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a b s t r a c t

An approximate optimal indirect regulation problem is considered for two nonlinear uncertain agents.
An influencing agent is tasked with optimally intercepting and directing a roaming agent to a goal
location. The roaming agent is not directly controlled by the influencing agent, but instead moves based
on some uncertain interaction dynamic. To overcome this challenge, a virtual controller is designed
to yield a desired influence on the roaming agent. In addition, an approximate dynamic programming
(ADP) strategy is used to develop an approximate optimal solution to the optimal control problem
using a computationally efficient function approximation method. Because system uncertainties are
considered in both agents, a data-based parameter identification method called integral concurrent
learning (ICL) is used to identify uncertain dynamics. A Lyapunov-based stability analysis is performed
which proves the closed-loop pursuing and roaming agent systems are uniformly ultimately bounded
(UUB). Simulation and experimental results are provided to demonstrate the performance of the
developed method.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-agent systems may be cooperative, where the agents
im to reach the same goal, or non-cooperative, where the agents
im to reach different goals such as pursuit–evasion or reach-
void games. Game theory is concerned with the analysis of
trategies that players can take based on particular conditions
von Neumann & Morgenstern, 1980). Pursuit–evasion games are
roblems motivated by predator–prey scenarios, where strate-
ies for either evading or pursing agents are calculated using
ifferential game theory (cf., Chen, Zha, Peng, & Gu, 2016; Chen,
hou, & Tomlin, 2017; Chung, Hollinger, & Isler, 2011; Garcia,
asbeer, & Pachter, 2017, 2018; Isaacs, 1967, 1999; Kachroo,
hedied, Bay, & Vanlandingham, 2001; Khalafi & Toroghi, 2011;
umkov, Le Ménec, & Patsko, 2017; Ramana & Kothari, 2017;
idal, Shakernia, Kim, Shim, & Sastry, 2002; Yan, Jiang, Di, Jiang,
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Florida, USA. This paper was recommended for publication in revised form by
Associate Editor Zhihua Qu under the direction of Editor Daniel Liberzon.

∗ Corresponding author.
E-mail addresses: pdeptula@draper.com (P. Deptula), bellz121@ufl.edu

Z.I. Bell), fredzeg@ufl.edu (F.M. Zegers), ryan.a.licitra@lmco.com (R.A. Licitra),
dixon@ufl.edu (W.E. Dixon).
ttps://doi.org/10.1016/j.automatica.2021.109913
005-1098/© 2021 Elsevier Ltd. All rights reserved.
& Hao, 2018 and references therein). Several different approaches
have been considered in pursuit–evasion games. For instance,
works such as Chen et al. (2016) consider multi-player pursuit–
evasion capture conditions, and cooperative control strategies are
calculated for pursuing agents to capture evading agents. Results
such as Ramana and Kothari (2017) develop escape strategies
for evading agents using mathematical frameworks based on
Apollonius circles. Results such as Yan et al. (2018) consider
pursing agents with uncertain speeds and calculate the strategies
for the pursuing agent, while escape strategies are selected for
evading agents based on how pursuing agents are approaching
them. Results such as Chen et al. (2017) and Huang, Ding, Zhang,
and Tomlin (2015) consider reach-avoid games to determine
strategies (i.e., winning and losing regions) computed numeri-
cally using level set methods to solve the Hamilton Jacobi Isaacs
(HJI) equation. While the aforementioned and related literature
provide foundational strategies for pursuit–evasion games, most
results assume simple or known dynamics and generally only
consider the problem in two-dimensions. In addition, assump-
tions about the knowledge of the opposing players strategies
are required to gain an advantage. Moreover, such games are
only focused at finding strategies for either capturing or evading
aspects of the game.

While traditional pursuit–evasion problems focus on either

the trapping or fleeing aspects of the game, a different class of
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roblems, called herding, focus on directing uncontrolled agents
o a goal location and have been investigated in results such
s Bacon and Olgac (2012), Gadre (2001), Kachroo et al. (2001),
icitra, Bell, Doucette, and Dixon (2018), Licitra, Hutcheson,
oucette, and Dixon (2017), Lu (2006), Pierson and Schwager
2018), Shedied (2002). Unlike pursuit–evasion problems, in
ndirect herding problems, the influencing agent must pursue
roaming agent while also escorting it to a desired location

hrough an inter-agent interaction. The indirectly influenced
gent is called roaming instead of evading since it does not
ecessarily pursue an optimal strategy or seek to escape from
he pursing agent. Such problems are inspired by behaviors and
ractical considerations often seen in nature and have inspire
orks such as Bacon and Olgac (2012), Gadre (2001), Kachroo
t al. (2001), Licitra et al. (2018, 2017), Lu (2006), Pierson and
chwager (2018), Shedied (2002) to leverage such behaviors
n controlling autonomous systems. Motivated by such results,
he authors in Licitra et al. (2017) and Licitra et al. (2018)
pproach the indirect regulation (also known as indirect herding)
roblem via a switched-systems approach, where the influencing
gent switches between target agents. In Licitra et al. (2017),
robust sliding mode approach is used to compensate for
orst-case uncertainties of the target agent dynamics. Compared
o Licitra et al. (2017), the result in Licitra et al. (2018) uses
n adaptive control approach, where a data-based parameter
stimation method called integral concurrent learning (ICL) is
sed to learn the linearly parametrized (LP) target dynamics by
toring input–output data (cf., Parikh, Kamalapurkar, & Dixon,
019). In Pierson and Schwager (2018) and Bacon and Olgac
2012), a forcing function based on geometric constraints is used
o develop a controller for a group of agents that regulate other
gents indirectly by forming an arc and forcing the targets to
he desired location. Although major advancements have been
ade in multi-player problems, results such as Chen et al. (2016),
amana and Kothari (2017), Yan et al. (2018) generally consider
oint mass systems and know the form of the agent dynamics,
hile results such as Bacon and Olgac (2012), Licitra et al. (2018,
017), Pierson and Schwager (2018) rely on explicitly designed
ontrollers for the influencing agent based on the target dynamics
nd do not consider optimality.
Herding-based problems using dynamic programming (DP) to

ind optimal strategies for pursuing agents to capture and regu-
ate evading/roaming agents to goal locations have been investi-
ated. Results such as Kachroo et al. (2001), Lu (2006), Shedied
2002) compute optimal policies for pursuing agents regulat-
ng multiple evading agents with known point mass dynamics.
pecifically, the result in Lu (2006) uses the Sparse Nonlinear Op-
imizer (SNOPT) algorithm in Gill, Murray, and Saunders (2005),
ill, Wong, Murray, and Saunders (2015) to compute numerical
olutions offline. The works in Kachroo et al. (2001), Shedied
2002) use DP and shortest-path algorithms over a finite graph
o determine offline optimal policies that a pursing agent can
ake to drive an evading agent to a goal location. Although results
uch as Kachroo et al. (2001), Lu (2006), Shedied (2002) pro-
ide in-roads for optimal herding, the computational complexity
ssociated with a large number of states renders the problems
nfeasible for online implementation, the agents are assumed to
ake simple one-step discrete actions over a finite grid, and the
ynamics of the agents are generally known. Such results require
umerical solutions, which can be computationally expensive for
igh dimensional systems, and do not consider system uncer-
ainties; hence, the use of parametric methods, such as neural-
etworks (NNs), to yield computationally efficient approximate
ptimal controllers online is motivated.
Approximate dynamic programming (ADP) is a popular

ethod which has been successfully used in deterministic au-
onomous control-affine systems to develop approximately opti-
al solutions (Kamalapurkar, Walters, Rosenfeld, & Dixon, 2018;
2

Kiumarsi, Vamvoudakis, Modares, & Lewis, 2017; Vamvoudakis,
Modares, Kiumarsi, & Lewis, 2017; Zhang, Liu, Luo, & Wang,
2013). ADP approximates the solution to the Hamilton Jacobi
Bellman (HJB) equation, called the value function, and is used to
compute the online forward-in-time optimal policy via NNs. ADP
approaches such as Kamalapurkar, Walters, and Dixon (2016),
Vamvoudakis et al. (2017), Wen, Ge, and Tu (2018) approximate
the value function by using stationary basis functions represent-
ing the entire operating domain, which can be computationally
expensive. Specifically, in the absence of domain knowledge, a
large number of basis functions, and hence, a large number of
unknown parameters, is required for value function approxima-
tion. However, by using computationally efficient state-following
(StaF) kernel basis functions (Deptula, Rosenfeld, Kamalapurkar, &
Dixon, 2018; Kamalapurkar, Rosenfeld & Dixon, 2016; Rosenfeld,
Kamalapurkar, & Dixon, 2019) for local approximation of the
value function around the current state, the number of basis
functions required for sufficient value function approximation
can be reduced.

Numerous results have been developed using differential
game formulations using ADP (cf., Kamalapurkar, Klotz, Walters,
& Dixon, 2018; Modares, Lewis, Kang, & Davoudi, 2018; Sun, Liu,
& Ye, 2017; Vamvoudakis & Hespanha, 2018; Vamvoudakis et al.,
2017; Wang, Liu, Mu, & Ma, 2016; Zhang, Cui, & Luo, 2013).
However, all of these results solve the multi-player problem
by generating controllers and directly controlling each agent.
Exceptions include the innovative work in Wen et al. (2018)
and Wang, Liu, Liu, Li, and Wang (2017). Specifically, an ADP-
based backstepping approach is developed in Wen et al. (2018)
and Wang et al. (2017) for a class of known strict-feedback non-
linear systems containing a one-dimensional input. In Wang et al.
(2017), for each individual step of the backstepping approach,
a virtual control is obtained using the Sontag formula (Lin &
Sontag, 1991) which is equivalent to the optimal control. While
in Wen et al. (2018), a quadratic term is injected into the optimal
value function of each backstepping instance, and the mismatch
between the quadratic term and unknown optimal value function
is approximated using NNs. Despite such progress, results such
as Wen et al. (2018) and Wang et al. (2017) both assume exact
model knowledge of the agent dynamics and require the strict
persistence of excitation (PE) condition to be satisfied.

Unlike typical pursuit–evasion problems or the aforemen-
tioned ADP results, this work explores an approximately optimal
learning-based indirect regulation problem for two agents. The
developed approach is model-based and an actor–critic–identifier
(Kamalapurkar, Walters, Rosenfeld et al., 2018) strategy is em-
ployed, where the adaptive estimates must converge to the actual
parameters to yield the optimal policy. To alleviate the need
for physical excitation of the system to satisfy the PE condition,
the work in this paper uses ICL to identify both the pursuing
and roaming agent uncertainties. Specifically, the contribution
of this result is to approximately optimally regulate an agent
to a goal location through an uncertain interaction with a con-
trolled pursuing agent. The approximate optimal pursuer does
not require exact model knowledge of either the agent dynamic
or the interaction dynamic, and does not assume a policy for
the roaming agent. The difficulty in the developed approach
stems from the problem definition and resulting stability analysis.
Moreover, unlike results such as Licitra et al. (2017) and Licitra
et al. (2018), the drift dynamics of both agents are assumed to be
unknown and an approximately optimal control strategy is devel-
oped. Compared to results such as Chen et al. (2016), Ramana and
Kothari (2017), Yan et al. (2018), the agent dynamics in this paper
are nonlinear and uncertain, where the developed technique does
not rely on numerical methods and can produce a closed-form

policy. Compared to results such as Kachroo et al. (2001), Lu
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2006), Shedied (2002), the policy for the influencing agent is
alculated online and does not use one-step discrete actions, and
hile the results in Kachroo et al. (2001), Lu (2006), Shedied
2002) tend to be computationally inefficient due to the curse
f dimensionality associated with DP, the strategy in this work
ses the computationally efficient StaF function approximation
pproach in a continuous space problem formulation. Further-
ore, unlike the preliminary result in Deptula, Licitra, and Dixon

2018), this work includes redefined error signals. In addition,
ompared to the preliminary results in Deptula, Bell et al. (2018)
nd many works in ADP, this result includes an experimental
tudy, where the developed controller is implemented online in
eal time on a quadcopter testbed.

oadmap

The developed indirect approach in this work is based on
he ADP framework. Hence, in Section 2 (Problem Formulation),
he problem is introduced, where the primary objective for the
nfluencing agent is to intercept and regulate a roaming agent to
goal location. However, since there is no direct input for the

oaming agent, the influencing agent must direct the roaming
gent by the use of an uncertain interaction dynamic. Moreover,
he influencing agent state may be non-affine in the roaming
gent dynamics; hence, a virtual state is introduced, whose time-
erivative is the virtual input. The roaming agent is regulated to
he goal location by regulating the virtual state. Section 2.1 (Op-
imal Control Development) defines the optimal control problem,
here the influencing agent’s input is designed to optimally min-

mize the mismatch between the influencing agent’s actual versus
irtual state. The solution to this problem is then approximated in
ection 3 (Approximate Optimal Control), where the approximate
ptimal control is discussed. Specifically, in Section 3.1 (System
dentification) system identification is introduced since both the
nfluencing and roaming agent dynamics are uncertain. The ICL
pdate laws are shown along with supporting assumptions, and
heorem 1 is provided, which shows that the estimated system
eights exponentially converge to a neighborhood of the true
eights. Using the estimated (identified) system uncertainties,
he optimal value function is approximated in Section 3.2 (Value
unction Approximation). The feedback error, called the Bellman
rror (BE), is introduced and used to adjust the actor and critic
eights online. Using the BE from Section 3.2, the actor and
ritic weight update laws are introduced in Section 3.3 (Online
earning) along with specific assumptions regarding the regres-
ors used for learning. Closed-loop stability is then shown using a
yapunov-based approach in Section 4 (Stability Analysis), which
hows uniformly ultimately bounded stability of the closed-loop
ystem. This stability result is then validated via a simulation in
ection 5 (Simulation). An experiment is included in Section 6
Experiment), which demonstrates the performance of the devel-
ped strategy in real-time. Finally, Section 7 (Conclusion) summa-
izes the developed approach and provides possibilities for future
ork. Fig. 1 illustrates the actor–critic–identifier architecture.

otation

In the following development, R denotes the set of real num-
bers while Z denotes the set of integers. The sets of numbers
greater than or equal a ∈ R and strictly greater than a, are
enoted by the subscript ≥ a and > a, respectively. For scalars
,m ∈ Z>0, the sets of real n-vectors and n × m matrices
re denoted by Rn and Rn×m, respectively. The n × n identity
atrix and the m × n zero matrices are denoted by In and 0m×n,

espectively. In addition, the j-dimensional column vector and

× m matrix of ones are denoted by 1j and 1n×m, respectively. L

3

Fig. 1. The state is measured from the environment, which is both saved in
memory and passed to the critic estimator. Based on the actor’s response, the
critic uses the state, action, and cost to generate a new BE, which updates the
critic and actor weights. As new state information and action information is
produced, it is saved in memory and provided to the system identifier to perform
system identification. The estimated system is provided to the critic to generate
new actions. The system identifier does not have copies of the critic. It only has
a copy of the actor output, samples of the system state, and structure of the
policy.

The partial derivative of k with respect to the state x is denoted
by ∇k(x, y, . . .), the transpose of a matrix or vector is denoted
by (·)T , and the trace of a square matrix is denoted as tr (·). The
vectorization operator of a matrix A = [a1, a2, . . . , am] ∈ Rn×m is
denoted by vec (A) ≜

[
aT1, aT2, . . . , a

T
m

]T , where ai ∈ Rn denotes
the ith-column of the matrix A. The notation ∥(·)∥ is defined as
∥d∥ ≜ supξ∈ζ ∥d (ξ)∥, for some continuous function h : Rn

→ Rk

nd bounded set ζ ⊆ Rn. The notation U [a, b] 1n×m denotes an
× m-dimensional matrix, where each entry is selected from a
niform distribution on [a, b]. Finally, λmin {·} and λmax {·} denote

the minimum and the maximum eigenvalue, respectively.

2. Problem formulation

In this section, the control problem is introduced as discussed
in the roadmap in Section 1. In the subsequent development,
the goal is to regulate a roaming agent to a desired user-defined
goal location.1 However, the roaming agent may not know where
the goal location is or may not be cooperating to go there. The
influencing agent knows the goal location, and simultaneously
is tasked to optimally intercept and escort the roaming agent
through an interaction dynamic (Deptula, Bell et al., 2018; Licitra
et al., 2018, 2017). Motivated by behaviors seen in nature, where
the dynamics between predator and prey are dictated based
on both agents’ states, or in pursuit-evasion problems, where
the pursuer and evader dynamics are also coupled, consider a
roaming agent governed by the drift dynamics

ż (t) = f (z (t) , η (t)) , (1)

where z : R≥t0 → Rn is the roaming agent’s state, η : R≥t0 → Rn

denotes the influencing agent’s state, t0 ∈ R≥0 is the initial time,
and f : Rn

× Rn
→ Rn is an uncertain locally Lipschitz function.

The dynamics in (1) are not directly controllable; however, (1) can
be influenced through interaction with the controlled pursuing
agent governed by the uncertain dynamics

η̇ (t) = h (z (t) , η (t)) + g (η (t)) u (t) , (2)

1 The influencing agent in this work is synonymous with predator, pursuing,
r herding agents, while the roaming agent is synonymous with prey, evading,
r target agents in works such as Chen et al. (2016, 2017), Huang et al. (2015),
icitra et al. (2018, 2017), Ramana and Kothari (2017), Yan et al. (2018).
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here h : Rn
×Rn

→ Rn is an unknown locally Lipschitz function
representing the influencing agent drift dynamics, g : Rn

→
n×mη is the known control effectiveness matrix, and u : R≥t0 →
mη is the influencing agent’s control input.
The form of the dynamics in (1) and (2) stems from behavior

here the roaming agent tries to flee from pursuing the agent;
ence its dynamics are also dependent on the pursuer agent’s
tate. The form of the dynamics in (2) is motivated by scenarios
here the pursing agent may also be dependent on the roaming
gent’s state. For instance, such dynamics can model scenarios
uch as crowd control, where a controlling person (i.e, safety
fficer) may want to motivate another person to go to some
esired location. Their respective dynamics are based on the
oupled states, but in such a scenario it can be assumed that the
fficer dictates the situation (i.e, produces the control policy) to
chieve the goal. Likewise, in nature, the predator will pursue
ome action to catch a prey, while the prey executes a responsive
ction to flee from the predator.

ssumption 1. There exist class K functions α1, α2 : R≥0 →

≥0 such that the uncertain dynamics in (1) can be bounded as
f (z (t) , η (t))∥ ≤ α1 (∥z (t) − η (t)∥) + α2

(z (t) − zg
), where

zg ∈ Rn is a fixed goal location.

Remark 1. Assumption 1 indicates that the dynamics of the
roaming agent in (1) depend on the distance between the influ-
encing and roaming agents and the distance between the roaming
agent and the goal location. The roaming agent dynamics in
results such as Licitra et al. (2018, 2017), can be shown to satisfy
Assumption 1.

Assumption 2. The control effectiveness matrix g (η) is bounded
and full column rank for all η ∈ Rn, and g+

: Rn
→ Rmη×n is a

bounded and locally Lipschitz pseudo inverse defined as g+ ≜(
gTg

)−1 gT (Kamalapurkar, Dinh, Bhasin, & Dixon, 2015).

Remark 2. Assumption 2 requires the control effectiveness ma-
trix to be full column rank. There is a large class of systems which
satisfy this assumption, such as fully actuated Euler–Lagrange
systems with invertible inertia matrices (Kamalapurkar, Andrews,
Walters,& Dixon, 2017; Kamalapurkar et al., 2015; Kamalapurkar,
Klotz et al., 2018).

To quantify the objective, a regulation error ez : R≥t0 → Rn is
defined as

ez (t) ≜ z (t) − zg . (3)

Additional error system development is motivated by backstep-
ping approaches, where the agent control input is designed based
on a unique error system development that requires both the
influencing and roaming agent errors to converge to the goal.
Specifically, an auxiliary error, denoted by eη : R≥t0 → Rn, is
defined as

eη (t) ≜ η (t) − ηd (t) , (4)

where ηd : R≥t0 → Rn is a desired virtual state. Because the
influencing agent’s state η (t) may be non-affine in the roaming
agent dynamics in (1), the aim of the virtual state ηd (t) is to
minimize the regulation error in (3). To quantify this aspect,
another auxiliary error, denoted by ed : R≥t0 → Rn, is defined
as

ed (t) ≜ ηd (t) − zg − kdez (t) , (5)

where kd ∈ R is positive constant control gain, which is generally
selected as kd ≥ 1. The error signals in (4) and (5) have been mod-

ified from the preliminary result in Deptula, Bell et al. (2018), and η

4

resemble those of backstepping approaches such as in Licitra et al.
(2018); however, compared to Licitra et al. (2018), optimality is
considered for the overall system in this result. The virtual state
ηd (t) is injected into (5) with the goal of regulating ed (t). Based
on (5) and the subsequent analysis, the time-derivative of ηd (t)
is designed as

η̇d (t) ≜ µd (t) , (6)

where µd : R≥t0 → Rn is a subsequently designed virtual
input.2 Moreover, it will be shown in Theorem 2 that the errors
ez (t), ed (t), and eη (t), and virtual controller µd (t) converge to
a neighborhood containing the origin. Hence, the virtual state
ηd (t) converges to a region of the desired state zg , implying that
the roaming agent is regulated to a neighborhood of the desired
location.

After taking the time-derivative of (5) and using (1) and (3)–
(6), the error dynamics for ed (t) are ėd (t) = −kdf (z (t) , η (t))+
µd (t). To determine the error dynamics for eη (t), (2) and (6) are
substituted into the time-derivative of (4) to obtain

ėη (t) = h (z (t) , η (t)) + g (η (t)) µη (t)

+ g (η (t)) ud (t) − µd (t) , (7)

where µη (t) : R≥t0 → Rmη is defined as µη (t) ≜ u (t) − ud (t),
and ud (t) : R≥t0 → Rmη denotes a desired input. Based on (7) and
the subsequent stability analysis, the desired input is designed as

ud (t) ≜ g (ηd (t))+ (µd (t) − h (z (t) , ηd (t))) . (8)

Substituting (8) into (7) yields the following closed-loop sys-
tem ėη (t) = h (z (t) , η (t))+ g (η (t)) µη (t)− g (η (t)) g+ (ηd (t))
h (z (t) , ηd (t)) +

(
g (η (t)) g+ (ηd (t)) − In

)
µd (t). To formulate

the optimal control problem such that the errors in (3)–(5) are
minimized, the influencing and roaming agent states are trans-
formed. To facilitate this transformation, let x (t) ≜

[
eTz (t) , eTd (t) ,

eTη (t)
]T and xd (t) ≜

[
eTz (t) , eTd (t) , 01×n

]T denote the concate-
nated error state and desired concatenated state, respectively.
In addition, we define the mappings s1, s2 : R3n

→ Rn as
s1 (x (t)) ≜ ez (t) + zg , and s2 (x (t)) ≜ eη (t) + ed (t) + kdez (t) +

zg . Using (3)–(5), the roaming and influencing agent states are
represented as z (t) = s1 (x (t)) and η (t) = s2 (x (t)), respec-
tively. Using the mappings s1 and s2, the bounds in Assump-
tion 1 can be represented such as ∥f (s1 (x (t)) , s2 (x (t)))∥ ≤

α1
((kd − 1) ez (t) + eη (t) + ed (t)

) + α2 (∥ez (t)∥). Hence, if
ez (t) , eη (t) , ed (t) → 0 then ∥f (s1 (x (t)) , s2 (x (t)))∥ ≤ α1 (0)+

α2 (0).
Using these relationships, a composite autonomous error sys-

tem can be written as

ẋ (t) = F (x (t)) + G (x (t)) µ (t) , (9)

where µ (t) ≜
[

µT
η (t) µT

d (t)
]T

∈ Rm is the total vector of
policies with m = mη + n, while F : R3n

→ R3n and G : R3n
→

R3n×m are defined as F (x (t))

≜

[ f (s1 (x (t)) , s2 (x (t))) ,

−kdf (s1 (x (t)) , s2 (x (t))) ,

h (s1 (x (t)) , s2 (x (t))) − Fsd (x (t)) ,

]
and G (x (t)) ≜⎡⎣ 0n×mη , 0n×n,

0n×mη , In,
g (s2 (x (t))) , Gsd (x (t)) ,

⎤⎦ where Fsd (x (t)) ≜ g (s2 (x (t)))

g+ (s2 (xd (t))) · h (s1 (x (t)) , s2 (xd (t))), and Gsd (x (t)) ≜
g (s2 (x (t))) g (s2 (xd (t)))+ − In.

2 Single integrator dynamics are used for the virtual state for simplicity.
owever, the virtual state can also evolve according to dynamics such as

˙ t ≜ −A η t +B µ t , where A , B ∈ Rn×n are positive definite matrices.
d ( ) d d ( ) d d ( ) d d
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The goal is to ensure the roaming agent is driven to zg . Hence,
if the three errors ez (t) , eη (t) , ed (t) converge to 0, the total
system achieves the goal such that z (t) → zg , η (t) → ηd (t), and
ηd (t) → zg by the use of (3)–(5). This implies that η (t) → zg .

2.1. Optimal control development

In this section, the optimal control is developed as specified in
Section 1. Specifically, an analytical controller is derived from the
cost function in (10).3 Given (9), the goal is to design controllers
µd (t) and µη (t) to minimize the cost function J : R3n

× Rm
×

Rt0 → R≥0 defined as

J (x, µ) ≜

∫
∞

t0

r (x (τ ) , µ (τ)) dτ , (10)

subject to (9), where r : R3n
× Rm

→ R≥0 is the instantaneous
cost defined as

r (x, µ) ≜ Q (x) + P (x) + Ψ (µ) . (11)

In (11), Q : R3n
→ R≥0 is a user-defined continuous positive-

definite (PD) function (e.g., xTQxx where Qx ∈ R3n×3n is a PD
atrix), which can be bounded as q ∥x∥2

≤ Q (x) ≤ q ∥x∥2

or all x ∈ R3n and q, q ∈ R>0. Furthermore, Ψ (µ) ≜ µTRµ,
here R = diag

{
Rη, Rd

}
such that Rη ∈ Rmη×mη and Rd ∈

n×n are user-defined PD symmetric weighting matrices. In ad-
ition, P : R3n

→ R is a user-defined continuous positive
emi-definite (PSD) penalty function such that P (x) = 0 when
s1 (x) − s2 (x)∥ ≤ ra (x) and P (x) > 0 when ∥s1 (x) − s2 (x)∥ >

ra (x), where ra : R3n
→ R≥0 is a design parameter. Examples

of functions that satisfy the conditions for P (x) include P (x) =

e
1
2α (px(x))2 − 1, P (x) = α (px (x))2, P (x) = α ln

(
cosh (px (x))2

)
,

where px (x) ≜ max
{
0,
(1 − kd) ez − eη − ed

2 − ra (x)2
}
, and

α ∈ R>0. Piecewise continuous smooth functions that saturate at
a constant may also be used.

Definition 1 (Wen et al., 2018). Let Ω ⊆ Rn be a set containing
the origin x = 0. A control policy µ (x (t)) is said to be admissible
with respect to (9) in Ω , i.e., µ (x (t)) ∈ U (Ω) ⊂ Rm, if µ (x (t))
is continuous in Ω with µ (0) = 0m×1, µ (x (t)) stabilizes (9) in
Ω , and V (x (t)) ≜ J (x (t) , µ (x (t))) is finite.

The optimal value function, denoted by V ∗
: R3n

→ R≥0, is
expressed as

V ∗ (x (t)) = inf
µ(τ)∈U

⏐⏐⏐τ∈R≥t

∫
∞

t
r (x (τ ) , µ (τ)) dτ . (12)

The HJB equation, which characterizes the optimal value function,
is given by

0 = ∇V ∗ (x (t))
(
F (x (t)) + G (x (t)) µ∗ (x (t))

)
+ r

(
x (t) , µ∗ (x (t))

)
, (13)

ith V ∗ (0) = 0, where µ∗
: R3n

→ Rm denotes the admissible
ptimal input policy, which is determined from (13) as

∗ (x (t)) = −
1
2
R−1G (x (t))T

(
∇V ∗ (x (t))

)T
. (14)

3 For notational brevity, unless otherwise specified, time dependence is
uppressed in subsequent equations, trajectories, and definitions.
 m

5

3. Approximate optimal control

This section discusses the approximate optimal formulation as
briefed in Section 1. The optimal solution in (12)–(14) depends on
the unknown value function and system dynamics. Hence, system
identification (Section 3.1) is used to identify the dynamics, which
is followed by value function approximation (Sections 3.2 and
3.3) to approximate the optimal solution. The implementation
diagram is shown in Fig. 1, where system identification and
value function approximation are performed simultaneously. As
mentioned in Section 1, data-based techniques are leveraged to
implement the approximate controller online such that dithering
signals do not need to be injected into the system to facilitate
learning.

3.1. System identification

The HJB equation in (13) and optimal controller in (14) re-
quire knowledge of both the drift dynamics kdf (z (t) , η (t)) and
h (z (t) , η (t)). Since these functions are unknown, we approxi-
mately minimize the cost function in (10) while simultaneously
learning these functions as shown in Fig. 1. Various methods
could be employed to learn the functions (cf., Basu Roy, Bhasin,
& Kar, 2019; Cho, Shin, Kim, & Tsourdos, 2017; Kamalapurkar,
Reish, Chowdhary, & Dixon, 2017; Parikh et al., 2019; Roy, Bhasin,
& Kar, 2018). The following is based on the ICL strategy in Parikh
et al. (2019). Using the universal function approximation property
of single layer NNs (Farrell & Polycarpou, 2006; Lewis, Selmic, &
Campos, 2002; Sadegh, 1993), (1) and (2) can be represented as
˙̆x (t) = S (x (t)) θ + ε (x (t)) + Ğ (x (t) , u (t)) , (15)

where x̆ (t) ≜ [kdz (t) , η (t)]T ∈ R2×n, θ ≜
[

θ T
z θ T

η

]T
∈ Rp×n,

Ğ (x (t) , u (t)) ≜
[

0n×1, g (x (t)) u (t)
]T

∈ R2×n, S (x (t)) ≜[
STz (x (t)) 01×pη

01×pz STη (x (t))

]
∈ R2×p, and ε (x (t)) ≜[

εz (x (t)) εη (x (t))
]T

∈ R2×n. In (15), θj ∈ Rpj×n are the
unknown weights, Sj : R3n

→ Rpj are the user-defined basis
functions, and εj : R3n

→ Rn is the function approximation
error for j = {z, η}, and p = pz + pη ∈ Z>0 denotes the
total number of rows of θ .4 Moreover, if an exact basis is known
for both agent dynamics, then ε (x (t)) = 02×n. In addition, if
h (z (t) , η (t)) = 0n×1 in (2), then the terms in (15) can be
reduced to x̆ (t) ≜ [kdz (t)]T ∈ R1×n, Ğ (x (t) , u (t)) ≜

[
0n×1

]T
∈

R1×n, θ ≜
[

θ T
z

]T
∈ Rpz×n, S (x) ≜

[
STz (x (t))

]
∈ R1×pz , and

ε (x (t)) ≜
[

εz (x (t))
]T

∈ R1×n, respectively.

Assumption 3. There exist θ, S, ε ∈ R>0 such that ∥θ∥ ≤ θ ,
supx∈χ ∥S (x)∥ ≤ S, and supx∈χ ∥ε (x)∥ ≤ ε in a compact set
χ ⊆ R3n (Kamalapurkar, Walters, Dixon, 2016; Lewis et al., 2002).

Based on the ICL strategy in Parikh et al. (2019), let ∆tθ ∈ R>0
denote an integration time-window, where the integral of (15)
at time ti ∈ [∆tθ , t] can be represented as x̆ (ti) − x̆ (ti − ∆tθ ) =

Siθ+Ei+Gi such that Si = S (ti) ≜
∫ ti
ti−∆tθ

S (x (τ )) dτ , Ei = E (ti) ≜
ti
ti−∆tθ

ε (x (τ )) dτ , and Gi = G (ti) ≜
∫ ti
ti−∆tθ

Ğ (x (τ ) , u (τ )) dτ . A
east-squares based parameter estimate update law is designed as

˙̂
(t) = kθΓθ (t)

M∑
i=1

ST (ti)
(
x̆ (ti) − x̆ (ti − ∆tθ )

4 The unknown weights θz and θη can be estimated independently using
eparate update laws. To alleviate redundancy, a combined approximation
ethod is presented.
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− G (ti) − S (ti) θ̂

)
, (16)

˙
θ (t) = βθΓθ (t) − kθΓθ (t)

M∑
i=1

ST (ti) S (ti) Γθ (t) , (17)

here kθ , βθ ∈ R>0 is an update gain and forgetting factor,
respectively, and M ∈ Z>0 is the number of data points collected
in the history stack.

Remark 3. In general, M is specified a priori; however, it can also
be determined online by checking Assumption 4 during runtime.
In this manuscript, M ≥

p
2 is selected to ensure enough data is

gathered to facilitate learning, i.e.,
∑M

i=1 S
T (ti) S (ti) is full rank,

here p denotes the total rows of θ .

Assumption 4. There exists T1 ∈ R>0 such that T1 > ∆tθ and
a strictly positive constant λ1 ∈ R>0 where λ1Ip ≤

∑M
i=1 S

T
i Si,

t ≥ T1 (Parikh et al., 2019).

Provided λmin
{
Γ −1

θ (t0)
}

> 0, and Assumption 4 is satisfied,
θ satisfies Γ θ Ip ≤ Γθ (t) ≤ Γ θ Ip, using similar arguments
o Ioannou and Sun (1996, Corollary 4.3.2), where Γ θ , Γ θ ∈ R>0.
Let Zθ (t) = vec

(
θ̃ (t)

)
denote a vector of parameter estimate

errors with θ̃ (t) ≜ θ − θ̂ (t). Also let Vθ : Rnp
× R≥t0 → R be

a candidate Lyapunov functional defined as

Vθ (Zθ , t) ≜
1
2
tr
(
θ̃ TΓ −1

θ (t) θ̃
)
, (18)

hich can be bounded as 1
2Γ θ

∥Zθ∥
2

≤ Vθ (Zθ , t) ≤
1

2Γ θ
∥Zθ∥

2, for
all t ∈ R≥t0 and Zθ ∈ Rnp.

Theorem 1 indicates that the estimation error θ̃ remains
bounded. Specifically, prior to Assumption 4 being satisfied, the
estimation error is upper bounded by a constant based on the
initial error and the NN approximation error. Once Assumption 4
is satisfied, the estimation error can be bounded by an exponen-
tial function. Stability is shown using a Lyapunov-based approach
using the candidate Lyapunov functional in (18).

Theorem 1. Provided Assumptions 3 and 4 are satisfied, the adap-
tive update laws in (16) and (17) ensure that the estimation error θ̃

remains bounded for all t ≥ T1 such that

∥Zθ (t)∥ ≤ cΓ

√
cMe−λθ (t−T1) +

(
1 − e−λθ (t−T1)

)
cB, (19)

where cΓ ≜

√
Γ θ

Γ θ
, λθ ≜

kθ cθ2Γ θ

2 , cθ1 ≜ βθ

kθ Γ θ
, cθ2 ≜ cθ1 + λ1,

cM ≜ ∥Zθ (t0)∥2
+

4υ2
1

c2
θ1

, cB ≜
4υ2

1
c2
θ2

, and υ1 ≜ supt∈R≥0

∑M
i=1 S

T
i Ei
.

Proof. Taking the time-derivative of (18), substituting in (16) and
(17), using the fact that for t < T1,

∑M
i=1 S

T
i Si ≥ 0,

V̇θ (Zθ , t) ≤ −
1
2
kθ cθ1 ∥Zθ∥

2
+ kθ ∥Zθ∥ υ1. (20)

ompleting the squares, using the bounds on (18), and invoking
he Comparison Lemma (Khalil, 2002, Lemma 3.4) yields

θ (Zθ (t) , t) ≤ Vθ (Zθ (t0) , t0) e−λθ
kθ cθ1Γ θ

2 (t−t0)

+

(
1 − e−

kθ cθ1Γ θ
2 (t−t0)

) 2υ2
1

Γ θ c
2
θ1

, (21)

or all t ∈ [t0, T1). Then, ∥Zθ (t)∥2
≤

Γ θ

Γ θ

(
∥Zθ (t0)∥2

+
4υ2

1
c2
θ1

)
ollows for all t ∈ R .
≥t0

6

After
∑M

i=1 S
T
i Si becomes full rank, (16), (17), and Assump-

tion 4 are used in the time-derivative of (18) to yield

V̇θ (Zθ , t) ≤ −
1
4
kθ cθ2 ∥Zθ∥

2
+

kθυ
2
1

cθ2
, (22)

for all t ≥ T1. Using the Comparison Lemma (Khalil, 2002, Lemma
3.4), ∀t ≥ T1

Vθ (Zθ (t) , t) ≤ Vθ (Zθ (T1) , T1) e−λθ (t−T1)

+
(
1 − e−λθ (t−T1)

) cB
2Γ θ

. (23)

From (21), Vθ (Zθ (T1) , T1) ≤ Vθ (Zθ (t0) , t0) e−λθ
kθ cθ1Γ θ

2 (t−t0)
+

2υ2
1

Γ θ c
2
θ1
follows, and using (23) along with the bounds 1

2Γ θ
∥Zθ∥

2
≤

Vθ (Zθ , t) ≤
1

2Γ θ
∥Zθ∥

2 results in (19). After
∑M

i=1 S
T
i Si becomes

ull rank, as t → ∞, the residual bound in (23) (i.e., cB
2Γ θ

)

is smaller compared to the residual bound in (21) (i.e., 2υ2
1

Γ θ c
2
θ1
),

because cB depends on cθ2 and cθ2 > cθ1. Moreover, while a
single set of data can be collected, additional data selection and
purging techniques such as in Kamalapurkar, Reish et al. (2017)
and Chowdhary and Johnson (2011), can be used to select data
that reduces the residuals even further. ■

Remark 4. Theorem 1 shows that the estimation error θ̃ remains
bounded. The residual bound in (19) results from the function
approximation errors ε (x (t)) in (15); however, if an exact basis
is known in the neural network, then ε (x (t)) = 02×n. Therefore,
the bound in (19) can be reduced to ∥Zθ (t)∥ ≤ cΓ

√
cMe−λθ (t−T1),

hich produces convergence to the origin. In addition, results
uch as Bhasin, Kamalapurkar, Dinh, and Dixon (2013), Bhasin,
amalapurkar, Johnson, Vamvoudakis, Lewis, and Dixon (2013),
atre, MacKunis, Kaiser, and Dixon (2008) can be leveraged to
ossibly achieve asymptotic convergence to zero.

.2. Value function approximation

The value function V ∗ (x), which is unknown, can be approxi-
mated via computationally efficient StaF kernels (Deptula, Rosen-
feld et al., 2018; Kamalapurkar, Rosenfeld et al., 2016; Rosenfeld
et al., 2019). To facilitate the following development, let Br (x)
be defined as the closure of an open ball centered at x ∈ R3n

with radius r ∈ R>0. Using state-following centers, c : χ → χ L,
centered around x ∈ χ such that c (x) ∈

(
Br (x)

)L
, the value

unction in (12) can be represented as
∗ (y) = W (x)T σ (y, c (x)) + ϵv (x, y) , (24)

where y ≜
[
yTez , y

T
ed , y

T
eη

]T
∈ Br (x) represents a composite state

ector in the neighborhood of x (Deptula, Rosenfeld et al., 2018;
amalapurkar, Rosenfeld et al., 2016; Rosenfeld et al., 2019), and
he states yez , yed , and yeη represent states in the neighborhoods
f ez , ed, and eη , respectively (i.e., yez ∈ Br (ez), yed ∈ Br (ed), and

yez ∈ Br
(
eη

)
). In (24), W : χ → RL is a vector of continuously

differentiable ideal StaF weight functions, σ : χ × χ L
→ RL is a

bounded vector of continuously differentiable nonlinear kernels,
and ϵv : χ × χ → R is a continuously differentiable function
approximation error.

Since the ideal StaF weight W (x) and function approximation
error are unknown in (24), an approximate value function V̂ :

3n
× R3n

× RL
→ R is expressed as

V̂
(
y, x, Ŵ

)
= Ŵ Tσ (y, c (x)) , (25)
c c
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nd an approximate policy µ̂ : R3n
×R3n

×RL
→ Rm is expressed

s

ˆ

(
y, x, Ŵa

)
= −

1
2
R−1G (x)T ∇σ (y, c (x))T Ŵa, (26)

where Ŵc, Ŵa ∈ RL denote the critic and actor weight estimates,
respectively. Substituting (25) and (26) along with the estimate θ̂

into (13) results in the BE δ : R3n
× R3n

× RL
× RL

× Rp×n
→ R

iven by(
y, x, θ̂ , Ŵc, Ŵa

)
= Q (y) + P (y) + Ψ

(
µ̂

(
y, x, Ŵa

))
+∇V̂

(
y, x, Ŵc

)(
F1
(
y, θ̂

)
− F2

(
y, θ̂

))
+∇V̂

(
y, x, Ŵc

)(
G (y) µ̂

(
y, x, Ŵa

))
, (27)

where F1
(
y, θ̂

)
≜
[(

1
kd

θ̂ T
z Sz (y)

)T
,

(
−θ̂ T

z Sz (y)
)T

,

(
θ̂ T
η Sη (y)

)T]T
,

F2
(
y, θ̂

)
≜
[
01×2n,

(
g
(
yη

)
g+
(
yηd

)
θ̂ T
η Sη

([
yTez , y

T
ed0

T
n×1

]T))T]T .
The controller for the influencing agent is û

(
y, x, θ̂ , Ŵa

)
≜

µ̂η

(
y, x, Ŵa

)
+ ûd

(
y, x, θ̂ , Ŵa

)
, where ûd

(
y, x, θ̂ , Ŵa

)
≜

g+
(
ynd
) (

µ̂d

(
y, x, Ŵa

)
− Sη

([
yTez , yTed , 0T

n×1

]T)
θ̂η

)
, and the ap-

proximate optimal terms µ̂η

(
y, x, Ŵa

)
and µ̂d

(
y, x, Ŵa

)
come

from µ̂

(
y, x, Ŵa

)
≜
[
µ̂T

η

(
y, x, Ŵa

)
, µ̂T

d

(
y, x, Ŵa

)]T
given in

(26).

3.3. Online learning

At each time instance t ∈ R≥t0 , the BE in (27) is evaluated
at the current state (i.e., y = x (t)), and the current parameter
estimate θ̂ (t), Ŵc (t), and Ŵa (t), resulting in the instantaneous
BE and influencing agent control policy given as

δt (t) ≜ δ

(
x (t) , x (t) , θ̂ (t) , Ŵc (t) , Ŵa (t)

)
, (28)

and u (t) ≜ û
(
x (t) , x (t) , θ̂ (t) , Ŵa (t)

)
, respectively. However,

if only the BE, given by δt (t), is used to update the estimate Ŵc ,
then an exciting probing signal would need to be injected into
the input µ̂ (t) (cf., Kamalapurkar, Andrews et al., 2017; Kamala-
purkar et al., 2015; Wang et al., 2017, 2016). In contrast to inject-
ing a probing signal, learning via simulation of experience is per-
formed by extrapolating the BE to unexplored states in Br (x (t)).
Moreover, sets of functions

{
xi : R3n

× R≥t0 → R3n
}N
i=1 are se-

lected by the critic such that xi (x (t) , t) ∈ Br (x (t)). Then, ex-
rapolated versions of the BE and total input are evaluated at y =

i (x (t) , t) as δti (t) ≜ δ

(
xi (x (t) , t) , x (t) , θ̂ (t) , Ŵc (t) , Ŵa (t)

)
and ui (t) ≜ û

(
xi (x (t) , t) , x (t) , θ̂ (t) , Ŵa (t)

)
, respectively.

Remark 5. Many different approaches can be utilized to generate
extrapolated states. For instance, the states can be selected to
follow an oscillatory trajectory which lies within Br (x (t)) or they
can be selected from a random distribution at each time instance
(i.e, xi (x (t) , t) = x (t)+

∑Q
k=1 (ak sin (bkt + ck) + dk cos (ek + hk))

or xi (x (t) , t) = x (t) + U [a, b] 1n, where ak, bk, a, b ∈ R are
constants). The specified approach is a design variable; however,
results such as Deptula, Rosenfeld et al. (2018), Kamalapurkar,
Rosenfeld et al. (2016), Walters, Kamalapurkar, and Dixon (2015)
have shown that selecting extrapolated states from a random
distribution centered about the current states is sufficient.
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The critic aims to find a set of weights that minimize the BE;
hence, the critic is updated according to

˙̂Wc (t) ≜ −Γc (t)
(
kc1

ω (t)
ρ2 (t)

δt (t) +
kc2
N

N∑
i=1

ωi (t)
ρ2
i (t)

δti (t)
)
, (29)

˙c (t) ≜ βcΓc (t) − Γc (t) kc1
ω (t) ωT (t)

ρ2 (t)
Γc (t)

− Γc (t)
kc2
N

N∑
i=1

ωi (t) ωT
i (t)

ρ2
i (t)

Γc (t) , (30)

where ρ (t) ≜ 1 + γ1ω
T (t) ω (t), ρi (t) ≜ 1 + γ1ω

T
i (t) ωi (t),

kc1, kc2, γ1, βc ∈ R>0 are learning gains, ω (t) = ∇σ (x (t) ,

c (x (t)))
(
F1
(
x (t) , θ̂ (t)

)
−F2

(
x (t) , θ̂ (t)

)
+G (x (t)) µ̂

(
x (t) , x (t) ,

Ŵa (t)
))

, and ωi (t) = ∇σi
(
F1i − F2i + Giµ̂i

)
, with ∇σi ≜ ∇σ

(xi (x (t) , t) , c (x (t))), F1i ≜ F1
(
xi (x (t) , t) , θ̂ (t)

)
, F2i ≜

F2
(
xi (x (t) , t) , θ̂ (t)

)
, Gi ≜ G (xi (x (t) , t)), and µ̂i ≜ µ̂(

xi (x (t) , t) , x (t) , Ŵa (t)
)
.

Using Assumption 5 along with λmin
{
Γ −1
c (t0)

}
> 0, a similar

argument to Ioannou and Sun (1996, Corollary 4.3.2) can be used
to show that Γ c IL ≤ Γc (t) ≤ Γ c IL, where Γ c and Γ c are positive
ounds (Kamalapurkar, Rosenfeld et al., 2016).
The actor weight estimate is updated to follow the critic

eight estimate as
˙̂
a (t) ≜ −Kaka1

(
Ŵa (t) − Ŵc (t)

)
− Kaka2Ŵa (t)

+ Ka
kc1
4

GT
σ (t) Ŵa (t)

ωT (t)
ρ2 (t)

Ŵc (t)

+ Ka
kc2
4N

N∑
i=1

GT
σ i (t) Ŵa (t)

ωT
i (t)

ρ2
i (t)

Ŵc (t) , (31)

where Gσ (t) ≜ ∇σ (x (t) , c (x (t)))GR (x (t))·∇σ T (x (t) , c (x (t))),
Gσ i (t) ≜ ∇σiGiR−1GT

i ∇σ T
i , GR (x (t)) ≜ G (x (t)) R−1GT (x (t)),

ka1, ka2 ∈ R≥0 are learning gains, and Ka ∈ RL×L is a positive-
definite symmetric matrix.

To facilitate learning in this paper, as in Deptula, Bell et al.
(2018), Deptula, Rosenfeld et al. (2018), Kamalapurkar, Rosenfeld
et al. (2016), Kamalapurkar, Walters, Rosenfeld et al. (2018),
off-policy trajectories are selected, which can contain excitation
signals to achieve a virtual excitation. Hence, the states x (t) and
xi (x (t) , t) are assumed to satisfy the following assumption.

Assumption 5. There exist constants T2, c1, c2, c3 ∈ R≥0 such
hat

1IL ≤ inf
t∈R≥t0

1
N

N∑
i=1

ωi (t) ωT
i (t)

ρ2
i (t)

,

c2IL ≤

∫ t+T2

t

(
1
N

N∑
i=1

ωi (τ ) ωT
i (τ )

ρ2
i (τ )

)
dτ , ∀t ∈ R≥t0 ,

c3IL ≤

∫ t+T2

t

(
ω (τ) ωT (τ )

ρ2 (τ )

)
dτ , ∀t ∈ R≥t0 ,

here T2 and at least one of the constants c1, c2, or c3 is strictly
ositive (Kamalapurkar, Rosenfeld et al., 2016).

emark 6. As stated in Deptula, Rosenfeld et al. (2018), Kamala-
urkar, Rosenfeld et al. (2016), Kamalapurkar, Walters, Rosenfeld
t al. (2018), c1 can be made strictly positive by sampling suffi-

cient data, i.e., selecting N ≫ L, while c can be made strictly
2
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ositive using virtual excitation, i.e., by sampling extrapolated
rajectories at a high frequency. In general, c3 is strictly positive
provided the system itself is PE. The extrapolated trajectories xi
are design variables; hence, they can be selected such that c1 >
r c2 > 0 since only one of the constants needs to be strictly

positive.

4. Stability analysis

Following the development of the update laws used to learn
he optimal solution in Section 3, as discussed in the roadmap in
ection 1, this section provides the analysis used to show stability
f the overall system. To facilitate the following stability analysis,
et Bζ ⊂ R3n+np+2L denote a closed ball of radius ζ ∈ R>0 centered
at the origin. By defining the critic and actor weight estimate
errors as W̃c ≜ W − Ŵc and W̃a ≜ W − Ŵa, respectively, the
BEs, δt (t) and δti (t), are

δt = −ωT W̃c +
1
4
W̃ T

a Gσ W̃a − W T
∇σ

(
F̃1 − F̃2

)
+ ∆ (x) ,

ti = −ωT
i W̃c +

1
4
W̃ T

a Gσ iW̃a − W T
∇σi

(
F̃1i − F̃2i

)
+ ∆i, (32)

where F̃1 ≜ F1
(
x, θ̃

)
, F̃2 ≜ F2

(
x, θ̃

)
, F̃1i ≜ F1

(
xi, θ̃

)
, F̃2i ≜ F2

(
xi, θ̃

)
,

and ∆i ≜ ∆ (xi). In (32), the functions ∆, ∆i : Rn
→ R are

uniformly bounded over a compact set χ such that ∥∆∥ and ∥∆i∥

ecrease with decreasing ∥ϵv∥, ∥ε∥, and ∥W∥.
Let ZL ≜

[
xT , W̃ T

c , W̃ T
a , ZT

θ

]T
denote the concatenated

tate vector, and let VL : R3n+2L+np
×R≥t0 → R denote a candidate

yapunov functional defined as

L (ZL, t) ≜ V ∗ (x) +
1
2
W̃ T

c Γ −1
c (t) W̃c +

1
2
W̃ T

a K
−1
a W̃a

+ Vθ (Zθ , t) , (33)

hich, for class K functions vl, vl : R → R≥0, can be bounded as

l (∥ZL∥) ≤ VL (ZL, t) ≤ vl (∥ZL∥) (34)

or all t ∈ R≥t0 and ZL ∈ R3n+2L+np.
Theorem 2 shows the overall stability of the system. Using

the candidate Lyapunov functional in (33), along with the update
laws in (29)–(31), and (20) from Theorem 1, the system states
are shown to be bounded. The BE expressions in (32) are used
to show that the estimation errors W̃c and W̃a remain bounded
along with the concatenated state x.

Theorem 2. Provided Assumptions 2–5 are satisfied, λmin {H} > 0,
and√

ι

κ
≤ v−1

l (vl (ζ )) , (35)

where H ≜

⎡⎢⎢⎣
(

ka1+ka2
4 − ϕa

)
−

ϕac
2 0

−
ϕac
2

(
βc
Γ c

+kc2c1
)

8 −
ϕcθ
2

0 −
ϕcθ
2

kθ cθ1
8

⎤⎥⎥⎦, and κ, ϕa,

ac, ϕcθ , ι ∈ R>0 are defined in the Appendix, then the system errors
efined in ZL are bounded in the sense that

lim sup
t→∞

∥ZL (t)∥ ≤ v−1
l

(
vl

(√
ι

κ

))
. (36)

Proof. Taking the time-derivative of (33) along the system tra-
jectory, and using the fact that V̇ ∗ (x, t) = ∇V ∗ (F (x) + G (x) µ),
results in

V̇ = ∇V ∗ (F + Gµ) + V̇ (Z , t) + W̃ TΓ −1
(
Ẇ −

˙̂W
)

L θ θ c c c

8

−
1
2
W̃ T

c

(
Γ −1
c Γ̇cΓ

−1
c

)
W̃c + W̃ T

a K
−1
a

(
Ẇ −

˙̂Wa

)
.

Substituting (13) and using Ẇ = ∇W (x) (F (x) + G (x) µ) yields

V̇L = −r
(
x, µ∗ (x)

)
− ∇V ∗Gµ∗

−
1
2
W̃ T

c Γ −1
c Γ̇cΓ

−1
c W̃c

+ W̃ T
c Γ −1

c

(
∇W (F + Gµ) −

˙̂Wc
)
+ ∇V ∗Gµ

+ W̃ T
a K

−1
a

(
∇W (F + Gµ) −

˙̂Wa
)
+ V̇θ (Zθ , t) .

Using (29) and (30), then substituting in (11), (20), (31), and
(32), and using Ŵa = W − W̃a, Ŵc = W − W̃c , bounding, and
completing the squares yields V̇L ≤ −κ ∥ZL∥2

−κ ∥ZL∥2
+ι−ZT

v HZv ,

where Zv ≜
[ W̃a

 ,

W̃c

 , ∥Zθ∥

]T
. Provided λmin {H} > 0

is met, then for all Z ∈ Bζ

V̇L ≤ −κ ∥ZL∥2 , ∀ ∥ZL∥ ≥

√
ι

κ
> 0. (37)

Using (34), (35), and (37), Khalil (2002, Theorem 4.18) is invoked
to conclude that all trajectories ZL (t) that satisfy ∥ZL (t0)∥ ≤

v−1
l

(
v−

l (ζ )
)
remain bounded for all t ∈ R≥t0 and satisfy (36).

Since ZL ∈ L∞, it follows that x, W̃c, W̃a, θ̃ ∈ L∞, and therefore,
µ ∈ L∞. Furthermore, since x ∈ L∞ and W is a continuous
function of x, thenW (x) ∈ L∞. Moreover, since x ∈ L∞, it follows
that ed, eη, ez ∈ L∞. Using (3)–(5), z ∈ L∞ and ηd ∈ L∞; hence,
η, (z − η) ∈ L∞. Finally, since µ, θ̃, g+, ηd ∈ L∞, then ud, θ̂ ∈ L∞

and u ∈ L∞. ■

Remark 7. The bound in (36) implies that the concatenated state
vector ZL is bounded by a strictly increasing function (i.e., class K
function) based on the residual bounds and sufficient conditions
(i.e.,

√
ι
κ
). Moreover, the smaller the value of

√
ι
κ
, the smaller the

ultimate bound. Hence, provided the sufficient conditions can be
selected such that

√
ι
κ

→ 0, then the ultimate bound converges
to the origin Khalil (2002, Theorem 4.18).

Remark 8. The sufficient condition λmin {H} > 0 can be satisfied
by increasing the gains ka2 and γ1, and selecting Ka and R with
large minimum eigenvalues. In addition, increasing the number
of neurons and number of sample points for the system identi-
fication, i.e., pz ≫ n, pη ≫ n, and M ≫ p, and also selecting
extrapolation points xi (x (t) , t) so that c1 is large will also help
ensure the sufficient condition is satisfied.

5. Simulation

Following the roadmap in Section 1, this section provides a
simulation example that demonstrates the performance of the
developed method. Specifically, a two-dimensional simulation is
performed for the roaming agent in (1) and the influencing agent
in (2) with f (z (t) , η (t)) = (Ae (t) + Bez (t)) exp

(
−

1
2 e (t)T e (t)

)
,

here e (t) = z (t) − η (t), and, without a loss of general-
ty, h (z (t) , η (t)) = 02×1, g (η (t)) = I2, respectively. Based
on these dynamics, Assumptions 1 and 2 are satisfied since
∥f (z (t) , η (t))∥ ≤ ∥A∥ ∥e (t)∥ + ∥B∥ ∥ez (t)∥ and I2 is full-rank.
The unknown parameters to be identified by the ICL update
law in (16) and (17) are θη ≜ 02×2, θz = [kdA, B]T , where

A =

[
1 −0.6
0.5 1.5

]
and B =

[
0.05 0
0.25 0.1

]
. Hence, the ideal

weights are bounded as specified in Assumption 3. For parameter
identification, the basis functions are selected as Sη (x (t)) =

e (t) and Sz (x (t)) = exp
(
−

1
2 e (t)T e (t)

)
×
[
eT (t) , eTz (t)

]T . In
this simulation, the state is assumed to lie inside a compact
set χ ⊆ R3n, which is bounded, resulting in a bounded basis,
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nitial conditions and parameters selected for the simulation.
Initial conditions at t0 = 0

z (0) = [−3.75, 4.75]T , η (0) = [−0.5, 0.5]T , ηd (0) = [0, −0.5]T ,

zg = [0, −0.5]T , Ŵc (0) = 1 × 17×1, Ŵa (0) = 0.75 × 17×1,

Γc (0) = 2I7, θ̂ (0) = U [−1, 1] × 16×2, Γθ (0) = 100I6.

Penalizing parameters

Q (x) = xTQxx, P (x) =

(
max

{
0,
(1 − kd) ez (t) − eη (t) − ed (t)

2 − r2a
})2

,

Qx = diag {20, 20, 5, 5, 5, 5} , R = 5I4, kd = 1.4, ra = 0.15.

Gains and parameters for ADP update laws

kc1 = 0.9, kc2 = 0.02, ka1 = 0.25, ka2 = 0.005, γ1 = 0.75,

βc = 0.001, Ka = I7, kθ = 0.5, βθ = 2, M = 100, N = 10.

Fig. 2. Sub-Figure (a) depicts the concatenated state x (t), (b) depicts approxi-
ate optimal input µ (t), and (c) depicts applied influencing agent input u (t).

In Fig. 2a, ez (t) is represented by blue squares, ed (t) is represented by red
diamonds, and eη (t) is represented by green circles. In Fig. 2b, the blue squares
and diamonds represent µη1 (t) and µη2 (t), respectively, while the red circles
and asterisks represent µd1 (t) and µd2 (t), respectively. In Fig. 2c, u1 (t) is
represented by blue squares and u2 (t) is represented by red diamonds.

where Sη and Sz satisfy Assumption 3. The StaF basis is se-
lected as σ (x, c (x)) = [σ1 (x, c1 (x)) , . . . , σ7 (x, c7 (x))]T , where
σi (x (t) , ci (x (t))) = xT (t) (x (t) + 0.7ν (x (t)) di), ν (x (t)) =
0.7xT (t)x(t)

(1+xT (t)x(t))
, and di are the vertices of a 6-simplex (Kamalapurkar,

Rosenfeld et al., 2016; Rosenfeld et al., 2019; Walters et al., 2015).
To perform BE extrapolation, ten trajectories xi (x (t) , t) are se-
lected at random from a uniform distribution over a [−1, 1] ×

[−1, 1] square centered at the current state x (t). The selected
initial conditions and parameters are provided in Table 1.

5.1. Discussion

Figs. 2–5 demonstrate that the influencing agent regulates the
roaming agent to the goal location zg . Fig. 2a shows that the
concatenated state x (t) converges to the origin. Hence, both the
system identification basis and value function weights remain
bounded. Fig. 2b shows that the input mismatch µη (t) = u (t) −

ud (t) converges faster than µd (t) ; hence, the influencing agent is
using the desired input which is based on regulating the roaming
agent to the desired location. The influencing agent’s applied in-
put u (t) = µη (t)+ud (t), shown in Fig. 2c, remains bounded and
converges once the agent’s reach the goal location. Figs. 3a–3b
show that the critic and actor weight estimates remain bounded;
however, because the optimal StaF weights are unknown, the
estimates cannot be compared to their ideal values. Fig. 3c shows
9

Fig. 3. Sub-Figure (a) depicts the critic StaF weight estimates, and Sub-Figure
(b) depicts the actor StaF weight estimates, both of which remain bounded.
Sub-Figure (c) depicts the minimum eigenvalue of the regression matrix.

Fig. 4. Sub-Figure (a) depicts the system identification errors θ̃ (t), which
converge to the origin, while Sub-Figure (b) depicts the minimum eigenvalue
of the regression matrix used for system identification.

Fig. 5. Positions of the influencing and roaming agents. The influencing agent
(blue diamonds) intercepts and regulates the roaming agent (red asterisks) to
the goal location (black star). The initial condition of the influencing agent is
given by the blue triangle, and the initial condition for the roaming agent is
given by the red triangle.

Assumption 5 is satisfied since the minimum eigenvalue of the
BE regressor is positive. Since the roaming and influencing agents
are modeled using linearly-parameterizable dynamics with an
exactly known basis, the parameter estimates can be compared
to the true values. Fig. 4a shows that the system parameter
estimates converge to the true values, while Fig. 4b shows when
the history stack becomes positive definite, which validates As-
sumption 4. The positions of the roaming and influencing agents
are shown in Fig. 5. The roaming agent is not independently
motivated to go to the desired location; hence, in Fig. 5, the
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Fig. 6. The unactuated paper platform (left) representing the roaming agent,
nd the Parrot Bebop 2.0 quadcopter (right) representing the influencing agent.

oaming agent initially diverges from the goal location. As the
nfluencing agent approaches the roaming agent, the roaming
gent starts moving away. Motivated to regulate the roaming
gent to the goal location, the influencing agent begins to regulate
he roaming agent toward zg . [0, −0.5]T .

. Experiment

The simulation results in Section 5 show the development
orks on an ideal system, where all assumptions could be ver-

fied. Following the roadmap in Section 1, this section provides
xperimental results to illustrate the performance of the devel-
ped approach. A series of ten experiments were conducted,
here a different combination of state penalty, Q , and input
enalty, R, weights were used to produce different performance
haracteristics. A Parrot Bebop 2 quadcopter was used as the
nfluencing agent and an unactuated paper platform, shown in
ig. 6, was used as the roaming agent. The unactuated paper
latform was constructed from a paper plate, top and bottom, fas-
ened to a colored poster board. The turbulent air caused by the
uadcopter propellers produce a repulsing force, which causes
he nearby roaming agent to slide away. In addition, to control the
uadcopter, two-dimensional velocity commands were generated
y the developed controller. In general, since the actual dynamics
re unknown, it is difficult to show that Assumption 1 is satisfied.
owever, since the unactuated paper platform only moves when
he quadcopter gets closer to the platform, it can be said that the
verall interaction dynamics depend on the distance between the
wo agents.

A NaturalPoint, Inc. OptiTrack motion capture system is used
o measure the pose of the quadcopter and paper platform. For
his experimental setup, a ground station, equipped with the
obotic Operating System (ROS) Kinetic framework and the be-
op_autonomypackage developed by Monajjemi (2015) running
n Ubuntu 16.04, receives the pose from the motion capture sys-
em, calculates the policies as velocity commands, and broadcasts
he commands to the quadcopter at 120 Hz. A video of a typical
un of this experiment is available at Deptula, Bell, Zegers, Licitra,
nd Dixon (2019).
The influencing agent was implemented using dynamics such

hat h (η (t) , z (t)) = 02×1; hence the dynamics did not need
o be estimated. To identify the interaction dynamics in (1),
z = 4 Gaussian radial basis functions were selected. Each center
f the basis was located in a quadrant around the influenc-
ng agent, where the standard deviation is selected as

√
0.5 m.

Using this representation, the influencing agent estimated the
repulsion effects it had on the roaming agent. To approximate
the value function, the StaF basis is selected as σ (x, c (x)) =

[σ1 (x, c1 (x)) , . . . , σ7 (x, c7 (x))]T , where σi (x (t) , ci (x (t))) =

exp
(

xT (t)c(x(t))
∥x(0)∥2

)
, c (x (t)) = (x (t) + ∥x (0)∥ ν (x (t)) di), ν (x (t)) =

0.05xT (t)x(t) , and di are the vertices of a 6-simplex. To perform

(∥x(0)∥2+xT (t)x(t))

10
Table 2
Initial conditions and parameters selected for the experiments..
Conditions at t0 = 0

Ŵc (0) = 0.2 × 15×1, Ŵa (0) = 0.1 × 15×1,

Γc (0) = 0.01I5, θ̂ (0) = U [−0.1, 0.1] × 14×2, Γθ (0) = 0.1I4.

Penalizing parameters

Q = xTQxx, P (x) = 0, kd = 1.15.

Gains and parameters for ADP update laws

kc1 = 0.1, kc2 = 0.9, ka1 = 0.9, ka2 = 0.1, γ1 = 0.5,

βc = 0.001, Ka = I5, N = 10, βθ = 0.1, M = 50.

BE extrapolation, ten trajectories xi (x (t) , t) are selected at ran-
dom from a uniform distribution over a ν (x (t))×ν (x (t)) square
centered at the current state x (t). The goal of the experiment is to
indirectly regulate the roaming agent to a neighborhood of radius
rgoal = 0.5m of the desired location zg = [−2, 0]T m. The selected
initial conditions and parameters are provided in Table 2.

A survey of ten experiments was performed, where different
combinations of penalty weights for the state and policy, Qx
and R (shown in Table 3), respectively, are used, while other
parameters remained constant between experiments. Norms of
the initial concatenated state and regulation error; the total root-
mean square (RMS) values of the norms of the concatenated state
x, regulation error ez , and applied input u; the total cost; and
time-to-completion (TTC) are calculated and tabulated in Table 4.

6.1. Discussion

Experiment results are provided in Table 4. To display part of
the experimental trials, two runs (experiments two and nine),
containing different penalty weights and different trajectories,
were selected to show the performance of the developed strategy.
The concatenated state norm, ∥x (t)∥, the regulation error norm,
∥ez (t)∥, and the phase-space portrait for experiments two and
nine are shown in Figs. 7 and 8, respectively. Figs. 7a and 7b
show the norms of the concatenated state and regulation error for
experiment two, respectively, which decrease until the roaming
agent is regulated to a neighborhood of the goal location (i.e,
∥ez (t)∥ ≤ rgoal). The trajectories of the influencing and roaming
agents are shown in Fig. 7c. Specifically, the influencing agent
moves toward the roaming agent to guide it toward the goal lo-
cation zg . As the influencing agent approached the roaming agent,
the roaming agent moves in the direction of the goal. However,
as the roaming agent begins to drift in a wrong direction, the
influencing agent adjusts its trajectory to regulate the roaming
agent back in the direction of the goal location.

To show the performance of the agents under different state
and input penalty weights, Fig. 8 shows similar metrics as in
Fig. 7. Specifically, the norms of the concatenated state x (t)
and regulation error ez (t) for experiment nine are displayed in
Figs. 8a and 8, respectively, which show that the total state and
regulation error decrease for experiment nine as the roaming
agent is regulated to a neighborhood of the goal. Fig. 8c shows
the phase-space portrait for both agents. Compared to Fig. 7c,
Fig. 8c shows that different state and input penalty weights affect
how the agents will interact. Moreover, in experiment nine, the
influencing agent still achieves the objective of regulating the
roaming agent to a neighborhood of the zg .

Table 3 shows the selected state and input penalty weights for
each experiment, while the results are shown in Table 4. Specif-
ically, Table 4 shows the effect of the system penalty weights
and initial setup on the system performance, including: the con-
catenated state, regulation error, and applied input total RMS
values; total cost; and TTC. Moreover, Table 4 shows that when
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Table 3
State and input penalty weights for each experiment..
Experiment R Qx

(
×102

)
λavg {R} λavg {Q }

(
×102

)
1 diag {20, 10, 50, 25} diag {1, 10, 1, 10, 1, 1} 26.25 4.0
2 diag {20, 5, 50, 25} diag {1, 20, 1, 20, 1, 1} 25.0 7.33
3 diag {20, 5, 50, 25} diag {1, 30, 1, 30, 1, 1} 25.0 10.67
4 diag {25, 10, 55, 30} diag {1, 30, 1, 30, 1, 1} 30.0 10.67
5 diag {30, 20, 65, 40} diag {1, 30, 1, 30, 1, 1} 38.75 10.67
6 diag {40, 30, 75, 50} diag {1, 30, 1, 30, 1, 1} 48.75 10.67
7 diag {40, 30, 80, 55} diag {1.5, 30, 1.5, 30, 1, 1} 51.25 10.83
8 diag {40, 30, 100, 75} diag {1.5, 30, 1.5, 30, 1, 1} 61.25 10.83
9 diag {40, 30, 120, 100} diag {1.5, 30, 1.5, 30, 1, 1} 72.5 10.83
10 diag {60, 40, 150, 125} diag {1.5, 30, 1.5, 30, 1, 1} 93.75 10.83
Table 4
The results for the survey of ten experiments with varying state and input penalty weights.
Experiment Concatenated State Regulation Error Concatenated State Regulation Error Applied Input Total Cost TTC

Initial Norm Initial Norm Total RMS Total RMS Total RMS
∥x (0)∥ (m) ∥ez (0)∥ (m) ∥x∥RMS (m) ∥ez∥RMS (m) ∥u∥RMS

( m
sec

) (
×103

)
(sec)

1 3.973 3.861 3.084 3.043 0.284 20.51 20.60
2 4.026 3.801 3.178 3.102 0.332 26.34 19.07
3 4.403 4.252 3.529 3.476 0.336 26.28 19.31
4 4.363 4.293 3.584 3.561 0.309 30.12 21.35
5 4.455 4.343 3.540 3.499 0.314 28.97 19.19
6 4.367 4.307 3.551 3.531 0.255 39.39 24.87
7 4.285 4.223 3.398 3.368 0.284 35.23 18.34
8 4.372 4.197 3.442 3.379 0.296 49.22 21.39
9 3.973 3.798 3.100 3.027 0.273 37.73 17.95
10 3.930 3.544 2.980 2.844 0.302 66.57 19.49
Fig. 7. Sub-Figure (a) depicts the concatenated state norm, ∥x (t)∥, and (b)
epicts the regulation error norm, ∥ez (t)∥, where both decrease until the

roaming agent is within rgoal . In Fig. 7b, the blue solid line represents ∥ez (t)∥
while the red dashed line represents the neighborhood of the goal denoted
by rgoal . Sub-Figure (c) depicts the phase-space portrait, which shows the+
trajectories of the roaming and influencing agents. The influencing agent (blue
diamonds) regulates the roaming agent (red asterisks) to a neighborhood (rgoal =

.5m) of goal location (black star). The initial influencing agent condition is given
y the blue triangle and the initial roaming agent condition is given by the red
riangle.

he state penalty weights are kept constant, but the input penalty
eights are increased, the total RMS values for the applied input
ecrease. But, when the state penalty weight is increased, the
otal RMS values of the concatenated state and regulation error
ecrease. Moreover, as the penalty weights are increased, the
otal cost is increased because the influencing agent’s actions and
he states of both agents are being penalized more. Finally, due
o the complex environment, the roaming agent was affected by
11
Fig. 8. Sub-Figure (a) depicts the concatenated state norm, ∥x (t)∥, (b) depicts
the regulation error norm, ∥ez (t)∥, and (c) depicts the phase-space portrait for
experiment nine. In Fig. 8b, the blue solid line represents ∥ez (t)∥ while the
red dashed line represents the neighborhood of the goal denoted by rgoal . In
Fig. 8c, the influencing agent (blue diamonds) regulates the roaming agent (red
asterisks) to a neighborhood (rgoal = 0.5 m) of goal location (black star). The
initial influencing agent condition is given by the blue triangle and the initial
roaming agent condition is given by the red triangle.

factors like varying friction. Hence, the TTC was greatly affected
between experiments.

7. Conclusion

An indirect regulation problem is investigated for a roam-
ing agent being directed by an influencing agent via interaction
dynamics. To estimate the uncertainties in the roaming and in-
fluencing agent dynamics, a data-based estimator, which relaxes
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he PE condition, is used. The problem is posed as an infinite-
orizon optimal control problem and a local StaF-based ADP
ethod is used to approximate the optimal value function and
ontroller. Uniformly ultimately bounded convergence is shown
ia a Lyapunov stability analysis for the closed-loop error sys-
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ppendix. Auxiliary terms

To facilitate the analysis in Section 4, κ ∈ R>0 is defined as κ ≜

min
{

q
2 ,

kθ cθ1
16 ,

kc2c
8 ,

(ka1+ka2)

8

}
, where the constants ϕa, ϕac, ϕcθ ∈

R>0 are defined as ϕa ≜
3
√
3(kc1+kc2)

64
∥Gσ ∥∥W∥

√
γ1

+
∥∇WGR∇σ T∥

2λmin{Ka}
, ϕac ≜

a1 +
3
√
3(kc1+kc2)

64
∥Gσ ∥∥W∥

√
γ1

+
∥∇W∥∥GR∥∥∇σ T∥

2Γ c
, and ϕcθ ≜

3
√
3(kc1+kc2)

(
∥W∥∥∇σ∥∥S∥

(
1+ 1

kd
+∥g∥∥g+∥

))
16

√
γ1

. Furthermore, the constant

∈ R>0 is defined as ι ≜ 1
2∥∇V ∗∥∥GR∥

∇W Tσ + ∇ϵT
 +

(ιa1+ιa2)2

(ka1+ka2)
+

ι2c
kc2c

+
kθ υ2

1
cθ1

, where ιc ≜
∥∇W∥

(
1+ 1

kd
+∥g∥∥g+∥

)
(θS+ε)

Γ c
+

∥∇W∥∥GR∥∥∇σ TW∥
2Γ c

+
3
√
3(kc1+kc2)∥∆∥

16
√

γ1
, ιa1 ≜

∥∇W∥

(
1+ 1

kd
+∥g∥∥g+∥

)
(θS+ε)

λmin{Ka}
∥∇W∥∥GR∥∥∇σ TW∥

2λmin{Ka}
, and ιa2 ≜ ka2∥W∥ +

3
√
3(kc1+kc2)

64
∥Gσ ∥∥W∥

2
√

γ1
+

∥∇V∗∥∥GR∥∥∇σ∥

2 .

eferences

acon, M., & Olgac, N. (2012). Swarm herding using a region holding sliding
mode controller. Journal of Vibration and Control, 18(7), 1056–1066.

asu Roy, S., Bhasin, S., & Kar, I. N. (2019). Composite adaptive control of
uncertain euler-lagrange systems with parameter convergence without pe
condition. Asian Journal of Control.

Bhasin, S., Kamalapurkar, R., Dinh, H. T., & Dixon, W. (2013). Robust
identification-based state derivative estimation for nonlinear systems. IEEE
Transactions on Automatic Control, 58(1), 187–192.

hasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis, K. G., Lewis, F. L., &
Dixon, W. E. (2013). A novel actor-critic-identifier architecture for approx-
imate optimal control of uncertain nonlinear systems. Automatica, 49(1),
89–92.

hen, J., Zha, W., Peng, Z., & Gu, D. (2016). Multi-player pursuit–evasion games
with one superior evader. Automatica, 71, 24–32.

Chen, M., Zhou, Z., & Tomlin, C. J. (2017). Multiplayer reach-avoid games via
pairwise outcomes. IEEE Transactions on Automatic Control, 62(3), 1451–1457.

ho, N., Shin, H.-S., Kim, Y., & Tsourdos, A. (2017). Composite model reference
adaptive control with parameter convergence under finite excitation. IEEE
Transactions on Automatic Control, 63(3), 811–818.

Chowdhary, G., & Johnson, E. (2011). A singular value maximizing data recording
algorithm for concurrent learning. InProc. Am. Control Conf. (pp. 3547–3552).

Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in
mobile robotics. Autonomous Robots, 31(4), 299.

Deptula, P., Bell, Z. I., Zegers, F., Licitra, R., & Dixon, W. E. (2018). Single agent
indirect herding via approximate dynamic programming. In Proc. IEEE conf.
decis. control(pp. 7136–7141).

Deptula, P., Bell, Z. I., Zegers, F. M., Licitra, R. A., & Dixon, W. E. (2019). Ap-
proximate optimal influence over an agent through an uncertain interaction
dynamic experiment. https://youtu.be/JeK4jTDuImo.
12
Deptula, P., Rosenfeld, J., Kamalapurkar, R., & Dixon, W. E. (2018). Approximate
dynamic programming: Combining regional and local state following ap-
proximations. IEEE Transactions on Neural Network Learning System, 29(6),
2154–2166.

Farrell, J. A., & Polycarpou, M. M. (2006). Polycarpou, adaptive approximation
based control: Unifying neural, fuzzy and traditional adaptive approxima-
tion approaches. In Ser. Adaptive and learning systems for signal processing,
communications and control series, Vol.48. John Wiley & Sons.

Gadre, A. S. (2001). Learning strategies in multi-agent systems-applications to the
herding problem (M.S. thesis), Blacksburg, VA, USA: Dept. Elect. Comput. Eng.
Virginia Tech.

Garcia, E., Casbeer, D. W., & Pachter, M. (2017). Active target defence differ-
ential game: fast defender case. IET Control Theory & Applications, 11(17),
2985–2993.

Garcia, E., Casbeer, D. W., & Pachter, M. (2018). Design and analysis of state-
feedback optimal strategies for the differential game of active defense. IEEE
Transactions on Automation Contol.

ill, P. E., Murray, W., & Saunders, M. A. (2005). Snopt: An sqp algorithm for
large-scale constrained optimization. SIAM Review, 47(1), 99–131.

ill, P. E., Wong, E., Murray, W., & Saunders, M. A. (2015). User’s guide for
snopt version 7: Software for large-scale nonlinear programming. San Diego, La
Jolla, CA: Department of Mathematics, University of California, 92093-0112.
https://ccom.ucsd.edu/optimizers/static/pdfs/snopt7-7.pdf.

uang, H., Ding, J., Zhang, W., & Tomlin, C. J. (2015). Automation-assisted
capture-the-flag: A differential game approach. IEEE Transactions on Control
Systems Technology, 23(3), 1014–1028.

oannou, P., & Sun, J. (1996). Robust adaptive control. Prentice Hall.
saacs, R. (1967). Differential games. John Wiley.
saacs, R. (1999). Differential games: a mathematical theory with applications

to warfare and pursuit, control and optimization. In Ser. dover books on
mathematics. Dover Publications.

achroo, P., Shedied, S. A., Bay, J. S., & Vanlandingham, H. (2001). Dynamic
programming solution for a class of pursuit evasion problems: the herding
problem. IEEE Transactions on Systems, Man and Cybernetics, 31(1), 35–41.

amalapurkar, R., Andrews, L., Walters, P., & Dixon, W. E. (2017). Model-based
reinforcement learning for infinite-horizon approximate optimal tracking.
IEEE Transactions on Neural Network Learning System, 28(3), 753–758.

amalapurkar, R., Dinh, H., Bhasin, S., & Dixon, W. E. (2015). Approximate op-
timal trajectory tracking for continuous-time nonlinear systems. Automatica,
51, 40–48.

amalapurkar, R., Klotz, J. R., Walters, P., & Dixon, W. E. (2018). Model-based
reinforcement learning for differential graphical games. IEEE Transactions on
Control Network System, 5(1), 423–433.

amalapurkar, R., Reish, B., Chowdhary, G., & Dixon, W. E. (2017). Concurrent
learning for parameter estimation using dynamic state-derivative estimators.
IEEE Transactions on Automatic Control, 62(7), 3594–3601.

amalapurkar, R., Rosenfeld, J., & Dixon, W. E. (2016). Efficient model-based
reinforcement learning for approximate online optimal control. Automatica,
74, 247–258.

amalapurkar, R., Walters, P., & Dixon, W. E. (2016). Model-based reinforcement
learning for approximate optimal regulation. Automatica, 64, 94–104.

amalapurkar, R., Walters, P. S., Rosenfeld, J. A., & Dixon, W. E. (2018). Rein-
forcement learning for optimal feedback control: A Lyapunov-based approach.
Springer.

halafi, A. D., & Toroghi, M. R. (2011). Capture zone in the herding pursuit
evasion games. Applied Mathematical Sciences, 5(39), 1935–1945.

halil, H. K. (2002). Nonlinear systems (3rd ed.). Upper Saddle River, NJ: Prentice
Hall.

iumarsi, B., Vamvoudakis, K. G., Modares, H., & Lewis, F. L. (2017). Opti-
mal and autonomous control using reinforcement learning: A survey. IEEE
Transactions on Neural Network Learning System.

umkov, S. S., Le Ménec, S., & Patsko, V. S. (2017). Zero-sum pursuit-evasion
differential games with many objects: survey of publications. Dynamic Games
and Applications, 7(4), 609–633.

ewis, F. L., Selmic, R., & Campos, J. (2002). Neuro-fuzzy control of industrial sys-
tems with actuator nonlinearities. Philadelphia, PA, USA: Society for Industrial
and Applied Mathematics.

icitra, R., Bell, Z. I., Doucette, E., & Dixon, W. E. (2018). Single agent indirect
herding of multiple targets: A switched adaptive control approach. IEEE
Control System Letter, 2(1), 127–132.

icitra, R., Hutcheson, Z., Doucette, E., & Dixon, W. E. (2017). Single agent
herding of n-agents: A switched systems approach. In IFAC World Congress
(pp. 14374–14379.

in, Y., & Sontag, E. D. (1991). A universal formula for stabilization with bounded
controls. Systems & Control Letters, 16(6), 393–397.

u, Z. (2006). Cooperative optimal path planning for herding problems (Ph.D.
dissertation), Texas A & M University.

odares, H., Lewis, F. L., Kang, W., & Davoudi, A. (2018). Optimal synchro-
nization of heterogeneous nonlinear systems with unknown dynamics. IEEE
Transactions on Automatic Control, 63(1), 117–131.

http://refhub.elsevier.com/S0005-1098(21)00437-4/sb1
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb1
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb1
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb2
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb2
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb2
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb2
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb2
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb3
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb3
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb3
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb3
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb3
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb5
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb5
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb5
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb6
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb6
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb6
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb9
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb9
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb9
https://youtu.be/JeK4jTDuImo
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb12
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb12
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb12
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb12
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb12
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb12
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb12
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb13
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb13
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb13
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb13
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb13
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb13
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb13
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb14
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb14
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb14
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb14
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb14
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb15
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb15
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb15
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb15
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb15
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb16
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb16
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb16
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb16
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb16
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb17
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb17
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb17
https://ccom.ucsd.edu/optimizers/static/pdfs/snopt7-7.pdf
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb19
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb19
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb19
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb19
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb19
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb20
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb21
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb22
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb22
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb22
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb22
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb22
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb23
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb23
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb23
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb23
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb23
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb24
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb24
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb24
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb24
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb24
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb25
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb25
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb25
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb25
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb25
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb26
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb26
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb26
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb26
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb26
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb27
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb27
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb27
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb27
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb27
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb28
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb28
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb28
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb28
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb28
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb29
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb29
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb29
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb30
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb30
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb30
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb30
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb30
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb31
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb31
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb31
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb32
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb32
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb32
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb33
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb33
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb33
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb33
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb33
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb34
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb34
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb34
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb34
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb34
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb35
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb35
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb35
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb35
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb35
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb36
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb36
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb36
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb36
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb36
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb38
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb38
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb38
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb39
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb39
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb39
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb40
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb40
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb40
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb40
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb40


P. Deptula, Z.I. Bell, F.M. Zegers et al. Automatica 134 (2021) 109913

M

v

P

P

R

S

V

W

W

W

onajjemi, M. (2015). bebop_autonomy library, http://bebop-autonomy.
readthedocs.io.

on Neumann, J., & Morgenstern, O. (1980). Theory of games and economic
behavior. Princeton University Press.

arikh, A., Kamalapurkar, R., & Dixon, W. E. (2019). Integral concurrent
learning: Adaptive control with parameter convergence using finite exci-
tation. International Journal of Adaptive Control and Signal Processing, 33(12),
1775–1787.

Patre, P. M., MacKunis, W., Kaiser, K., & Dixon, W. E. (2008). Asymptotic tracking
for uncertain dynamic systems via a multilayer neural network feedforward
and RISE feedback control structure. IEEE Transactions on Automatic Control,
53(9), 2180–2185.

ierson, A., & Schwager, M. (2018). Controlling noncooperative herds with
robotic herders. IEEE Transactions on Robotics and Automation, 34(2), 517–525.

Ramana, M. V., & Kothari, M. (2017). Pursuit-evasion games of high speed
evader. Journal of Intelligent and Robotic Systems: Theory and Applications,
85(2), 293–306.

osenfeld, J. A., Kamalapurkar, R., & Dixon, W. E. (2019). The state following
(staf) approximation method. IEEE Transactions on Neural Network Learning
System, 30(6), 1716–1730.

Roy, S. B., Bhasin, S., & Kar, I. N. (2018). Combined mrac for unknown mimo lti
systems with parameter convergence. IEEE Transactions on Automatic Control,
63(1), 283–290.

adegh, N. (1993). A perceptron network for functional identification and control
of nonlinear systems. IEEE Transactions on Neural Networks, 4(6), 982–988.

Shedied, S. A. (2002). Optimal control for a two player dynamic pursuit eva-
sion game; the herding problem (Ph.D. dissertation), Virginia Polytechnique
Institute.

Sun, J., Liu, C., & Ye, Q. (2017). Robust differential game guidance laws
design for uncertain interceptor-target engagement via adaptive dynamic
programming. International Journal of Control, 90(5), 990–1004.

Vamvoudakis, K. G., & Hespanha, J. P. (2018). Cooperative q-learning for rejection
of persistent adversarial inputs in networked linear quadratic systems. IEEE
Transactions on Automatic Control, 63(4), 1018–1031.

Vamvoudakis, K. G., Modares, H., Kiumarsi, B., & Lewis, F. L. (2017). Game theory-
based control system algorithms with real-time reinforcement learning: How
to solve multiplayer games online. IEEE Control System, 37(1), 33–52.

idal, R., Shakernia, O., Kim, H., Shim, D., & Sastry, S. (2002). Probabilistic pursuit-
evasion games: theory, implementation, and experimental evaluation. IEEE
Transactions on Robotics and Automation, 18(5), 662–669.

alters, P., Kamalapurkar, R., & Dixon, W. E. (2015). Approximate optimal online
continuous-time path-planner with static obstacle avoidance. In Proc. IEEE
Conf. Decis. Control(pp. 650–655).

ang, Z., Liu, X., Liu, K., Li, S., & Wang, H. (2017). Backstepping-based Lyapunov
function construction using approximate dynamic programming and sum of
square techniques. IEEE Transactions on Cybernetics, 47(10), 3393–3403.

ang, D., Liu, D., Mu, C., & Ma, H. (2016). Decentralized guaranteed cost control
of interconnected systems with uncertainties: a learning-based optimal
control strategy. Neurocomputing, 214, 297–306.

Wen, G., Ge, S. S., & Tu, F. (2018). Optimized backstepping for tracking control of
strict-feedback systems. IEEE Transactions on Neural Network Learning System.

Yan, F., Jiang, J., Di, K., Jiang, Y., & Hao, Z. (2018). Multiagent pursuit-evasion
problem with the pursuers moving at uncertain speeds. Journal of Intelligent
and Robotic Systems: Theory and Applications, 1–17.

Zhang, H., Cui, L., & Luo, Y. (2013). Near-optimal control for nonzero-sum dif-
ferential games of continuous-time nonlinear systems using single-network
adp. IEEE Transactions on Cybernetics, 43(1), 206–216.

Zhang, H., Liu, D., Luo, Y., & Wang, D. (2013). Adaptive dynamic programming
for control algorithms and stability. In Ser. communications and control
engineering. London: Springer-Verlag.
13
Patryk Deptula received his Ph.D. from the Univer-
sity of Florida in 2019. He is currently a Senior
Robotics Researcher at Draper and his research inter-
ests include data-based learning, analysis, and predic-
tion; autonomous systems and robotics; data fusion;
bio-mechanics and human–machine teaming.

Zachary I. Bell received his Ph.D. from the University
of Florida in 2019 and is a researcher for the Air Force
Research Lab. His research focuses on cooperative guid-
ance and control, computer vision, adaptive control,
and reinforcement learning.

Federico M. Zegers received B.S. degrees in mechanical
engineering and mathematics and the M.S. degree in
mechanical engineering from the University of Florida
in 2016 and 2019, respectively. Afterwards, Dr. Zegers
received his Ph.D. degree under the supervision of Dr.
Warren Dixon at the University of Florida in 2021.
Federico’s research interests include Lyapunov-based
nonlinear and adaptive control, multi-agent systems,
switched/hybrid systems theory, and robotics.

Ryan A. Licitra is a senior systems engineer with
Lockheed Martin Missiles and Fire Control interested
in research topics related to guidance, navigation, and
control.

Warren E. Dixon received his Ph.D. in 2000 from the
Department of Electrical and Computer Engineering
from Clemson University. He was selected as a Eugene
P. Wigner Fellow and worked as a staff researcher at
Oak Ridge National Laboratory. In 2004, he joined the
University of Florida in the Mechanical and Aerospace
Engineering Department, where he is the Department
Chair and currently holds the Newton C. Ebaugh Profes-
sorship. His main research interest is the development
and application of Lyapunov-based control techniques
for uncertain nonlinear systems. His work has been

acknowledged by various career and best paper awards, and he attained ASME
and IEEE Fellow for contributions to adaptive control of uncertain nonlinear
systems. He is an associate editor for Automatica and IEEE Control Systems.

http://bebop-autonomy.readthedocs.io
http://bebop-autonomy.readthedocs.io
http://bebop-autonomy.readthedocs.io
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb42
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb42
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb42
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb43
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb43
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb43
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb43
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb43
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb43
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb43
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb44
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb44
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb44
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb44
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb44
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb44
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb44
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb45
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb45
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb45
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb46
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb46
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb46
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb46
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb46
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb47
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb47
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb47
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb47
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb47
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb48
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb48
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb48
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb48
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb48
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb49
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb49
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb49
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb50
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb50
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb50
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb50
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb50
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb51
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb51
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb51
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb51
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb51
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb52
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb52
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb52
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb52
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb52
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb53
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb53
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb53
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb53
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb53
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb54
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb54
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb54
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb54
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb54
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb56
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb56
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb56
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb56
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb56
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb57
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb57
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb57
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb57
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb57
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb58
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb58
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb58
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb59
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb59
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb59
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb59
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb59
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb60
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb60
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb60
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb60
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb60
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb61
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb61
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb61
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb61
http://refhub.elsevier.com/S0005-1098(21)00437-4/sb61

	Approximate optimal influence over an agent through an uncertain interaction dynamic
	Introduction
	Roadmap
	Notation

	Problem formulation
	Optimal control development

	Approximate optimal control
	System identification
	Value function approximation
	Online learning

	Stability analysis
	Simulation
	Discussion

	Experiment
	Discussion

	Conclusion
	Acknowledgments
	Appendix. Auxiliary Terms
	References


