since all the uncertain parameters in represent physical quan-

tities, their entries can be upper and lower bounded as

< <j j j (26)

where j is the jth entry of , and ,j j denote the known bounds
for the corresponding parameter. Similarly, the linear parameterization
using the estimates is
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where ˆ 6 is the estimate of ,
= + +t D D t D tˆ ( ) ˆ ˆ sin( ) ˆ cos( )k k k k1, 2, 1, , and D D D Vˆ , ˆ , ˆ , ˆk k k r k1, 2, 3, ,

2 and
ĈD

k are estimates of D D D V, , ,k k k r k1, 2, 3, ,
2 and CD

k , respectively. In case the
target was unknown, the true values of St and mt can be replaced by
their estimates Ŝt and m̂t , respectively.

Let us define the estimation error ˜ as

˜ ˆ . (28)

Then, the auxiliary control input uy can be rewritten as

= +Y Yu ˜ ˆ .y (29)

To facilitate the subsequent stability analysis it will be useful to
express the auxiliary control input as

+u u u ,y FB AD (30)

where u u,FB AD are subsequently detailed state feedback and
adaptation terms, respectively.

Using the SS dynamics in (22), it can be shown by evaluating the
rank of the controllability matrix that the system is controllable using
the auxiliary input uy. Therefore, the state feedback term uFB can be
designed with the purpose of regulating the four states using a Linear
Quadratic Regulator (LQR). The LQR provides a state feedback control
law that regulates all states of the SS dynamics to zero while minimizing
the cost function

= +X XJ Q Ru dt( )T
FB0
2

(31)

where X 4 is the measurable state vector defined in (22), ×Q 4 4

is a positive definite weight matrix used to specify the desired perfor-
mance of each state, and >R 0 is a weight used to penalize the
control effort. The state feedback control law is defined as
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= K Xu LQRFB (32)

where KLQR
4 is a constant feedback gain vector that can be ob-

tained from solving the Algebraic Riccati Equation (ARE) [36].
The approach of using a linear control technique such as the LQR is

proposed taking advantage of the fact that all the nonlinearities and
uncertainties are in the auxiliary control input. However, this control
law by itself does not provide the adaptation capability required to
compensate for the uncertain parameters. Therefore, the term uAD is
used for this purpose.

For simplicity, from this point on we will consider the more general
case of an unknown target, the true values of St and mt can be used
instead whenever available. Using (29) and (30), substituting the de-
finition of uFB and solving for uAD yields
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Based on (32), (33), and the subsequent stability analysis, the
control input u is designed as
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The estimates in (34) are determined from the adaptive update law
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where ( )proj is the continuous projection algorithm developed in Ref.
[37] used here to keep ˆ within the bounds shown in (26), >Ns 0 is
the number of input-output data pairs, t is the time between samples,
is defined in (22), ×P 4 4 is a symmetric positive definite matrix used
in the subsequent stability analysis, ×6 6 is the adaptation gain, KICL
is a symmetric positive definite gain matrix and i and i are defined
as

Yt t d( , ) ( ) ,i t t

t
i
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The update law in (35) is motivated by ICL-based approach to for-
mulate a finite excitation condition that can be used for parameter
identification. Specifically, the first terms in (35) are typical gradient-
based terms motivated by the Lyapunov analysis to compensate for the
uncertain disturbances. The terms within the summation can be re-
written in an equivalent analysis form, as

= +
=
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This form of the update law indicates that if sufficient input-output
data is collected, then the summation of the regression matrices will be
positive definite, which, unlike the traditional PE condition, can be
verified online. The excitation condition is given by the following as-
sumption.

Assumption 4. The system is sufficiently excited over a finite duration
of time >T 0 such that [25,26].

>
=

i t Tmin
i

N

i
T

1

s

(39)

where { }min is the minimum eigenvalue of the matrix represented by
the expression in { }, and > 0 is a threshold defined by the user.

4. Stability analysis

For the stability analysis two theorems are formulated. The first
theorem shows the behavior of the system before the condition of finite
excitation (Assumption 4) is satisfied, and the second theorem considers
the system performance after satisfying this condition.

Theorem 1. Given the relative dynamics in (22) along with the
adaptive update law in (38), the controller designed in (34) ensures
that the estimation error ˜ remains bounded and the states X are
asymptotically regulated in the sense that

=Xlim 0.
t (40)

Proof. Let t T[0, ) and V : 0 be a candidate Lyapunov function
defined as

+X XV P( ) 1
2

˜ ˜ ,T T 1
(41)

where the composite state vector 10 is

X , ~[ ] .T T T (42)

The candidate Lyapunov function can be bounded by

V ( ) ,2
1

2
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where 1 and 2 are positive bounding constants.
Substituting (22), (30) and (32) into the time derivative of (41)

yields

= + +X X X BV PA A P P u( ) ( ) 2 ˜ ˆ ,T T T
AD

T* * 1 (44)

where BKA A LQR
* and ×A 4 4 is defined in (22). Note that A* is

Hurwitz since KLQR is obtained from solving the LQR problem.
Therefore, a symmetric positive definite matrix ×Q1

4 4 can be de-
termined so that

+ =PA A P Q .T* *
1 (45)

Substituting (33), (34) and (38) into the time derivative of the
Lyapunov function yields
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Since =i
N

i
T

i1
s is at least positive semi-definite for <t T , then (46)

can be upper bounded by

X XV Q( ) .T
1 (47)

From (47), V is negative semi-definite, indicating that V L .
Therefore, X L, ~ , and then L . Using (28), Lˆ . Since

t t Lsin( ), cos( ) by definition, then the estimated atmospheric
density t t Lˆ ( ), ˆ ( )i t . Therefore, from (34), u L . Since u L ,
then Y L from (24), and then X L from (22). Since X L , then
X is uniformly continuous and from (47), X L2. Therefore, by
Barbalat's lemma [38].

=Xlim 0.
t (48)

Now, the performance improvement after satisfying the finite ex-
citation condition is described through Theorem 2.

Theorem 2. Given the relative dynamics in (22) along with the
adaptive update law in (38), the controller designed in (34) yields
exponential regulation of the states X and estimation error ˜ in the
sense that

t exp T exp t( )
2

|| (0) ||
2

2

1 2 2 (49)

for all t [0, ), where
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=
min Q K{ }, .min min ICL

i

N

i
T

i1
1

s

(50)

Proof. When >t T , the term =i
N

i
T

i1
s becomes positive definite

under Assumption 4. Therefore, (46) can be upper bounded by

=
V Q KX( ) { }|| || ~ ,min min ICL

i

N

i
T

i1
2

1

2
s

(51)

which can be rewritten as

V ( ) || || .2 (52)

Using the Comparison Lemma from Ref. [38] and (43) yields

V t V T t T t T( ( )) ( ( )) ( ) ,
2

exp
(53)

and applying (43) to (53) we get

t T exp t T t T|| ( ) || || ( ) ||
2

( ) .2

1 2 (54)

Moreover, from (47) we know that

V T V( ( )) ( (0)) (55)

which, using the bounds in (43), can be rewritten as

T( ) || (0) || .1
2

2
2 (56)

Therefore

T( ) || (0) ||.2

1 (57)

Finally, substituting (57) into (54) yields

t exp T exp t t|| ( ) ||
2

|| (0) ||
2

0,2

1 2 2 (58)

which is an exponential envelope valid for t [0, ).

5. Multiple spacecraft maneuvers

5.1. Rendezvous

When multiple chasers are maneuvering with respect to a single
target, a given chaser-target pair can be treated as a set of SS equations

Fig. 2. Modified coordinate systems.

Table 1
Initial conditions for the target spacecraft.

a km[ ]t et i deg[ ]t deg[ ]t deg[ ]t deg[ ]t

×6.7281 103 0 51.94 206.36 101.07 108.08

Table 2
Controller parameters. Two sets of gains are presented, one for the case of a
cooperative target and the other for maneuvers with respect to an unknown
target.

Parameter Known target Unknown Target

Q (30,1,3,2)diag (180,1,1.8, 1)diag
R ×5 1015 ×6 1016

×( 10 )20 (45,15,15,45,15,15)diag (30,30,30,0.3, 0.3, 0.3)diag

Table 3
Controller parameters for the ICL portion. Two sets of gains are presented, one
for the case of a cooperative target and the other for maneuvers with respect to
an unknown target.

Parameter Known Target Unknown Target

400 500

×K ( 10 )ICL 10 (3,30,30,3,30,30)diag (5,100,100,10,80,80)diag

Table 4
Spacecraft physical parameters. To simulate the unknown target, the same
physical parameters were used to propagate its dynamics but are unknown for
the controller.

S S m, [ ]t i 2 m m kg, [ ]t i S S m, [ ]t max i max, , 2 S S m, [ ]t min i min, , 2

0.2 1.5 0.5 0.01
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Fig. 3. In-plane relative states as function of time for the rendezvous maneuver. The relative states are regulated between each chaser/target pair in 120 h.

Fig. 4. Cross-sectional areas required for the rendezvous maneuver. The control input u is saturated to ensure that the cross-sectional area does not exceed the
physical limits of the DMD.

Fig. 5. Behavior of each ={ }min i
Ns

i
T

i1 for the rendezvous maneuver. Threshold set to = 400, input-output data added after >t T to improve convergence rate
when possible.
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where the in-plane states are required to be regulated. The adaptive
control law in (34) has been designed to do that between two space-
craft, namely the target and the ith chaser. The developed control law
requires knowledge of the area-to-mass ratio of the target spacecraft
and measurement of the relative states to compute the required cross-
sectional area for the chaser spacecraft.

The multiple spacecraft scenario is then proposed as follows: In case
a cooperative target is considered, one of the spacecraft in the fleet is
selected as the target, this spacecraft broadcasts its ECI states and the
current level of deployment of its DMD surfaces to all the chasers. When
the target is unknown, each chaser is assumed capable of measuring the
relative states of the target, and the estimates of St and mt are included
in ˆ so that the control law (34) could be computed. Each chaser
spacecraft determines its required cross-sectional area by evaluating
(34) on-board and numerically propagating the parameter estimates ˆ .
Note that at any time, in case the cooperative target spacecraft fails, any
functional chaser can be labeled as the target and the control algorithm
running on each remaining chaser can be re-initialized to maneuver
with respect to the new target.

5.2. Along-orbit formation

The along-orbit formation considers a fleet of multiple chasers and
one target where the chasers are required to be along the orbit of the
target with specific separations ( d).

5.2.1. Change of reference frame
In the rendezvous problem, the LVLH reference frame with origin at

the center of mass of the ith chaser was used to compute the relative
states. For the along-orbit formation, let us now consider a reference
frame that has a position offset with respect to each LVLH but still
moves with the corresponding chaser. A desired along-orbit distance
with respect to the target di is given to the ith chaser. This distance
needs to be consistent with the assumptions made in the SS dynamics.
Note that for the along-orbit formation case the distance di can be
expressed as an offset in true anomaly i with respect to that of the ith

chaser spacecraft as

Fig. 6. Behavior of estimations associated with each chaser over time for the rendezvous maneuver. Greater level of agreement can be observed in the estimations of
= D C Vˆ (1) i D

i
r i1, ,
2 , which in general has higher order of magnitude that the other two uncertain parameters associated with each chaser. Residual errors can be

attributed to the approximations made during the controller design.

Fig. 7. Behavior of estimations associated with the target over time for the rendezvous maneuver. Greater level of agreement can be observed in the estimations of
= D C Vˆ (4) t D

t
r t1, ,
2 , which in general has higher order of magnitude that the other two uncertain parameters associated with the Target. Residual errors can be

attributed to the approximations made during the controller design.
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= d
ai

i

i (59)

where ai is the semi-major axis of the ith chaser, then the orbital ele-
ments for the origin of the new reference frame are the same as those of
the chaser but adding the offset i to the true anomaly. The ith co-
ordinate system is defined by the x̂i axis pointing from the center of
the earth towards the origin of the system (desired position for the ith

chaser), the ẑi axis aligned with the orbit angular momentum vector
and the ŷi axis completing a right-hand Cartesian coordinate system as
shown in Fig. 2.

Each set of SS equations represent relative states with respect to the

desired along-orbit position and the control goal remains the same as in
the rendezvous case, i.e. regulate all states to zero. Therefore, the
adaptive control law developed in Section 3 is still valid to perform the
along-orbit formation maneuver.

5.2.2. Collision risk reduction
The presence of multiple spacecraft maneuvering at relatively small

distances increases the risk of possible collisions, especially for ren-
dezvous maneuvers. Having the same controller driving each chaser to
the rendezvous state with respect to the target yields a similar behavior
in the relative path that a chaser follows to reach it, and given the state

Fig. 8. Real (solid blue line) vs reconstructed estimated parameters (dashed red line) associated with each chaser for the rendezvous maneuver. The real parameter
was obtained using the NRLMSISE-00 atmospheric model. Amplitude in kg ms[ /( )]2 . (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 9. Zoomed-in view for the last 10 orbits of the real (solid blue line) vs reconstructed estimated parameters (dashed red line) associated with each chaser for the
rendezvous maneuver. Amplitude in kg ms[ /( )]2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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Fig. 10. Real (solid blue line) vs reconstructed
estimations (dashed lines) of the uncertain
parameters of the target made by each chaser for
the rendezvous maneuver. The real parameter
was obtained using the NRLMSISE-00 atmo-
spheric model. (For interpretation of the refer-
ences to colour in this figure legend, the reader
is referred to the Web version of this article.)

Fig. 11. Zoomed-in view for the last 10 orbits of
the real (solid blue line) vs reconstructed esti-
mations (dashed lines) of the uncertain para-
meters of the target made by each chaser for the
rendezvous maneuver. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the Web version of this ar-
ticle.)

Fig. 12. In-plane relative states as function of time for the along-orbit formation maneuver. The formation is achieved in 100 h, inter-spacecraft separation of km1
can be observed mainly in the y plot.
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Fig. 13. Ballistic coefficients required for the along-orbit formation maneuver. The control input u is saturated to ensure that the cross-sectional area does not exceed
the physical limits of the DMD. Chasers need to keep maneuvering to maintain their desired relative positions.

Fig. 14. Behavior of each ={ }min i
Ns

i
T

i1 over time for the along-orbit formation maneuver. Threshold set to = 500, input-output data added after >t T to
improve convergence rate when possible.

Fig. 15. Behavior of estimations associated with each chaser over time for the along-orbit formation maneuver. Greater level of agreement can be observed in the
estimations of = D C Vˆ (1) i D

i
r i1, ,
2 , which in general has higher order of magnitude that the other two uncertain parameters associated with each chaser. Residual errors

can be attributed to the approximations made during the controller design.
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feedback term in the control law it is expected that the control effort is
reduced as the chaser approaches the target. Therefore, if a rendezvous
maneuver is required, some chasers could follow similar paths and will
be maneuvering in close proximity to the target for a significant portion
of the maneuver, increasing the collision risk.

To reduce the collision risk, this undesired behavior could be ad-
dressed by introducing an along-orbit formation as an intermediate
stage where the di’s represent “parking” positions. Then, once the
positions of the chasers are stable along the same orbit, the di’s can be
sequentially reduced to drive each chaser to the rendezvous state in a
more controlled way when in close proximity to the target.

6. Simulation results

To validate the adaptive controller designed in Section 3, a ren-
dezvous maneuver with respect to a known target and an along-orbit

formation with respect to an unknown target are numerically simu-
lated, both involving six chasers. The number of spacecraft has been
selected so that the plots showing the results are readable. Nevertheless,
the algorithm does not change when scaling the size of the fleet. In all
simulations the dynamics of each spacecraft are individually simulated
using (1)–(3), and the real (unknown for the controller) atmospheric
density is obtained using the NRLMSISE-00 model to compute the drag
and lift accelerations. The initial conditions are selected such that the
target spacecraft is in a circular orbit similar to that of the International
Space Station (ISS), see Table 1. The initial conditions of the chasers are
randomly generated by varying the semi-major axis at , eccentricity et
and true anomaly t of the target so that the inter-spacecraft distance
satisfies Assumption 1, while the RAAN ( t), argument of perigee ( t)
and orbit inclination (it) remain unchanged for all spacecraft. The
bounds for such variations are = ±a a 500i t [m], = + ×e e 3 10i t

5, and
= ± 0.2i t [deg], respectively.

Fig. 16. Behavior of estimations associated with the target over time for the formation maneuver. Greater level of agreement can be observed in the estimations of
= D C Vˆ (4) t b

t
r t1, ,
2 , which in general has higher order of magnitude that the other two uncertain parameters associated with the Target. Residual errors can be

attributed to the approximations made during the controller design and the tumbling target.

Fig. 17. Real (solid blue line) vs reconstructed estimated parameters (dashed red line) associated with each chaser for the formation maneuver. The real parameter
was obtained using the NRLMSISE-00 atmospheric model. Amplitude in kg ms[ /( )]2 . (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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The gain KLQR was computed using the lqr command in Matlab with
the SS dynamics. The values for the matrices Q and R are shown in
Table 2. The solution of the ARE is used for P and the adaptive gain is
also shown in Table 2. The control parameters associated with the ICL
portion are shown in Table 3. The physical parameters for all spacecraft
are identical (Table 4) and the values for Ta and Ts required to compute
the drag (unknown for the controller) and lift coefficients are those
used in Refs. [15]. The initial guess for ˆ is

= ×ˆ [6.8, 0,0,6.8, 0,0] 10T
0

4 and = ×ˆ [6.8, 0,0,1.1, 0,0] 10T
0

4 for
the cases with cooperative and unknown target, respectively.

6.1. Rendezvous maneuver results

For the rendezvous maneuver, the target spacecraft is assumed to be
known and independently maneuvering its drag surfaces. However, it
broadcasts its current cross-sectional area to all chasers. Fig. 3 shows
each in-plane relative state as a function of time. The controller re-
quired 120 h to drive all chasers to the rendezvous state. The maneuver

time was computed as the time that all chasers required to enter and
remain inside a circle with radius 20 m around the target.

The cross-sectional area that all the spacecraft required to perform
the rendezvous maneuver are shown in Fig. 4. Although the R matrix in
the LQR problem has a high value to reduce the required control effort,
saturation was applied to the cross-sectional area of each spacecraft to
ensure that the applied control inputs are always within the physical
limits.

To reduce the possibility of having maneuvers where the threshold
was not reached by any chaser, a relatively small value is set for this

parameter. Additionally, to keep improving the convergence rate of the
estimations when possible, the ICL portion of the adaptive update law is
updated with new input-output data pairs every time ={ }min i

N
i
T

i1
s

increases, even after time =t T . The resulting behavior of these ei-
genvalues is shown in Fig. 5.

The behavior over time of the vector ˆ is shown component-wise in
Figs. 6 and 7 for parameters associated with the chasers and the target,
respectively. Since all the chasers satisfied condition (39), these results

Fig. 18. Zoomed-in view for the last 10 orbits of the real (solid blue line) vs reconstructed estimated parameters (dashed red line) associated with each chaser for the
formation maneuver. Amplitude in kg ms[ /( )]2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)

Fig. 19. Real (solid blue line) vs reconstructed
estimations (dashed lines) of the uncertain
parameters of the target made by each chaser for
the formation maneuver. The real parameter
was obtained using the NRLMSISE-00 atmo-
spheric model. (For interpretation of the refer-
ences to colour in this figure legend, the reader
is referred to the Web version of this article.)
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indicate that there is a higher level of agreement in the estimations of
the first and fourth entries of ˆ . These two entries are the most im-
portant parameters given that they are associated with the zero fre-
quency level of the atmospheric density (D i1, and D t1, ) which are in
general greater than those associated with the frequency
(D D D, ,i t i2, 2, 3, and D t3, ). The small differences in the values of con-
vergence can be attributed to the approximation made when modeling
the density as in (21) and using the approximated SS relative dynamics.

The comparison between the real parameters ( =C V k i t, ,k D
k

r k,
2 )

and the reconstruction of the estimated parameters ( =C V k i tˆ ˆ ˆ , ,k D
k

r k,
2 )

are shown in Figs. 8–11. These results show that the ICL-based con-
troller is capable of adjusting the parameters to approximate their real
values. The algorithm provides useful information about the uncertain
parameters without relying on highly complex atmospheric models,
forecasts and/or iterative algorithms.

6.2. Along-orbit formation results

For the along-orbit formation, the target spacecraft is assumed to be
unknown. In this case, the chasers are required to perform an along-
orbit formation centered on the target with inter-spacecraft separation
of km1 . The corresponding slot for each chaser, i.e. its i, was ran-
domly selected. In addition to the individual nonlinear dynamics and
the NRLMSISE-00 atmospheric model, a variation of ± 10% with fre-
quency of 1 RPM is applied to the ballistic coefficient Cb

t to simulate a
tumbling unknown target. Fig. 12 shows each in-plane relative state as
a function of time. The maneuver time for the along-orbit formation
maneuver was 100 h. For convenience, the relative states have been
plotted with respect to an LVLH coordinate system centered on the
target so that the along-orbit separations (mostly along ŷ) could be
observed.

Although the chasers only modulate their cross-sectional areas Si,
the control inputs are plotted in Fig. 13 as ballistic coefficients so that
they can be compared to that of the unknown target. Saturation has also
been applied to ensure the control inputs are within the bounds. The
control inputs show that each chaser spacecraft has to keep maneu-
vering even after reaching its desired slot to compensate for the natural
drifting with respect to the target.

The behavior of each ={ }min i
N

i
T

i1
s is shown in Fig. 14 and the

behavior of ˆ over time is shown in Figs. 15 and 16 for parameters as-
sociated with each chaser and the target, respectively. Similar to the
results for the rendezvous maneuver, the greatest estimation agreement
is observed in the parameters associated with the zero frequency of the
atmospheric density. On the other hand, the estimated parameters as-
sociated with the frequency show more disagreement between chasers.

The comparison between the real parameters ( C Vi D
i

r i,
2 , C Vt b

t
r t,
2 ) and

the reconstruction of the estimated parameters ( C Vˆ ˆ ˆ
i D

i
r i,
2 , C Vˆ ˆ ˆ

t b
t

r t,
2 ) can

be observed in Figs. 17–20. The reduction in estimation performance
compared to the cooperative target case can be attributed to the addi-
tional uncertainty in the physical parameters of the target and its
tumbling behavior. Most of the performance reduction can be observed
in the underestimation of the variations due to J2 perturbation and day/
night changes. However, the algorithm has shown estimation im-
provement from the a priori values of the uncertain parameters.

7. Conclusion

An ICL-based adaptive control strategy has been developed and
validated for rendezvous and along-orbit formation maneuvers with
respect to a single known or unknown target. Numerical simulations
demonstrate the performance of the developed controller. Parameters
such as the local atmospheric densities, drag or ballistic coefficients and
the magnitude of the spacecraft-atmosphere velocities are considered
uncertain and the developed controller compensates for them.
Additionally, when the system is sufficiently excited, the controller is
able to estimate the values of these parameters on-line. The accuracy of
the resulting parameter estimations have shown to be sufficient to de-
termine their order of magnitude and the variations induced by the
atmospheric density due to the J2 perturbation and day/night changes.
Errors in estimation can be attributed to the approximations made
when modeling the atmospheric density, the use of the SS relative dy-
namics and (when unknown) the presence of a tumbling target. The
developed algorithm is implementable on-board a CubeSat given that
all the estimations are made online using simple integration algorithms
without requiring large data sets nor computationally expensive op-
erations.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

This research has been supported by the Fulbright Colombia
Commission and the AFOSR award number FA9550-19-1-0169. Any
opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the
views of the sponsoring agency.

Fig. 20. Zoomed-in view for the last 10 orbits of
the real (solid blue line) vs reconstructed esti-
mations (dashed lines) of the uncertain para-
meters of the target made by each chaser for the
formation maneuver. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the Web version of this ar-
ticle.)
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