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a b s t r a c t

Due to the inherent periodic nature of cycling tasks, iterative and repetitive learning controllers are
well motivated for rehabilitative cycling. Motorized functional electrical stimulation induced cycling
is a rehabilitation treatment where multiple lower-limb muscle groups are activated jointly with an
electric motor to achieve cycling objectives such as speed (cadence) and torque tracking. This paper
examines torque tracking accomplished by the stimulation of six lower-limb muscles via a novel spatial
repetitive learning control and cadence regulation by an electric motor using a sliding-mode controller.
A desired torque trajectory is constructed based on the rider’s kinematic efficiency, which is a function
of the crank position. The learning controller takes advantage of the periodicity of the desired torque
trajectory to provide a feedforward input to the stimulated muscles. A passivity-based analysis is
developed to ensure stability of the torque and cadence closed-loop error systems. The muscle learning
and electric motor controllers were implemented in real-time during cycling experiments on five able-
bodied individuals and three participants with movement disorders. The combined average cadence
tracking error was 0.01±1.20 RPM for a 50 RPM trajectory and the combined average power tracking
error was 1.78±1.25 W for a peak power of 10 W.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Functional Electrical Stimulation (FES) and robotic devices
seek to enhance the quality of life of people with neurological
conditions (NCs) by restoring mobility. Closed-loop FES
control has been implemented in upper-limb tasks (Lew, Alavi,
Randhawa, & Menon, 2016; Rouse, Duenas, Cousin, Parikh, &
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Dixon, 2018), locomotion using neuroprostheses (Alibeji, Kirsch,
& Sharma, 2015, 2017; Ha, Murray, & Goldfarb, 2016; Nataraj,
Audu, & Triolo, 2017), and lower-limb cycling (Bellman, Cheng,
Downey, Hass, & Dixon, 2016; Bellman, Downey, Parikh, & Dixon,
2017). Motorized FES-cycling aims to produce a coordinated
movement by artificially activating lower-limb muscles and en-
gaging an electric motor to provide assistance as needed.
FES-cycling studies have been found to provide neurological,
movement, and sensory gains to people with spinal cord injury
(SCI) and post stroke (Ferrante, Pedrocchi, Ferrigno, & Molteni,
2008; Sadowsky et al., 2013).

Cadence and power tracking objectives have been developed
for cardiovascular and strength training in FES-cycling. In ca-
dence tracking, a desired speed trajectory is tracked by mus-
cles with or without motorized assistance. In power tracking,
a torque trajectory is also tracked along with the speed tra-
jectory. Robust closed-loop controllers leveraging high-gain or
high-frequency techniques (e.g., sliding-mode control) have been
used for cadence tracking in Bellman et al. (2016, 2017), Farhoud
and Erfanian (2014), Hunt et al. (2004) and Kawai, Bellman,
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Downey, and Dixon (2019). However, motivation exists to max-
imize the torque output produced by the lower-limb muscles
as a means to build muscle mass (Szecsi, Straube, & Fornusek,
2014). Hence, the concurrent objectives of cadence and torque
tracking (i.e., power tracking) have been studied for motorized
FES-cycling, where each control objective is assigned to the mus-
cles or electric motor. Power tracking in FES-cycling has been
investigated using linear feedback control (Hunt et al., 2004),
higher-order sliding-mode control (Farhoud & Erfanian, 2014), a
Lyapunov-based switched dwell-time analysis (Cousin, Duenas,
Rouse, & Dixon, 2017), and a discrete-time analysis where the
controller was updated once at the beginning of each crank
cycle (Bellman, 2015). None of the aforementioned results exploit
the repetitive/periodic nature of cycling to design learning-based
controllers while guaranteeing the stability of the human-
machine closed-loop system.

Since people undergoing movement therapy often have dimin-
ished torque producing capacity, an electric motor is typically
used to assist FES-induced cycling. However, the use of an electric
motor raises an additional concern for safe interaction between
the rider and the motor. Motivated to ensure safe human–robot
interaction, passivity theory has been used to design controllers
in human applications including exercise machines and exoskele-
tons (Li & Horowitz, 1997; Zhang & Cheah, 2015). Closed-loop
controllers that ensure passivity in the human–robot system are
beneficial due to their compliant behavior, which also yield safe
performance (Zhang & Cheah, 2015). In this paper, passivity is
exploited as a tool to design and analyze switching controllers
for cycling.

Learning control techniques, such as iterative learning control
(ILC) and repetitive learning control (RLC), have been devel-
oped to improve tracking performance for repetitive or periodic
systems by using control inputs from previous trials, iterations,
cycles, or periods (Arimoto, Kawamura, & Miyazaki, 1984; Bris-
tow, Tharayil, & Alleyne, 2006). ILC and RLC have been
extensively applied for tracking of nonlinear systems to en-
sure asymptotic convergence and boundedness of the learning
inputs (Dixon, Zergeroglu, Dawson, & Costic, 2002; Messner,
Horowitz, Kao, & Boals, 1991; Sun, Ge, & Mareels, 2006). More-
over, learning control techniques have been utilized in several FES
studies for upper body rehabilitation (Freeman, Rogers, Hughes,
Burridge, & Meadmore, 2012). Spatial iterative learning methods
have been developed to address the fact that many tracking tasks
are not periodic in the time domain, but rather state periodic (Liu,
Dong, Huang, & Yu, 2017; Moore, Ghosh, & Chen, 2007; Xu &
Huang, 2008). Hence, spatial learning control could be utilized to
track a desired torque trajectory based on crank position to evoke
torque within favorable regions of the crank cycle.

In this paper and in our preliminary work in Duenas, Cousin,
Ghanbari, and Dixon (2018), torque and cadence controllers are
designed for FES-cycling power tracking. The motivation is to
design a switched FES controller with spatial learning control to
allow muscles to track a desired state-periodic torque trajectory
on a stationary recumbent cycle. The muscle spatial learning
controller is updated based on the crank position and acts as a
feedforward input in contrast to high-gain/high-frequency con-
trol inputs that are prone to exacerbate muscle fatigue. A sliding-
mode controller is designed for the electric motor to achieve
cadence tracking and provide robustness to disturbances and
uncertainties. The muscle and motor controllers are designed
using a cycle-rider model that includes the effects of switching
across muscle groups based on the rider’s kinematic effectiveness.
A passivity-based analysis is developed to ensure stability of
the closed-loop torque and cadence error subsystems. The main
benefit of using a passivity-based approach is that the motor con-
troller complies to the muscle input, which acts as a disturbance

in the closed-loop cadence tracking error, rather than rejecting it.
Canceling the human input is not desirable due to the differences
in the bandwidth of the muscle and motor controllers and un-
certainty in the muscle dynamics. Experiments were conducted
on five able-bodied individuals and three participants with NCs
to assess the feasibility of the control technique. The combined
average cadence tracking error for a 50 revolutions per minute
(RPM) trajectory and power tracking error for a peak power of
10 W were 0.01 ± 1.20 RPM and 1.78 ± 1.25 W, respectively.

2. Cycle-rider dynamic model

The stationary cycle-rider system is modeled with the follow-
ing dynamics (Bellman et al., 2016)

τc(q̇, q̈) + τr (q, q̇, q̈, t) = τe(t), (1)

where q : R≥t0 → Q denotes the positive clockwise measurable
crank angle, Q ⊆ R denotes the set of crank angles, and t0 ∈ R
is the initial time; τc : R2

→ R denotes the net cycle torque
defined as τc(q̇, q̈) ≜ Jc q̈ + cdq̇, where Jc, cd ∈ R>0 denote the
cycle’s inertia and coefficient of viscous damping, respectively;
τr : Q × R2

× R≥t0 → R denote the rider torque applied about
the crank; and τe : R≥t0 → R is the electric motor torque applied
about the crank defined as τe(t) ≜ Beue(t), where Be ∈ R>0
satisfies Be ≥ ce ∈ R>0, and ue : R≥t0 → R is the motor current
control input. The rider torque τr in (1) is defined as

τr (q, q̇, q̈, t) = τp(q, q̇, q̈, t) − τa(q, q̇, t), (2)

where τp : Q×R2
×R≥t0 → R denotes the passive torque applied

by the rider defined as τr ≜ Mr (q)q̈ + V (q, q̇)q̇ + G(q) + P(q, q̇),
where Mr : Q → R>0 denotes the inertial effects of the rider,
V : Q × R → R and G : Q → R denote the centripetal-Coriolis,
and gravitational effects, respectively, P : Q × R → R denotes
the effects of passive viscoelastic tissue forces in the rider’s joints,
and τa : Q × R × R≥t0 → R denotes the active torque produced
by muscle contractions and is defined as

τa(q, q̇, t) ≜
∑
m∈M

Bm(q, q̇)um(t), (3)

where Bm : Q × R → R>0, ∀m ∈ M represents the uncer-
tain nonzero control effectiveness of each muscle group,1 which
depends on the unknown relationship between the stimulation
intensity and the muscle group’s evoked force, and the torque
transfer ratios about the crank axis (Bellman et al., 2016). A
muscle’s stimulation intensity denoted as um : R≥t0 → R
is applied in regions of the crank cycle where the joint torque
transfer ratios are above a predefined threshold. Switching across
muscles based on kinematic effectiveness yields an autonomous,
state-dependent, switched control system. The portion of the
crank cycle over which a particular muscle group is stimulated
is denoted by Qm ⊂ Q, ∀m ∈ M, where the muscle groups
are activated so that QM ≜ ∪m∈MQm (Bellman et al., 2016). A
piecewise constant switching signal is developed for each muscle

group, σm ∈ {0, 1} , ∀m ∈ M as σm(q) ≜

{
1 if q ∈ Qm

0 if q /∈ Qm.
The

stimulation intensity to the muscle groups is defined as

um(t) ≜ kmσmuFES, (4)

where km ∈ R>0, ∀m ∈ M are selectable positive control gains,
and uFES : R≥t0 → R is a subsequently designed muscle input.
The dynamic model in (1) can be rearranged using the definitions
of the electric motor torque, the rider torque in (2), the active
torque in (3), and (4) as

M(q)q̈ + V (q, q̇)q̇ + G(q)

+ P(q, q̇) + cdq̇ + d(t) = BσuFES + Beue, (5)

1 The subscript m indicates a muscle group contained in the muscle set M.
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Fig. 1. Cycle-rider system schematic. The crank angle q and the net torque
applied about the crank are positive in the clockwise direction. The knee, hip,
and trunk angles are denoted by qknee , qhip , and qtrunk , respectively. The lengths
of the thigh, shank, cycle crank, and horizontal and vertical seat positions are
denoted by lthigh , lshank , lcrank , and lx and ly , respectively. The regions Qm and Qe
denote the crank angles where the muscles and motor are active, respectively.

where M : Q → R>0 denotes the combined inertial effects of
the rider and cycle defined as M ≜ Jc + Mr , d : R≥t0 → R
denotes the disturbances applied by the rider and unmodeled
effects in the system, and Bσ ∈ R≥0 is the lumped, switched
control effectiveness defined as

Bσ (q, q̇) ≜
∑
m∈M

Bm(q, q̇)kmσm(q). (6)

The subscript σ ∈ P ≜ {1, 2, 3, . . . , n}, P ⊂ N, n ∈ N
indicates the index of Bσ , which switches according to the crank
position. The sequence of switching states

{
qn

}
are known and

the corresponding sequence of switching times
{
tn

}
are unknown

and defined such that each tn denotes the instant when q reaches
the corresponding switching state qn. The switching signal σm is
assumed to be continuous from the right and designed to produce
forward pedaling only. Fig. 1 shows a schematic of the cycle-rider
system and illustrates the switching regions for the muscles and
motor. The following assumption and properties from Bellman
et al. (2016) are exploited in the subsequent control design and
stability analysis.

Assumption 1. The disturbance d is bounded as |d| ≤ ξd, where
ξd ∈ R>0 is a known constant.

Property 1. cm ≤ M ≤ cM , where cm, cM ∈ R>0 are known
constants.

Property 2. |V | ≤ cV |q̇|, where cV ∈ R>0 is a known constant.

Property 3. |G| ≤ cG, where cG ∈ R>0 is a known constant.

Property 4. |P| ≤ cP1 + cP2 |q̇|, where cP1, cP2 ∈ R>0 are known
constants.

Property 5. 1
2 Ṁ − V = 0 by skew symmetry.

Property 6. The lumped switching control effectiveness is bounded
as cb ≤ Bσ ≤ cB, ∀σ ∈ P , where cb, cB ∈ R>0 are known constants.

3. Control development

3.1. Cadence control

The first objective is to design a motor controller that tracks
a desired cadence trajectory. The measurable angular crank po-
sition tracking error e : R≥t0 → R and auxiliary tracking error

r : R≥t0 → R are defined as

e(t) ≜ q(t) − qd(t), (7)

r(t) ≜ ė(t) + αe(t), (8)

where qd : R≥t0 → R denotes the desired crank position and
its first two time derivatives are bounded (i.e., |q̇d(t)| ≤ ξ1 and
|q̈d(t)| ≤ ξ2, where ξ1, ξ2 ∈ R>0 are known) and α ∈ R>0 is
a constant control gain. After taking the time derivative of (8)
and premultiplying by M , substituting for (5) and (7) and then
performing some algebraic manipulation yield2

Mṙ = −Vr + χ + Ñ + BσuFES + Beue − e, (9)

where the auxiliary signals χ : R≥t0 → R and Ñ : R≥t0 → R are
defined as

χ ≜ Wd − M(q)(q̈d − αė) − V (q, q̇)(q̇d − αe) − G(q)
− P(q, q̇) − cdq̇ + Nd + e, (10)

Ñ ≜ −(Wd + Nd + d), (11)

and the signals Wd : R≥t0 → R and Nd : R≥t0 → R>0 are defined
as Wd ≜ M(qd)q̈d +V (qd, q̇d)q̇d +G(qd)+cdq̇d and Nd ≜ cP1 +cP2q̇d,
respectively. The auxiliary signal in (11) can be upper bounded as

|Ñ| ≤ Θ1, (12)

where Θ1 ∈ R>0 is a known positive constant. By using
Properties 1–4, (7), (8), and the Mean Value Theorem, an upper
bound for (10) can be developed as

χ ≤ ρ(∥z∥)∥z∥, (13)

where z : R≥t0 → R2 is defined as z ≜ [e r]T , and ρ(·) ∈ R
is a known positive, radially unbounded, nondecreasing function.
Given the cadence open-loop error system in (9), the motor
control input is designed as

ue = −k1r − (k2 + k3ρ(∥z∥)∥z∥) sgn(r) + νp, (14)

where k1, k2, k3 ∈ R>0 are selectable positive gain constants,
sgn(·) : R → [−1, 1] is the signum function, and νp : R≥t0 → R
is a subsequently designed control input. The cadence motor
control input in (14) includes a feedback term and robust control
terms to reject the disturbance in (5) and the state-dependent
function in (13). The closed-loop cadence error system is obtained
by substituting (14) into (9) as

Mṙ = −Vr + χ + Ñ + BσuFES − e − Be(k1r − νp

+ (k2 + k3ρ(∥z∥)∥z∥) sgn(r)). (15)

3.2. Spatial learning control for torque tracking

The second objective is to track a desired torque trajectory
in the muscle stimulation regions q ∈ QM . The torque track-
ing error signal is designed based on the difference between
the desired torque and an estimate of the active torque pro-
duced by the muscle contractions in (3). Torque sensors are
commonly included on rehabilitation cycles, which provide a
measurement of the net torque contributions about the crank.
To obtain direct measurement of muscle force real-time invasive
sensing is required, which is not practical. Similar to previous
FES experiments (cf. Bellman, 2015; Ha et al., 2016), a baseline
measurement of the required torque to drive the cycle-rider
system at a desired cadence is obtained without applying FES
(i.e., τa = 0 such that τr = τp in (2)) under the assumption that

2 Functional dependencies are removed henceforth unless they add clarity to
the exposition.
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the disturbances are sufficiently small. By combining equations in
(1) and (2), the dynamics can be expressed as

τa + τe = τc + τp. (16)

A nominal torque measurement τn : R≥t0 → R can be obtained
from (16) as τn = τe = τc + τp when FES is not applied (i.e.,
τa = 0).

Assumption 2. An estimate of the nominal torque measure-
ment τ̂n : R≥t0 → R can be obtained using fitting techniques
given continuous net torque measurements (Bellman, 2015). The
mismatch between the nominal torque and the nominal torque
estimate τ̃n : R≥t0 → R is defined as τ̃n ≜ τn − τ̂n ≤ ϵn, where
ϵn ∈ R>0 is a known upper bound of the estimation error. This
assumption is acceptable when FES is not applied (i.e., τa = 0)
during preliminary testing and if the desired cadence used in this
test is the same as during the actual cycling experiment (Cousin
et al., 2017).

Subtracting the nominal torque estimate τ̂n from both sides of
(16) yields

τa = τ̃n + τ̂n − τe. (17)

Combining (17) with the estimate of the net active muscle torque
τ̂a defined as τ̂a ≜ τ̂n − τe yields

τ̂a = τa − τ̃n. (18)

To quantify the torque control objective, an integral torque track-
ing error-like term eτ : R≥t0 → R is defined as

eτ =

∫ t

t0

(
τd(ϕ) − τ̂a(ϕ)

)
dϕ, (19)

where τd : R≥t0 → R denotes a bounded periodic desired torque
trajectory such that |τd| ≤ βd.

Remark 1. In (19), the torque trajectory τd is a function of time.
However in the experiments in Section 5, the desired torque
trajectory τd is a bounded periodic function of the crank angle q ∈

[0, 2π ). Hence, a mapping between time and space is needed. This
mapping is feasible since there exists a relationship between time
and crank position. The angular speed of the system is defined as
q̇ ≜ dq/dt , which can be integrated to yield q =

∫ t
0 q̇(ϕ)dϕ ≜ f (t).

In cycling only forward pedaling is allowed (no change of di-
rection) and the desired cadence q̇d is positive. Moreover, the
cadence controller in (14) is designed and proven to achieve
q̇ > 0 (i.e., the actual cadence is nonzero) based on the stability
proof in Section 4. Hence, q is a strictly increasing function of t ,
(i.e., the relationship between t and q is bijective Xu & Huang,
2008). Thus the function q = f (t) is analytic and the inverse
function t = f −1(q) exists globally. Therefore, any function of t
can be expressed as a spatial function of q, e.g., τd(t) can be
expressed as τd(f −1(q)).

The torque open-loop error system is obtained by taking the
time derivative of (19) and using (18), (3), (4), and (6) as

ėτ = τd − BσuFES + τ̃n. (20)

Given the open-loop error system in (20), the muscle control
input is designed as

uFES = Ŵd + k4eτ + k5Ŵd, (21)

where k4, k5 ∈ R>0 are positive constant control gains, and Ŵd :

R≥t0 → R is the subsequently designed RLC update law.

Remark 2. The RLC is typically designed based on the knowledge
of the time period T of a periodic process (Dixon et al., 2002; Sun
et al., 2006). In this paper, the RLC is designed based on the state
periodicity (crank position) of the desired torque trajectory τd.
Based on the mapping described in Remark 1, a spatial RLC
denoted as Ŵd(t) = Ŵd(f −1(q)) can be designed leveraging the
fact that q− 2π ≜ f (t − T ) and the existence of the map t − T =

f −1(q−2π ). Knowledge of the period T (i.e., the time to complete
a revolution) is not necessary for the implementation of Ŵd, but
it can be computed as T =

∫ q
q−2π dt =

1
q̇

∫ q
q−2π dq. The period

T varies across crank cycles because it depends on the achieved
cadence tracking performance.

The RLC update law in (21) is defined as

Ŵd ≜ Γ satβr

(
Ŵd(t − T )

)
+ kLeτ ,

= Γ satβr

(
Ŵd(f −1(q − 2π ))

)
+ kLeτ , (22)

where Γ ∈ (0, 1] is a selectable constant, kL ∈ R>0 is a positive
constant learning gain, and satβi (·) is defined as

satβi (Ξ ) ≜
{
Ξ for |Ξ | ≤ βi

sgn(Ξ )βi for |Ξ | > βi,
i ∈ {d, r}, ∀Ξ ∈ R. (23)

where βi ∈ R>0 are selectable constants satisfying βd < βr . The
closed-loop error system is obtained by substituting (21) into (20)
as

ėτ = W̃d + Ŵd + τ̃n − Bσ (Ŵd + k4eτ + k5Ŵd), (24)

where W̃d : R≥t0 → R is the learning estimation error defined as
W̃d ≜ τd − Ŵd. Based on the periodicity and boundedness of τd,
τd(t) = satβd (τd(t)) = satβd (τd(t − T )). Hence, by exploiting (22),
the following expression can be developed

W̃d = satβd (τd(t − T )) − Γ satβr (Ŵd(t − T )) − kLeτ (t). (25)

4. Stability analysis

The stability of the RLC muscle and sliding-mode motor con-
trollers can be examined independently through the following
two theorems. Theorem 1 shows that the closed-loop torque
error system is output strictly passive (OSP) and ensures asymp-
totic tracking or uniformly ultimately bounded (UUB) tracking
provided two conditions, which hold for all time, are satisfied,
respectively. Theorem 2 shows that the closed-loop cadence error
system is OSP and exponential tracking is achieved for q /∈ QM
ensuring passivity with respect to the muscle input. Lemma 1 is
used to prove that the time derivative of the torque tracking error
in (19) is uniformly bounded.

Theorem 1. The closed-loop error system in (24) is OSP from input
v1 to output eτ if q ∈ QM . The controller designed in (21) and RLC
in (22) ensures asymptotic tracking if ϵn|eτ | > ϵL in the sense that
limt→∞ eτ (t) = 0 and UUB tracking if ϵn|eτ | < ϵL in the sense that3

|eτ | ≤

√
λ2

λ1
|eτ (tn)|e−

λ6
2 (t−tn) +

√
λ5

λ1λ6
(1 − e−

λ6
2 (t−tn)), (26)

where λ1 ≜ min( 12 ,
1

2kL
), λ2 ≜ max( 12 ,

1
2kL

), λ5 ≜
k4cbλ4

λ3
+

2
kL

ϵ2
n , and

λ6 ≜
k4cb
λ3

.

3 For q /∈ QM the torque controller in (21) and desired torque trajectory τd
are zero.
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Proof. Let V1 : R2
× R≥t0 → R be a nonnegative, continuously

differentiable, storage function defined as

V1 ≜
1
2
e2τ +

1
2kL

t∫
t−T

(satβd (τd(ϕ)) − Γ satβr (Ŵd(ϕ)))2dϕ. (27)

The storage function in (27) satisfies the following inequalities:

λ1∥w∥
2

≤ V1(w, t) ≤ λ2∥w∥
2, (28)

V1(w, t) ≤ λ3∥eτ∥
2
+ λ4, (29)

where w ≜ [eτ

√
QL]

T , QL ≜
∫ t
t−T (satβd (τd(ϕ)) − Γ satβr (Ŵd(ϕ)))2

dϕ, and λ3, λ4 are known positive bounding constants. Let w(t)
be a Filippov solution to the differential inclusion ẇ ∈ K [h](w),
where K [·] is defined as Filippov (1964) and h is defined using
(24) as h ≜ [h1 h2], where h1 ≜ W̃d + Ŵd + τ̃n − Bσ (Ŵd + k4eτ +

k5Ŵd), h2 ≜ 1
2
√
QL

{(satβd (τd(t)) − Γ satβr (Ŵd(t)))2 − (satβd (τd(t −

T )) − Γ satβr (Ŵd(t − T )))2}. The control input in (4) has the
discontinuous lumped control effectiveness Bσ ; hence the time
derivative of (27) exists almost everywhere (a.e.), i.e., for almost
all t . Based on Fischer, Kamalapurkar, and Dixon (2013, Lemma 1),
V̇1(w(t), t)

a.e.
∈

˙̃V1(w(t), t), where ˙̃V1 is the generalized time
derivative of (27) along the Filippov trajectories of ẇ = h(w)

and is defined as ˙̃V1 ≜
⋂

ξ∈∂V1
ξ TK

[
ėτ

Q̇L
2
√
QL

1
]T

(eτ , 2
√
QL, t).

Since V1(w, t) is continuously differentiable in w, ∂V1 = {∇V1},

thus ˙̃V1
a.e.
⊂ [eτ ,

(
1

2kL

)
2
√
QL]K

[
ėτ

Q̇L
2
√
QL

]T
. Therefore, after sub-

stituting for (24), the generalized time derivative of (27) can be
expressed as

˙̃V1
a.e.
⊂ eτ

(
W̃d + Ŵd + τ̃n − K [Bσ ](k4eτ + Ŵd + k5Ŵd)

)
−

1
2kL

(satβd (τd(t − T )) − Γ satβr (Ŵd(t − T )))2

+
1
2kL

(satβd (τd(t)) − Γ satβr (Ŵd(t)))2. (30)

By employing the following property(
τd(t) − Ŵd(t)

)2
≥

(
satβd (τd(t)) − Γ satβr (Ŵd(t))

)2
,

proven similarly as in Dixon et al. (2002, Appendix I) using βd
< βr , using Property 6 to lower bound K [Bσ ], substituting
for (25), and canceling terms, an upper bound for (30) can be
developed as

˙̃V1
a.e.
≤ −δ1e2τ + v1eτ , (31)

where v1 = (1+ cB −k5cb)Ŵd +ϵn, and δ1 ≜ cbk4 +
kL
2 . Integrating

(31) yields
∫ t
t0

v1(ϕ)eτ (ϕ)dϕ
a.e.
≥

(
Ṽ1(t) − Ṽ1(t0) +

∫ t
t0

δ1e2τ (ϕ)dϕ
)
.

Hence, the closed-loop system in (24) is OSP from input v1 to
output eτ . To ensure stability of the closed loop error system
in (24), additional analysis is needed. The upperbound in (31) can
be rewritten as

˙̃V1
a.e.
≤ −k4cbe2τ + eτ Ŵd(1 + cB − k5cb) + eτ ϵn −

1
2
kLe2τ . (32)

Selecting k5 ≜
1+cB
cb

and kL ≜
2ϵ2n
ϵL

and substituting them into (32)
yields

˙̃V1
a.e.
≤ −k4cbe2τ + ϵn|eτ |

(
1 −

1
ϵL

ϵn|eτ |

)
, (33)

where asymptotic tracking is achieved if ϵn|eτ | > ϵL and by
invoking (Fischer et al., 2013, Corollary 2) and since ˙̃V1(w, t)

a.e.
≤ −W (w), thus |eτ | → 0 as t → ∞, where W is a continuous
positive semi-definite function. If ϵn|eτ | < ϵL, Eq. (33) yields

˙̃V1
a.e.
≤ −k4cbe2τ + ϵL

a.e.
≤ −k4cbe2τ +

2ϵ2
n

kL
. (34)

Further by using the inequality in (29), the inequality in (34) can
be upperbounded as
˙̃V1

a.e.
≤ −λ6V1 + λ5, (35)

where λ5 ≜
k4cbλ4

λ3
+

2
kL

ϵ2
n and λ6 ≜

k4cb
λ3

. Applying the Comparison

Lemma (Khalil, 2002, Lemma 3.4) to (35) yields

V1(w)
a.e.
≤ V1(w(tn))e−λ6(t−tn) +

λ5

λ6

(
1 − e−λ6(t−tn)

)
, (36)

which can be used with (28) to yield the UUB tracking result
in (26). Using (27) and (36), V1 ∈ L∞, hence, eτ ∈ L∞. From (22),
Ŵd ∈ L∞, which along with the fact that τd ∈ L∞ implies that
W̃d ∈ L∞. From (21), uFES ∈ L∞, and from (4), um ∈ L∞. A
separate analysis is needed to prove that the time derivative of
the torque tracking error in (19) ėτ is bounded. The following
lemma establishes a bound for ėτ .

Lemma 1. The torque tracking error ėτ in (24) is uniformly bounded
for q ∈ QM in the sense that

|ėτ | ≤

(
2 + cB

(
1 +

k4
kL

+ k5

))
kL|eτ |

+

(
2 +

βd + ϵn

Γ βr
+ cB (1 + k5)

)
Γ βr . (37)

Proof. The integral torque tracking error eτ can be rewritten as

eτ =

∫ t

t0

deτ (ϕ)
dϕ

dϕ + C, (38)

where C ∈ R is an integration constant. Based on (26), the
expression in (38) can be used to prove that limt→∞

∫ t
t0

deτ (ϕ)
dϕ dϕ

exists and is finite. Using (23), (24), and (25), the upperbound
for |ėτ | in (37) can be obtained. Therefore, based on Theorem 1,
eτ , Ŵd, W̃d ∈ L∞, and hence ėτ ∈ L∞.

Theorem 2. The closed-loop cadence tracking error system in (15)
is OSP from input v2 to output r. The controller in (14) achieves
exponential tracking when um = 0, provided the following sufficient
gain conditions are satisfied

k2 >
Θ1

ce
, k3 >

1
ce

. (39)

Proof. Let V2 : R2
× R≥t0 → R be a nonnegative, continuously

differentiable, storage function defined as

V2 =
1
2
e2 +

1
2
Mr2. (40)

The storage function in (40) satisfies λ7∥z∥2
≤ V2(z, t) ≤ λ8∥z∥2,

where λ7 ≜ min( 12 ,
cm
2 ), λ8 ≜ max( 12 ,

cM
2 ). Let z(t) be a Filippov

solution to the differential inclusion ż ∈ K [h](z), where K [·] is
defined as in Fischer et al. (2013), and h is defined by using (7)
and (8) as h ≜ [h3 h4], where h3 ≜ r − αe and h4 ≜ M−1

{−Vr +

χ + Ñ + BσuFES − e − Be(k1r − νp + (k2 + k3ρ(∥z∥)∥z∥) sgn(r))}.
Using similar arguments as in the proof of Theorem 1, using (12),
(13), (15), and Properties 5 and 6, the generalized time derivative
of (40) can be upper bounded as
˙̃V2

a.e.
≤ −αe2 − k1cer2 +

(
BσuFES + ceνp

)
r

− (k2ce − Θ1) |r| − (k3ce − 1) ρ(∥z∥)∥z∥|r|. (41)
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Table 1
Demographics of participants with a neurological condition.
Participant Age Sex Injury Months since injury

A 25 M SB L5-S1 Since birth
B 32 M SCI C5-C7, T12 76
C 28 F MS 96

Integrating (41) yields
∫ t
t0

v2(ϕ)r(ϕ)dϕ
a.e.
≥ (Ṽ2(t) − Ṽ2(t0) +∫ t

t0
δ2∥z(ϕ)∥2dϕ), where δ2 = min {α, k1ce}, and v2 = BσuFES +

ceνp, which can be used to prove that the closed-loop system
in (15) is OSP from input v2 to output r , provided the sufficient
gain conditions in (39) are satisfied. In fact, the system is strictly
passive (Khalil, 2002) since the integral term in the right-hand
side of passivity inequality is positive definite. Moreover, by
setting νp ≜ −kpr , kp ∈ R>0 in (41), V̇2

a.e.
≤ −δ3V2 where

δ3 =
min{δ2,kp}

λ8
, during q /∈ QM since σm = 0 H⇒ Bσ = 0,

∀m ∈ M, provided the gain conditions in (39) are satisfied.
Hence, exponential cadence tracking is obtained as ∥z(t)∥ ≤√

λ8
λ7

∥z(tn)∥ exp
(
−

δ3
2 (t − tn)

)
, ∀q /∈ QM .

5. Experiments

The controllers designed in (14), (21) and (22) were tested in
experiments. The stimulation intensities um activated the right
and left quadriceps (RQ, LQ), hamstrings (RH, LH), and gluteal (RG,
LG) muscle groups for torque tracking, and the current input ue
was used for the electric motor to track cadence.

5.1. Participants

Five able-bodied individuals labeled as S1–S5 (three male and
two female with age range of 22–26 years) and three individu-
als with NCs (one female with Multiple Sclerosis (MS) and two
males with Spina Bifida and SCI) participated in the FES-cycling
protocol. Demographics of the participants with NCs are listed in
Table 1. The participants provided written informed consent as
approved by the Institutional Review Board at the University of
Florida and were instructed to avoid pedaling voluntarily.

5.2. Experimental testbed and setup

The cycling testbed described in Bellman et al. (2017) and Due-
nas et al. (2019) was used for experiments. The testbed has crank
position and torque (SRM Science Road Wireless Power Meter)
feedback. The motor was controlled using a current-controlled
analog motor driver, a filter card, and a power supply (Advanced
Motion Controls).4 A desktop computer with Windows 10 OS,
MATLAB/Simulink 2015b (MathWorks Inc) and QUARC 2.5 real-
time software was used with a sampling frequency of 500 Hz.
A Quanser Q8-USB data acquisition board measured the encoder
and power meter signals and sent the voltage output to the motor
driver. A current-controlled stimulator (RehaStim 1, Hasomed
GmbH) delivered biphasic, symmetric, rectangular pulses to the
muscle groups via self-adhesive PALS R⃝ electrodes (3′′ by 5′′).5
The stimulation current amplitudes and frequency were selected
as in Duenas et al. (2019). Measurements of the participant’s legs
were recorded as in Bellman et al. (2016) to compute the muscle
stimulation regions.

4 The servo drive and filter card were provided in part by the sponsorship
of Advanced Motion Controls.
5 Surface electrodes for the study were provided compliments of Axelgaard

Manufacturing Co., Ltd.

The experiments included a warm up, a passive torque estima-
tion trial and the main cycling trial. Warm up trials at different
speeds with and without open-loop stimulation pulse trains were
conducted for the participants with NCs to acclimate them to the
cycle. An estimate of the nominal torque τ̂n was obtained in a
separate trial where the muscles were not stimulated and the
electric motor was used to passively rotate the participant’s legs.
The FES-cycling trial had a duration of td = 180 s. The electric
motor tracked a time-varying cadence trajectory that reached
a steady state value of 50 RPM after t1 = 16 s. When the
experiment duration reached t2 = 21 s, the torque controller
in (21) with RLC in (22) was activated and hence torque tracking
started.

The desired torque trajectory was designed as a modified
function of the knee joint torque transfer ratio, which can be
computed as a function of the crank position. Therefore, the
state-periodic desired torque trajectory is nonzero during the
stimulation regions q ∈ QM and is defined as

τd(q) ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Adsin
(
2 q−q1

1
2 q2−q1

π

)
q1 < q ≤

1
2q2

Ad
2 cos

(
q− 1

2 q2
1
2 q2

π

)
+

Ad
2

1
2q2 < q ≤ q2

0 q2 < q ≤ q3

Adsin
(

q−q3
q4−q3

π

)
q3 < q ≤

q4+q3
2

Ad
2 cos

(
q− 1

2 (q4−q3)+q3
1
2 (q4−q3)

π

)
+

Ad
2

q3+q4
2 < q ≤ q4

0 q4 < q ≤ q1,

where q1, q3 ∈ R>0 and q2, q4 ∈ R>0 are the known and constant
predefined crank angles that determine the start and the end of
the stimulation regions, respectively. The peak torque amplitude
Ad ∈ R≥0 is defined as Ad ≜

Pd
q̇d
, where Pd ≜ 10 W, is the

maximum desired power demand (unless stated otherwise), and
q̇d is the desired cadence. Since the electric motor tracks cadence
throughout the entire crank cycle (i.e., the motor advances the
crank position in and out of the torque tracking regions), the
spatial RLC, which is initialized to zero, can be implemented
without enforcing the typical resetting condition before the start
of a new crank cycle or period. The control gains introduced
in (4), (14), (21), and (22) were selected as follows: km ∈ [4.5, 5],
α ≜ 2.5, k1 ≜ 9, k2 ≜ 0.1, k3 ≜ 0.01, k4 ∈ [60, 250], k5 ≜ 0.5,
kp ≜ 0.001, Γ ∈ [0.95, 1], and kL ∈ [25, 45].

5.3. Results

Table 2 summarizes the average of the cadence error (i.e., the
time derivative of (7)), the average of the torque tracking error
in (19), the average of the time derivative of (19), and the average
power tracking error for t ∈ [t2, td] sec. The power tracking error
can be computed as the difference between the active power
output Pa = τaq̇ and the desired power output PD = τdq̇d.
For data analysis and to account for the time-delayed nature of
muscle activation, the actual torque error ėτ was computed by
averaging the active torque output τa within a time window of
100 ms after the stimulation inputs were applied and turned off.
Fig. 2 illustrates the switched muscle control inputs, the desired
and actual torque output, and the RLC input for participant S3
(as a common example) after 2 min of cycling. Fig. 3 shows
the root-mean-squared error (RMS) of the cadence tracking error
calculated over a moving time interval window of 12 s, and



V.H. Duenas, C.A. Cousin, V. Ghanbari et al. / Automatica 115 (2020) 108852 7

Fig. 2. FES intensities um (top), active torque output τa and desired torque τd

(middle), and RLC input Ŵd (bottom) during a single crank cycle for participant
S3 after 2 min of cycling. The vertical solid bars correspond to the time where
the torque output rises above zero, which illustrates the fact that muscle
activation is affected by the muscle electromechanical delay (EMD) (Downey,
Merad, Gonzalez, & Dixon, 2017).

Fig. 3. Tracking performance for participant B quantified by the RMS cadence
tracking error ė computed with a moving time interval window of 12 s (top),
and the RMS torque tracking error eτ computed with a moving time interval
window of 1.2 s (bottom).

Fig. 4. Muscle stimulation intensities um (top), electric motor current ue

(middle), and RLC input Ŵd (bottom) for participant B.

the RMS of the torque tracking error calculated over a moving
time interval window of 1.2 s for participant B. Fig. 4 depicts
the muscle stimulation intensities um, the electric motor current
input ue, and the RLC input for participant B.

Table 2
Tracking results: average cadence tracking error ė, average torque error eτ ,
average actual torque error ėτ and the corresponding average power error
reported as mean value ± standard deviation (STD).
Participant ė (RPM) eτ (N m s ) ėτ (N m) Power error

(W)

S1 0.03 ± 1.07 0.08 ± 0.08 0.65 ± 0.24 3.41 ± 1.27
S2 0.01 ± 1.58 0.05 ± 0.12 0.24 ± 0.51 1.26 ± 2.56
S3 0.02 ± 0.85 0.10 ± 0.12 0.41 ± 0.30 2.15 ± 1.55
S4 0.02 ± 1.27 0.13 ± 0.18 0.31 ± 0.06 1.61 ± 0.32
S5 0.00 ± 0.96 0.12 ± 0.14 0.47 ± 0.18 2.45 ± 0.94

Mean (S1–S5) 0.02 ± 1.17 0.10 ± 0.13 0.42 ± 0.30 2.18 ± 1.52
Aa 0.02 ± 0.68 0.04 ± 0.06 0.06 ± 0.03 0.30 ± 0.14
B 0.00 ± 1.78 0.06 ± 0.09 0.39 ± 0.19 2.11 ± 0.99
Ca 0.01 ± 0.96 0.06 ± 0.10 0.18 ± 0.02 0.91 ± 0.13

Mean (A–C) 0.01 ± 1.23 0.05 ± 0.09 0.21 ± 0.11 1.11 ± 0.58
Combined mean 0.01 ± 1.20 0.08 ± 0.12 0.34 ± 0.25 1.78 ± 1.25

aParticipants A and C tracked a peak power demand of Pd = 5 W.

Fig. 5. Active power Pa and desired power Pd as a function of the crank angle
for a trial with peak power Pd = 10 W and desired cadence q̇d = 50 RPM during
the first 50 (top) and the subsequent 50 (bottom) crank cycles for participant S3.

Four trials were conducted for participant S3 to assess the
effect of different cadences and peak power values. Table 3 sum-
marizes the results of the four trials for participant S3 using q̇d =

40 RPM and q̇d = 50 RPM paired with Pd = 5 W and Pd = 10 W.
Fig. 5 depicts the actual power output Pa and the desired power
Pd as a function of the crank position for an experiment with peak
power Pd = 10 W and desired cadence q̇d = 50 RPM during the
first 50 crank cycles and the subsequent 50 crank cycles.

5.4. Discussion

The average cadence tracking errors were comparable be-
tween able-bodied participants (0.02±1.17 RPM) and individuals
with NCs (0.01 ± 1.23 RPM). The average power tracking errors
varied between healthy (2.18 ± 1.52 W) and impaired (1.11 ±

0.58 W) individuals, primarily due to the differences in muscle
strength and desired peak torques. The muscle torque RLC con-
troller improved the power tracking with increasing cycles as
depicted in Fig. 5. The muscle and motor controllers were able to
compensate for different peak torques and cadences, respectively,
as reported in Table 3.

The results presented in this study align qualitatively with pre-
viously reported power tracking experiments. In Bellman (2015),
three experimental results with healthy individuals were re-
ported to track discrete power, where the power measurement
was averaged over a full crank cycle and the controller was
updated only at the beginning of the crank cycle. In Cousin et al.
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Table 3
Tracking results using different peak power (Pd) and cadence (q̇d) values for participant S3: average cadence tracking error ė, average torque error eτ , average actual
torque error ėτ and the corresponding average power error reported as mean value ± standard deviation (STD).
Cadence (RPM) ė (RPM) eτ (N m s) ėτ (N m) Power error (W)

Peak power (W) Peak power (W) Peak power (W) Peak power (W)

Pd = 5 Pd = 10 Pd = 5 Pd = 10 Pd = 5 Pd = 10 Pd = 5 Pd = 10

q̇d = 40 0.00 ± 0.69 0.01 ± 0.99 0.09 ± 0.10 0.11 ± 0.17 0.25 ± 0.19 0.02 ± 0.25 1.54 ± 1.29 0.88 ± 1.97
q̇d = 50 0.02 ± 0.91 0.02 ± 0.85 0.06 ± 0.06 0.10 ± 0.12 0.32 ± 0.18 0.41 ± 0.30 1.67 ± 0.95 2.15 ± 1.55

Mean 0.01 ± 0.81 0.02 ± 0.92 0.08 ± 0.08 0.11 ± 0.15 0.29 ± 0.19 0.22 ± 0.28 1.61 ± 1.13 1.52 ± 1.77

(2017), controllers were designed for muscles to track cadence
and the electric motor to track a resistive torque. A closed-loop
controller with motor assistance was reported in Hunt et al.
(2004), where the power output was monitored for a paraplegic.
In Farhoud and Erfanian (2014), a FES-cycling power control
objective with varying amplitudes between 5 and 10 W was
implemented with three paraplegics via sliding mode control. De-
spite the existing power tracking results, the lack of homogeneity
in reporting the power tracking performance makes difficult the
cross comparisons among the published results.

The implementation of the experiments presented several
challenges. The active torque elicited by the participants was
obtained by subtracting the nominal torque estimate from the net
torque measurement. However, the noise in the nominal torque
estimate of the rider’s passive dynamics affected the quality of
active torque signal. Future efforts should focus on improving
the estimation of the rider’s passive dynamics. Muscle fatigue
and electromechanical delay (EMD) are two factors that degrade
power tracking performance. Muscle fatigue is a well known issue
in FES research and asynchronous stimulation patterns have been
developed in Downey, Bellman, Kawai, Gregory, and Dixon (2015)
to alleviate the effects of fatigue. However, muscle response to
FES depends on the muscle activation dynamics, which is affected
by EMD. As depicted in Fig. 2, there exists a muscle contraction
delay illustrated by the time difference between the onset of
the stimulation and the point where the participant’s active
torque rises above the zero torque baseline. Recently in Downey
et al. (2017), it was concluded for the quadriceps that the EMD
increases as the number of muscle contraction increases under
isometric conditions. Hence, muscle fatigue and delay are im-
portant factors to consider for the development of rehabilitative
treatments using FES.

The experiments with participants with NCs presented ad-
ditional challenges. Participant B experienced muscle weakness,
thus high stimulation intensities were needed to evoke muscle
contractions, and suffered intermittent spasms that acted as dis-
turbances. Participants A and C also exhibited reduced muscle
strength, which lead to reduce the peak power from 10 W to
5 W. Moreover, participants A and C elicited asymmetric torque
profiles between right and left legs. To compensate for torque
asymmetries, a split-crank bicycle is an ideal testbed for further
experimentation. Despite these challenges, the torque controller
adjusted the muscle stimulation intensities to successfully com-
plete the experiments. Clinical trials with populations with other
NCs such as individuals with traumatic brain injury, Parkinson’s
disease, etc., are required to investigate the long-term benefits of
the developed control methods.

6. Conclusion

A motor cadence controller and a muscle torque controller
were implemented in this paper to achieve power tracking in
FES-cycling experiments. The switched muscle torque controller
included a spatial RLC input to cope with the state periodicity of
the desired torque trajectory. A passivity-based analysis was de-
veloped to ensure stability of the torque and cadence closed-loop

systems. The average cadence tracking error was 0.01±1.20 RPM
and the average power tracking error was 1.78±1.25 W including
all the participants. Muscle fatigue and the EMD are important
factors that degrade the efficacy of the control methodology. As in
results such as Downey et al. (2017), Merad, Downey, Obuz, and
Dixon (2016) and Sharma, Gregory, and Dixon (2011), the muscle
exhibits a delayed response to external electrical stimulation, and
this response varies in time with muscle fatigue. Future efforts
are required to develop controllers and analysis methods that can
compensate for such delays in switched systems. Longitudinal
studies are required to test the long-term benefits of learning
control methods for power tracking.
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