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a b s t r a c t

An infinite horizon approximate optimal control problem is developed for a system with unknown
drift parameters and control effectiveness faults. A data-based filtered parameter estimator with a
novel dynamic gain structure is developed to simultaneously estimate the unknown drift dynamics
and control effectiveness fault. A local state-following approximate dynamic programming method is
used to approximate the unknown optimal value function for an uncertain system. Using a relaxed
persistence of excitation condition, a Lyapunov-based stability analysis shows exponential convergence
to a residual error for the parameter estimation and uniformly ultimately bounded convergence for
the closed-loop system. Simulation results are presented which demonstrate the effectiveness of the
developed method.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Designing optimal controllers for uncertain nonlinear systems
is difficult because the solution to the Hamilton–Jacobi–Bellman
(HJB) is generally unknown. Approximate dynamic programming
(ADP) provides a viable way of approximating the solution to the
HJB via neural network (NN) representations (cf., Jiang & Jiang,
2017; Kamalapurkar, Walters, Rosenfeld, & Dixon, 2018; Lewis &
Liu, 2013); however, ADP has two inherent significant challenges.

One challenge for dynamic programming methods is the curse
of dimensionality because a large number (e.g., exponential
growth) of basis functions is generally required to obtain a suf-
ficient approximation. In this paper, we provide an in-road to
address the computational complexity issue by leveraging the
recent state-following (StaF) method in Kamalapurkar, Rosenfeld
and Dixon (2016) to develop local approximations of the value
function with a reduced number (i.e., linear growth) of basis
functions.

✩ The material in this paper was partially presented at the 2018 American
Control Conference, June 27–29, 2018, Milwaukee, WI, USA. This paper was
recommended for publication in revised form by Associate Editor Kyriakos G.
Vamvoudakis under the direction of Editor Miroslav Krstic.
✩✩ This work was done prior to Patryk Deptula joining Draper.
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Another challenge for ADP methods is that, unlike traditional
adaptive controllers, the ideal weights of the NN must be exactly
learned (i.e., system identification) to approximate the optimal
controller. One way to achieve parameter identification is to
assume a persistence of excitation (PE) condition is satisfied;
yet, for general nonlinear systems, there is no currently known
way to ensure the PE condition is satisfied a priori, even with
an added disturbance signal or so-called probing noise, and no
way to verify if the condition is satisfied online. Motivated by
this issue, data-driven techniques such as simulation of experi-
ence and experience replay aim to relax the PE assumption by
utilizing concurrent learning (CL), where data richness is charac-
terized by the eigenvalues of a history stack, which unlike the PE
condition can be verified online (cf., Bhasin et al., 2013; Chowd-
hary & Johnson, 2011; Fan & Yang, 2016b, 2016c; Kamalapurkar,
Rosenfeld et al., 2016; Kamalapurkar, Walters and Dixon, 2016;
Modares, Lewis, & Naghibi-Sistani, 2014; Vamvoudakis, Miranda,
& Hespanha, 2016; Zhang, Cui, Zhang, & Luo, 2011). Specifically,
CL collects pairs of input/output data and stores them in an
evolving history stack during task execution. The input/output
pairs can then be used, along with methods such as Chowdhary
and Johnson (2011) and Kamalapurkar, Reish, Chowdhary, and
Dixon (2017) to manage the size and composition of the history
stack, to perform system identification (assuming the derivative
of the highest order states is available or numerically generated).
Integral CL (ICL) removes the need to measure the derivative of
the highest order terms by including an integral of the terms in
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the history stack. Specifically, in Parikh, Kamalapurkar, and Dixon
(2019), ICL is formulated so that the dynamics are integrated
over a finite window; hence, the formulation includes both a
finite difference and an integrated function. However, such an
approach requires numerical techniques to evaluate the integrals,
which can cause errors to accumulate if large integration buffers
are used or in the presence of measurement noise. Another ap-
proach which uses an initial excitation (IE) condition to guarantee
parameter identification can be determined via an integral-like
update law (Roy, Bhasin, & Kar, 2018).

In addition to the nominal challenges faced with designing
and implementing ADP methods, the development of ever more
complex systems along with the emerging potential for cyber
effects, results in additional challenges. For example, adaptation
for fault tolerant control (FTC) has received an increased amount
of attention in recent years (cf., Fan & Yang, 2016a, 2016b, 2016c;
Jiang, Zhang, Liu, & Han, 2017; Liu, Wang, & Zhang, 2017; Lv,
Na, Yang, Wu, & Guo, 2016; Shen, Liu, & Dowell, 2013; Zhao,
Liu, & Li, 2017 and references therein). An input observer based
approach is considered in Shen et al. (2013) to estimate loss
of effectiveness (LoE) faults for linear systems subject to exoge-
nous disturbances while numerical solutions for Linear Matrix
Inequalities are used generate control policies. A continuous-time
constrained complementary controller using ADP for a partial LoE
fault with known nonlinear drift dynamics is developed in Fan
and Yang (2016a). In Liu et al. (2017), a high-gain controller is
utilized to compensate for an additive fault, while a discrete-
time ADP controller provides tracking guarantees. In Jiang et al.
(2017) and Zhao et al. (2017), a policy-iteration ADP approach
is developed to compensate for biased input faults. An integral
sliding-mode approach with a NN estimator in conjunction with
an actor–critic design was developed in Fan and Yang (2016b,
2016c) to compensate for time-varying input faults for a class of
systems with partially unknown dynamics. The result in Lv et al.
(2016) uses a filter-based adaptive NN identifier to estimate the
unknown drift dynamics and control effectiveness for a fault-free
system. However, the results in Fan and Yang (2016b, 2016c) and
Lv et al. (2016) inject a probing signal that is assumed to satisfy
the PE condition to ensure the parameter estimates converge to
their true value.

Building on our precursory efforts in Deptula, Bell, Doucette,
Curtis, and Dixon (2018), a unique filtered ICL estimator is devel-
oped in this paper to simultaneously estimate the drift dynamics
and unknown state-dependent control effectiveness fault for a
class of nonlinear systems. Specifically, we build on our previous
ICL development in Parikh et al. (2019) to replace the PE condition
with an eigenvalue condition that can be checked each time new
data is recorded by computing the minimum eigenvalue of the
square of the integral of data-based regression matrix. To account
for the potential for numerical integration error accumulation
when using large integration windows, the history stack is passed
through a low pass filter and a novel dynamic gain structure is
developed to increase the eigenvalues and generate less noisy
regressors for parameter estimation.

In addition to identifying the unknown drift dynamics and
fault, the unknown value function must also be identified. To this
end, we build on our previous simulation of experience based
approach via Bellman error (BE) extrapolation (cf., Kamalapurkar,
Rosenfeld et al., 2016; Kamalapurkar, Walters et al., 2016), where
the controller and BE are evaluated at extrapolated trajectories
in a neighborhood of the system state. Though the approach
seems similar to Fan and Yang (2016a), the developed approach
does not assume knowledge of the drift dynamics and considers
state-varying faults. Moreover, the result in Fan and Yang (2016a)
assumes a robust controller already exists which stabilizes the
system and a complementary controller is designed to improve

performance. In addition, this result is not limited to constant
control effectiveness perturbations as considered in Fan and Yang
(2016a). In this result, the overall controller is assumed to be
saturated which relates more to real-life systems where torque
limits or vehicle velocity and acceleration limits are present.
StaF kernel functions are used to estimate the value function
and local BE extrapolation is used to relax the PE condition
when learning the critic weights. Unlike the preliminary results
in Deptula et al. (2018) or the results in Fan and Yang (2016a),
this paper considers a wider class of reduced effectiveness faults,
by considering state-varying faults. Furthermore, compared to
the preliminary result in Deptula et al. (2018), a unique value
function representation is included and a more detailed stability
analysis is included. Simulation results along with discussions are
presented to illustrate the performance of the developed method.

2. Problem formulation

Consider the control affine system with a state-dependent
control effectiveness fault

ẋ (t) = f (x (t)) + g (x (t)) Λ (µa (x (t))) u (t) , (1)

with t ∈ R≥t0 , where t0 ∈ R≥0 denotes the initial time, x : R≥t0 →

Rn denotes the system state, f : Rn
→ Rn denotes the drift

dynamics, g : Rn
→ Rn×m denotes the known bounded control

effectiveness matrix, u : R≥t0 → Rm denotes the amplitude
limited control input such that supt |ui| ≤ α ∀i = 1, . . . ,m,
where α ∈ R>0 is the saturation constant, µa : Rn

→ Rm denotes
the unknown state varying actuator perturbation, and Λ : Rm

→

Rm×m is a diagonal operator defined as Λ (·) ≜ diag {·}.1

Assumption 1. Each element of the actuator control effectiveness
perturbation is bounded such that 0 < µai (x) ≤ µai, i =

1, . . . ,m, where µai ∈ R>0 are constants. Hence, the unknown
constant actuator fault is bounded such that 0 < ∥Λ (µa (x))∥ ≤

µa where µa ≜ sup
{
µa1, . . . , µam,

}
and µai ≤ 1, i = 1, . . . ,m.

Furthermore, the state varying perturbation is C1.

Assumption 2. The drift dynamic f (·) is differentiable in its
arguments, locally Lipschitz, and f (0) = 0. Furthermore, the
control effectiveness matrix g (x) is known and bounded, such
that 0 < ∥g (x)∥ ≤ g , where g ∈ R>0 (Bhasin et al., 2013;
Kamalapurkar et al., 2018; Lewis & Liu, 2013).

To form the optimal control problem, let the cost functional
be defined as

J (x, u) ≜

∫
∞

t0

r (x (τ ) , u (τ )) dτ , (2)

where r : Rn
× Rm

→ R≥0 denotes the instantaneous cost
r (x, u) ≜ Qx (x) + Ψ (u), with Qx : Rn

→ R≥0 being continuously
differentiable function satisfying q ∥x∥2

≤ Qx (x) ≤ q ∥x∥2 for
q, q ∈ R>0 and

Ψ (u) ≜ 2
m∑
i=1

∫ ui

0
αri tanh−1

(ξui

α

)
dξui . (3)

In (3), ξui is an integration variable, and ri are the diagonal ele-
ments which make up the symmetric positive definite weighting
matrix R ∈ Rm×m where R ≜ diag {r}, and r̄ ≜ [r1, . . . , rm] ∈

R1×m. The infinite-time optimal scalar value function V ∗
: Rn

→

R≥0 is V ∗ (x (t)) = infu(τ )∈U |τ∈R≥t

∫
∞

t r (x (τ ) , u (τ )) dτ , where U
denotes the set of admissible controllers.

1 Although this paper uses a single saturation constant α, different saturation
constants can be used for each input such that supt |ui| ≤ αi ∀i = 1, . . . ,m,
where αi ∈ R>0 are the saturation constants.
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Assumption 3. A controller u : R≥t0 → U is said to be admissible
for (t0, x0) ∈ R≥t0 × Rn if it is bounded, generates a unique
bounded trajectory starting from (t0, x0), and results in bounded
total cost.

The following assumption facilitates a dynamic programming
based solution of the optimal control problem.

Assumption 4. The value function x ↦→ V ∗ (x) is continuously
differentiable.

The objective is to determine the optimal control policy u∗

which minimizes the cost functional in (2) subject to the dynamic
constraints in (1). To facilitate the subsequent development, let
F (x) ≜ f (x) and G (x) ≜ g (x) Λ (µa (x)). Then, the HJB is

0 = ∇V ∗
(
F (x) + G (x) u∗

)
+ r

(
x, u∗

)
, (4)

with the boundary condition V (0) = 0 (Kirk, 2004, Section 3.11).
Using Assumptions 2–4 along with (3)–(4), the optimal control
policy is Fan and Yang (2016a) and Modares et al. (2014)

u∗ (x) = −αTanh
(R−1GT (x)

2α

(
∇V ∗ (x)

)T )
. (5)

After substituting (5) into (4), the HJB becomes

0 = ∇V ∗ (x) F (x) + Qx (x)

+ α2r ln
(
1 − Tanh2(R−1GT (x)

2α

(
∇V ∗ (x)

)T ))
, (6)

where 1 ≜ [1, 1, . . . , 1]T ∈ Rm, and Tanh (ξ) ≜ [tanh (ξi) , . . . ,

tanh (ξm)]T for ξ ∈ Rm.2
The positive definite solution to (6) is the value function

V ∗, which is an unknown nonlinear function. Furthermore, (6)
requires knowledge of the drift dynamics f and the control effec-
tiveness fault µa. However, because V ∗, f , and µa are unknown,
approximations are sought.

3. Approximate optimal control

In the following, an adaptive control strategy is presented to
approximate the drift dynamics and control effectiveness fault
simultaneously. Using a computationally efficient local ADP ap-
proach that exploits BE extrapolation is used to estimate V ∗.

3.1. System and fault estimation

Since the drift dynamics f and control effectiveness fault µa
are unknown, using the universal function approximation prop-
erty, NNs can be used to represent the system in (1) over a
compact set χ ⊂ Rn containing the origin as

ẋ = f o (x) + Φ (x, u) Θ + εsys (x, u) , (7)

where f o : Rn
→ Rn denotes the known nominal drift dynamics,

Θ ≜
[
vec
(
W T

1

)T
, vec

(
W T

2

)T ]T
∈ Rp, denotes an unknown

constant vector, and
Φ (x, u) ≜

[(
φT
1 (x) ⊗ In

)
,
(
φT
2 (x) ⊗ (g (x) Λ (u))

)]
∈ Rn×p,

denotes the known regression matrix, where p ≜ p1n + p2m,
W1 ∈ Rp1×n and W2 ∈ Rp2×m, are unknown constant weight
matrices, φ1 : Rn

→ Rp1 and φ2 : Rn
→ Rp2 are user defined

basis functions, and εsys : Rn
× Rm

→ Rn is the total NN
function reconstruction error defined as εsys (x, u) ≜ ε1 (x) +

2 If different saturation constants αi are used, then the optimal controller
and HJB in (6) become u∗ (x) = −αTanh

(
α−1R−1GT (x)

2 (∇V ∗ (x))T
)

and 0 =

∇V ∗ (x) F (x) + Qx (x) + rα2 ln
(
1 − Tanh2( α−1R−1GT (x)

2 (∇V ∗ (x))T
))

, respectively,

where α ≜ diag {α1, . . . , αm} ∈ Rm×m .

g (x) Λ (u) ε2 (x). The unknown weight, function reconstruction
error, and known vector of basis functions are assumed to satisfy
the following.

Assumption 5. There exist φ1, φ2, εs ∈ R>0 such that
supx∈χ ∥φ1∥ ≤ φ1, supx∈χ ∥φ2∥ ≤ φ2, and supx∈χ

εsys ≤ εs,
respectively. Furthermore, there exists W 1, W 2, Θ ∈ R>0 such
that ∥W1∥ ≤ W 1 and ∥W2∥ ≤ W 2, and based on the definition of
Θ , ∥Θ∥ ≤ Θ follows Kamalapurkar et al. (2018) and Lewis and
Liu (2013).

Motivated by the fact that our previous ICL approaches use
piecewise constant sample data that are collected online, a fil-
tered representation of (7) is incorporated here to aid in learning
the unknown weight Θ . Moreover, implementable filter variables
xf ∈ Rn, Φf ∈ Rn×p, and Ff ∈ Rn are defined based on the
following low-pass filter structures{
kẋf + xf = x, kΦ̇f + Φf = Φ (x, u) ,

kḞf + Ff = f o (x) ,
(8)

where k ∈ R>0. Using (8), (7) can be represented as

ẋf (t) =
x (t) − xf (t)

k
= Ff (t) + Φf (t) Θ + εf (t) (9)

where εf ∈ Rn is the filtered version of the non-measurable
total NN function reconstruction error εsys, which by following
the notation in (8) is generated by kε̇f + εf = εsys (x, u). Note
that εf is not implemented nor measured and is only used in the
analysis.

Furthermore, let P ∈ Rp×p and Q ∈ Rp be dynamic gain
matrices updated by the update laws⎧⎪⎪⎨⎪⎪⎩
Ṗ = −ℓP + kpΦT

f Φf + kCL
∑M

i=1 Y
T
i Yi,

Q̇ = −ℓQ + kpΦT
f

(
x−xf
k − Ff

)
+

kCL
∑M

i=1 Y
T
i

(
x (ti) − x (ti − T ) − Fi

)
,

(10)

with P
(
t0
)

= 0 and Q
(
t0
)

= 0, where ℓ, kCL ∈ R>0, and kp ∈ R≥0
are constant update gains, T ∈ R>0 is a user defined integration
window, ti ∈ [T , t] are points between the initial time and
current time, and M ∈ N>0 is the user-defined number of data
points in the history stack.3 In (10), Yi ≜

∫ ti
ti−T Φ (x (τ ) , u (τ )) dτ ,

Fi ≜
∫ ti
ti−T f

o (x (τ )) dτ , x (ti) − x (ti − T ) = Fi + YiΘ + Ei, and
E (t) ≜

∫ t
t−T εsys (x (τ )) dτ . Based on the previous development, Θ̂

is designed using a least-squares approach as
˙̂
Θ (t) = proj

{
−Γ (t)

(
P (t) Θ̂ (t) − Q (t)

)}
, (11)

Γ̇ (t) = βΓ (t) − Γ (t) P (t) Γ (t) , (12)

where β ∈ R>0 denotes the forgetting factor and proj {·} denotes
a smooth projection operator with respect to Ω ⊂ Rp, such that
Θ ∈ Ω , which bounds the weight estimates.4

Numerical techniques are required to compute the integrals
which can cause errors to accumulate if large integration buffers
are used. Moreover, measurements may be noisy which can de-
grade data when implementing ICL techniques such as Parikh
et al. (2019) on hardware. The structure of (10) is a filtering
method that also provides a means to increase the minimum
eigenvalue of P , and hence the convergence rate of Θ̂ (t).

3 As stated in Lv et al. (2016), the regression matrix ΦT
f Φf in (10) can aid

in increasing λmin {P} using the current state and input pairs. However, the
use of only ΦT

f Φf would require the stringent PE condition to be satisfied;

hence,
∑M

i=1 YT
i Yi is used along with the less restrictive measurable condition

in Assumption 6 to show convergence of the parameter estimates in Theorem 1.
4 See Dixon, Behal, Dawson, and Nagarkatti (2003, Chapter 4) for details of

the projection operator.
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Remark 1. By Assumption 5, Φ, εsys ∈ L∞. Integrating (8), using
the definitions for Yi and Ei, and then substituting the bounds for
Φ and εsys from Assumption 5, then Φf , εf , Yi, Ei ∈ L∞. Hence,
there exist Φf , εf , Y, E ∈ R>0 such that

Φf
 ≤ Φf ,

εf  ≤ εf ,
∥Yi∥ ≤ Y , and ∥Ei∥ ≤ E .

Assumption 6 (Parikh et al., 2019).
There exists T1 ∈ R>0 such that T1 > T , and strictly positive

constants λ1, λ2 ∈ R>0 where λ1Ip ≤
∑M

i=1 Y
T
i Yi ≤ λ2Ip, ∀t ≥ T1.

Remark 2. In Assumption 6, λ1 only requires a finite collection of
sufficiently exciting Yi regressors to have λmin

{∑M
i=1 Y

T
i Yi

}
≥ λ1.

Moreover, Assumption 6 says that for all time after
∑M

i=1 Y
T
i Yi

becomes full rank, then λ3 ≜ λmin {P (t)} > 0, where λmin {·}

and λmax {·} denote the minimum and maximum eigenvalues,
respectively, and In denotes an n × n identity matrix.5 ,6

Remark 3. The sufficient condition in Fan and Yang (2016a,
Lemma 1) requires the summation of the history stack to be
positive for all time (i.e., λmin

{∑M
i=1 Y

T
i Yi

}
> 0 to hold for all t ≥

t0). Hence the history stack needs sufficient initial data such that
it is full rank from t0, which is difficult to ensure. Assumption 6
is less restrictive because it does not restrict the history stack to
be initially filled with data; and therefore λmin

{∑M
i=1 Y

T
i Yi

}
≥ 0

for t ∈ [t0, T1). However, as input–output data is collected online
Assumption 6 indicates that the summation of the history stack
becomes positive definite such that λmin

{∑M
i=1 Y

T
i Yi

}
≥ λ1 > 0

for all t ≥ T1. Unlike Fan and Yang (2016a), this switch in the
minimum eigenvalue of the collected input–output data makes
(11)–(12) a switched system. Theorem 1 shows stability during
both phases of learning.

Provided λmin
{
Γ −1 (t0)

}
> 0, using similar arguments to

Ioannou and Sun (1996, Corollary 4.3.2), Γ can be shown to sat-
isfy Γ Ip ≤ Γ (t) ≤ Γ Ip, where Γ and Γ are positive constants. To
facilitate the subsequent stability analysis, a Lyapunov function
candidate Vθ : Rp

× R≥t0 → R≥0 is defined as

Vθ

(
Θ̃, t

)
=

1
2
Θ̃TΓ −1 (t) Θ̃, (13)

such that
1
2Γ

Θ̃2 ≤ Vθ

(
Θ̃, t

)
≤

1
2Γ

Θ̃2 . (14)

The following analysis shows that for the time interval t ∈ [t0, T1)
the estimation error remains bounded because the matrix P is
positive semi-definite. For t ≥ T1, after a sufficient collection of
input–output pairs {Yi, ∆xi,Fi}

M
i=1 have been collected to satisfy

Assumption 6 and P becomes positive definite, the estimation
error Θ̃ exponentially decays to a smaller bound.

Theorem 1. The adaptive update laws in (11) and (12) ensure that
the estimation error Θ̃ remains bounded for all t ≥ T1 such that

Θ̃ (t)
 ≤

√
Γ

Γ

√
cΘe−λθ2(t−T1) +

4
c2L2

v1
2, (15)

5 It is difficult to ensure the standard PE condition (c.f., Fan & Yang, 2016b;
Lv et al., 2016) is satisfied. However, data selection techniques (cf., Chowdhary
& Johnson, 2011; Kamalapurkar et al., 2017) can be used to help satisfy
Assumption 6, which can be checked with each new data set.
6 The basis Φ and the history stack

∑M
i=1 YT

i Yi consists of bounded terms,
therefore it can be shown that P is upper bounded such that P ≤ PIp1 ∀t ∈ R≥0

with P ∈ R>0 .

where cΘ ≜
Θ̃ (t0)

2 +
4
c2L1

v1
2, cL1 ≜ β

Γ
, cL2 ≜ cL1 +λ3, λθ2 ≜

Γ cL2
2 ,

and supt ∥v1 (t)∥ ≤ v1, where v1 ≜
(kpΦf εf +kCLMYE)

ℓ
.

Proof. Substituting (9) into (10), then integrating yields⎧⎪⎪⎨⎪⎪⎩
P (t) = kp

∫ t
t0
e−ℓ(t−τ)Φf (τ )T Φf (τ ) dτ

+kCL
∫ t
t0
e−ℓ(t−τ)

∑M
i=1 Y

T
i (τ )Yi (τ ) dτ ,

Q (t) = P (t) Θ − v1 (t) ,

(16)

where v1 is defined as

v1 (t) ≜ −

∫ t

t0

e−ℓ(t−τ)kpΦf (τ )T εf (τ ) dτ

−

∫ t

t0

e−ℓ(t−τ)kCL
M∑
i=1

YT
i (τ ) Ei (τ ) dτ . (17)

Substituting (16) into (11) for Q (t) yields

˙̂
Θ (t) = proj

{
Γ (t)

(
P (t) Θ̃ (t) − v1 (t)

)}
. (18)

Using Remark 1, substituting the bounds in for Φf , εf , Yi, Ei into
(17), and integrating yields ∥v1 (t)∥ ≤ v1.

Furthermore, let z (t) be a Filippov solution to the differential
inclusion ż (t) ∈ K [h] (z (t)) for t ∈ R≥t0 , where K [·] is defined
in Filippov (1964) and h : Rp+p2

→ Rp+p2 is defined as h ≜[
˙̃
ΘT , vec

(
Γ̇ −1

)T]T .7 Due to discrete collections of data points in
(10), the time derivative of (13) exists almost everywhere (a.e.),
i.e., for almost all t ∈ Rt0 , and V̇θ (z)

a.e.
∈

˙̃Vθ (z), where ˙̃Vθ (z) is the
generalized time-derivative of (13) along the Filippov trajectories
of ż (t) = K [h] (z (t)) (Paden & Sastry, 1987). Using the calculus
of K [·], substituting (12) and (18), using the fact that P ≥ 0 for
t ∈ [t0, T1) and bounding yields V̇θ

(
Θ̃, t

) a.e.
≤ −

cL1Γ

2 Vθ

(
Θ̃, t

)
+

v1
2

cL1
.

Since the set of discontinuities is countable, then V̇θ

(
Θ̃, t

)
and

Vθ

(
Θ̃, t

)
are Lebesgue integrable over t ∈ [t0, T1) such that

Vθ

(
Θ̃ (t) , t

)
≤ Vθ

(
Θ̃ (t0) , t0

)
e−λθ1(t−t0)

+
(
1 − e−λθ1(t−t0)

) 2
Γ c2L1

v1
2, (19)

where λθ1 ≜
cL1Γ

2 . Since λmin

{∑M
i=1 Y

T
i Yi

}
≥ 0 for t ∈ [t0, T1), us-

ing (14) in (19), ∀t ∈ [t0, T1)
Θ̃ (t)

 ≤

√
Γ
Γ

(Θ̃ (t0)
+ 2 v1

cL1

)
.

The matrix P depends on the collection of input–output data
and the filtered basis Φf ; hence, after sufficient data pairs
{Yi, ∆xi,Fi}

M
i=1 have been collected to satisfy Assumption 6, a

similar argument as Ioannou and Sun (1996, Corollary 4.3.2) can
be used to conclude that P > 0 ∀t ≥ T1. Using the calculus of K
on the time derivative of (13), substituting (12) and (18), using
Assumption 6 and bounding yields

V̇θ

(
Θ̃ (t) , t

) a.e.
≤ −

cL2
2

Θ̃2 +
Θ̃ v1. (20)

Completing the squares, using (14), and since V̇θ

(
Θ̃, t

)
and

Vθ

(
Θ̃, t

)
are Lebesgue integrable over t ∈ R≥T1

Vθ

(
Θ̃ (t) , t

)
≤ Vθ

(
Θ̃ (T1) , T1

)
e−λθ2(t−T1)

+
(
1 − e−λθ2(t−T1)

) 2
Γ c2L2

v1
2,

7 The projection algorithm is omitted from the stability analysis for ease of
exposition and without loss of generality (cf., Dixon et al., 2003).
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where Vθ

(
Θ̃ (T1) , T1

)
≤ Vθ

(
Θ̃ (t0) , t0

)
+

2
Γ c2L1

v1
2.8 Using (14)

results in (15).9 ,10

3.2. Value function approximation

The solution to (6) is the value function V ∗, which is unknown.
However, using recent developments in ADP, computationally ef-
ficient state-following (StaF) kernels can be used to approximate
the value function. Based on the StaF method in Kamalapurkar,
Rosenfeld et al. (2016), let Br (x) ⊆ RL be a compact set with
y ∈ Br (x) and c (x) ∈ Br (x), where c : χ → χ L are centers around
the current state x ∈ χ . Adding and subtracting a known positive
definite function S : Rn

→ R≥0, using StaF kernels centered at x,
the optimal value function can be represented as

V ∗ (y) = S (y) + W (x)T σ (y, c (x)) + ε (x, y) , (21)

where ε : χ → R is the continuously differentiable bounded
function approximation error, W : χ → RL is a continuously
differentiable ideal StaF weight function, and σ : χ × χ L

→ RL is
a bounded vector of continuously differentiable nonlinear kernels
(Kamalapurkar, Rosenfeld et al., 2016).

Property 1. The selected function S satisfies S (0) = 0 and ∇S (0) =

0. Furthermore, there exist known constants S, ∇S, cs ∈ R>0 such
that supx∈χ,y∈Br (x) |S (y)| ≤ S, supx∈χ,y∈Br (x) ∥∇S (y)∥ ≤ ∇S, and
∥∇S (y)∥ ≤ cs ∥y∥.11

Using approximations for the ideal weight W , an approximate
policy û : Rn

× Rn
× Rm

× RL
→ Rm and approximate value

function V̂ : Rn
× Rn

× RL
→ R are expressed as

û
(
y, x, Ŵa, Ŵ2

)
= −αTanh

(R−1

2α
ˆ̄D
(
y, x, Ŵa, Ŵ2

))
,

V̂
(
y, x, Ŵc

)
= S (y) + Ŵ T

c σ (y, c (x)) , (22)

where ˆ̄D
(
y, x, Ŵa, Ŵ2

)
≜ ĜT

(
y, Ŵ2

)(
∇σ T (y, c (x)) Ŵa + ∇ST

(y)
)
, Ĝ

(
y, Ŵ2

)
≜ g (y) Λ

(
Ŵ T

2 φ2 (y)
)
, and µ̂a

(
y, Ŵ2

)
≜

Ŵ T
2 φ2 (y) denotes the approximated fault.12 In (22), Ŵc, Ŵa ∈

RL denote the critic and actor weight estimates, respectively.
Using the system parameter approximations Θ̂ , substituting in
the approximate value function V̂ and control policy û into (4)
results in a residual error δ : RL

×RL
×Rn

×Rn
×Rm

→ R called
the Bellman Error (BE) computed as

δ

(
y, x, Ŵc, Ŵa, Θ̂

)
= r

(
y, û

(
y, x, Ŵa, Ŵ2

))
+Ŵ T

c (t) ω

(
y, x, Ŵa, Θ̂

)
+ ωS

(
y, x, Ŵa, Θ̂

)
, (23)

8 The bound on Vθ can be made smaller by increasing the number of neurons
to decrease εs , hence decreasing εf which decreases v1 . Furthermore, if there
is no function approximation error, i.e. εsys (x) = 0, then it can be shown thatΘ̃ (t)

 ≤ cEe−
λθ2
2 t
Θ̃ (t0)

, where cE ≜

√
Γ

Γ
e

λθ2
2 T1 .

9 Although a switch occurs at the time instance t = T1 , the bound is valid for
all time before and after T1 , the Lyapunov function in (13) serves as a common
Lyapunov function.
10 Although the parameter estimation and control policy u are coupled in
(10), the stability analysis for the update laws in (11) and (12) only require
Assumption 5. Moreover, the control policy u is bounded because of the
hyperbolic tangent in (5) and (22). Hence, the stability analysis for system
identification can be done independently of the stability analysis of the system
in (1) and policy u.
11 Since S is user-defined, it can be selected to satisfy Property 1. An example
of a function S which satisfies Property 1 is xT x

1+xT x
.

12 The notation ∇W (y, x, . . .) denotes the partial derivative of W with respect
to the first argument.

where ω

(
y, x, Ŵa, Θ̂

)
≜ ∇σ (y, c (x))

(
f o (y)+Φ

(
y, û

(
y, x, Ŵa,

Ŵ2
))

Θ̂

)
, and ωS

(
y, x, Ŵa, Θ̂

)
≜ ∇S (y)

(
f o (y)+Φ

(
y, û

(
y, x,

Ŵa, Ŵ2
))

Θ̂

)
.

Since the optimal HJB in (6) is equal to zero for all x ∈ Rn and
t ∈ R≥t0 , it is desired to find a set of weights Ŵc and Ŵa such
that the BE is driven to zero.

Remark 4. Under the continuity assumptions on the dynam-
ics and the local cost, the admissibility restrictions detailed in
Assumption 3, and under the smoothness condition in
Assumption 4, the optimal value function can be shown to be the
unique positive definite solution of the HJB equation. However,
the HJB equation has many other solutions in addition to the
unique positive definite solution. Thus, minimization of the BE
does not typically guarantee that the resulting weight estimates
that approximate the positive definite solution tend to the ideal
weights corresponding to this unique positive definite solution,
as opposed to tending to the ideal weights corresponding to the
other solutions of the HJB that are not positive definite. In this
paper, approximation of the positive definite solution is implicitly
guaranteed via appropriate selection of initial weight estimates
and Lyapunov based update laws that guarantee stability of the
closed-loop, see Remark 7.

Remark 5. In the preliminary result in Deptula et al. (2018), a
term is only added in the approximate control policy û, making
the policy deviate from the optimal policy. In this work, a positive
definite function S is added and subtracted in (21) when approx-
imating the optimal value function; hence the candidate function
S serves as a pseudo-value function, and is also contained in the
optimal policy u∗.

3.3. Online learning

To implement the approximations online, at each given time
instance t , the controller in (22) and BE in (23) are evaluated as
u (t) and δt (t), respectively, with y = x (t). Furthermore, leverag-
ing simulation of experience for BE extrapolation (Kamalapurkar
et al., 2018, Chapter 7), off-policy trajectories

{
xi : Rn

× R≥0 →

Rn}Ni=1 are selected such that xi (x (t) , t) ∈ Br (x), then (22) and
(23) are evaluated with y = xi (x (t) , t) to give an extrapolated
control policy ûi : Rm

→ Rm and BE δi : R≥0 → R (Kamalapurkar,
Rosenfeld et al., 2016).13 To improve the critic weight estimate,
recursive least-squares update laws are designed as

˙̂Wc (t) = −Γc (t)
(kc1ω (t)

ρ2 (t)
δt (t) +

kc2
N

N∑
i=1

ωi (t)
ρ2
i (t)

δi (t)
)
, (24)

Γ̇c (t) = βcΓc (t) − Γc (t)
kc1ω (t) ωT (t)

ρ2 (t)
Γc (t)

− Γc (t)
kc2
N

N∑
i=1

ωi (t) ωT
i (t)

ρ2
i (t)

Γc (t) , (25)

with initial conditions Ŵc (t0) = Ŵc0 and Γc (t0) = Γc0. In
(24)–(25) kc1, kc2 ∈ R≥0 denote learning gains, βc ∈ R>0 denotes
the forgetting factor, ρ (t) ≜ 1 + γω (t)T ω (t), and γ ∈ R>0

13 For notational brevity, the notation Ci (· · ·) is defined as Ci (· · ·) ≜
C (xi (x (t) , t) , . . .), i.e. the function C evaluated at the extrapolated policies

xi (x (t) , t) ∈ Br (x), and the notation C (t) is defined as C (t) ≜ C (x (t) , . . .).
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is a constant normalization gain. The actor weight estimate is
improved via the designed update law
˙̂Wa (t) = −Ka

(
ka1
(
Ŵa (t) − Ŵc (t)

)
+ ka2Ŵa (t)

)
− KaAT (t) Ŵc (t) , (26)

where A (t) ≜
kc1ω(t)
ρ2(t)

GT
a (t) +

kc2
N

∑N
i=1

ωi(t)
ρ2
i (t)

GT
ai (t), Ga (t) ≜

α∇σ (x (t)) Ĝ
(
x (t) , Ŵ2 (t)

)(
Tanh

(
1
εd

ˆ̄D (t)
)

− Tanh
(

R−1

2α
ˆ̄D (t)

))
,

Ka ∈ RL×L is a positive definite gain matrix, ka1, ka2 ∈ R≥0 are
learning gains, and εd ∈ R>0 is a small user defined constant.14

Furthermore, the states x and xi, and hence ω and ωi, are
assumed to satisfy the following inequalities.

Assumption 7. There exist constants T2 ∈ R>0 and c1, c2, c3 ∈

R≥0 such that

c1IL ≤ inf
t∈R≥t0

1
N

N∑
i=1

ωi (t) ωT
i (t)

ρ2
i (t)

,

c2IL ≤

∫ t+T2

t

(
1
N

N∑
i=1

ωi (τ ) ωT
i (τ )

ρ2
i (τ )

)
dτ , ∀t ∈ R≥t0 ,

c3IL ≤

∫ t+T2

t

(
ω (τ) ωT (τ )

ρ2 (τ )

)
dτ , ∀t ∈ R≥t0 ,

where at least one of c1, c2, or c3 is strictly positive (Kamala-
purkar, Rosenfeld et al., 2016).

Provided λmin
{
Γ −1
c

}
> 0, using a similar argument to Ioannou

and Sun (1996, Corollary 4.3.2), the update law in (25) along with
Assumption 7 ensure the least squares gain matrix Γc satisfies
Γ c IL ≤ Γc ≤ Γ c IL, where Γ c, Γ c are bounds positive bounds
(Kamalapurkar, Rosenfeld et al., 2016).

4. Stability analysis

In the following, a Lyapunov-based stability analysis is per-
formed to study the behavior of the closed-loop system. Further-
more, time dependence is suppressed for notational brevity. To
facilitate the analysis, the weight estimate errors are defined as
W̃c ≜ W −Ŵc and W̃a ≜ W −Ŵa, and ∥(·)∥ ≜ supζ∈Bξ

∥(·)∥ where
Bξ ⊂ χ × RL

× RL
× Rp is a compact set containing the origin.

Let Z ≜
[
xT , Θ̃T , W̃ T

c , W̃ T
a

]T
and consider the positive definite

candidate Lyapunov function VL (Z, t) : Rn+2L+p
× R≥t0 → R

defined as VL (Z, t) ≜ V ∗ (x) +
1
2W̃

T
c Γ −1

c (t) W̃c +
1
2W̃

T
a K

−1
a W̃a +

Vθ

(
Θ̃, t

)
, such that ν l (∥Z∥) ≤ V (Z, t) ≤ ν l (∥Z∥) for class K

functions ν l, ν l : R≥0 → R≥0, for all t ∈ R≥t0 and Z ∈ Rn+2L+p1

(Khalil, 2002, Lemma 4.3).

Theorem 2. Provided Assumptions 2–7 are satisfied, and λmin {H} >

0,
√

ι
κ

< ν−1
l (ν l (ξ)), where

H ≜

⎡⎢⎢⎢⎢⎣
q
4 −

ϕθx
2 −

ϕcx
2 −

ϕac
2

−
ϕθx
2

cL1
16 −

ϕcθ
2 0

−
ϕcx
2 −

ϕcθ
2

kc2c
4 −

ϕac
2

−
ϕac
2 0 −

ϕac
2

(
ka1+ka2

4 − ϕaa

)
⎤⎥⎥⎥⎥⎦ with ι, κ, ϕθx, ϕcx,

ϕac, ϕcθ , ϕaa ∈ R>0 defined in the Appendix and c ≜ βc
2kc2Γ c

+

c1
2 , then the approximate policy u (t), system state, and weight

14 If α is defined as α ≜ diag {α1, . . . , αm} then Ga (t) can be redefined as
Ga (t) ≜ ∇σ (x (t)) Ĝ

(
x (t) , Ŵ2 (t)

)
α

(
Tanh

(
1
εd

ˆ̄D (t)
)

− Tanh
(

α−1R−1

2
ˆ̄D (t)

))
.

approximation errors Θ̃ , W̃c , and W̃a remain uniformly ultimately
bounded.

Proof. Let zL (t) be a Filippov solution to the differential inclusion
żL (t) ∈ K [hL] (zL (t)) for t ∈ R≥t0 and hL : Rn+p+2L+p2+L2

→

Rn+p+2L+p2+L2 is defined as hL ≜
[
ŻT , vec

(
Γ̇ −1

)T
, vec

(
Γ̇ −1
c

)T]T .
Due to discrete collections of data points in (10) and
(24)–(26), the time derivative of VL exists almost everywhere and
V̇L (zL)

a.e.
∈

˙̃VL (zL), where ˙̃VL (z) is the generalized time-derivative
of (13) along the Filippov trajectories of żL (t) = K [hL] (zL (t))
(Paden & Sastry, 1987). Using the calculus of K [·] and V̇ ∗

=

∇V ∗ (F (x) + G (x) u) yields ˙̃VL ⊆ ∇V ∗K [F (x) + G (x) u]+W̃ T
c Γ −1

c

K
[
Ẇ −

˙̂Wc

]
−

1
2W̃

T
c Γ −1

c K
[
Γ̇c
]
Γ −1
c W̃c + W̃ T

a K
−1
a K

[
Ẇ −

˙̂Wa

]
−

Θ̃TΓ −1K
[

˙̂
Θ

]
−

1
2 Θ̃

TΓ −1K
[
Γ̇
]
Γ −1Θ̃ .

Substituting Ẇ = ∇W (F (x) + G (x) u), (4), (11), (12), and
(24)–(26) along with the analytical representations of the BEs
given by δt = −ωT W̃c + GT

aW̃a + ∆2 and δi = −ωT
i W̃c + GT

aiW̃a +

∆2i,15 then using Young’s Inequality and completing with squares,
the Lyapunov derivative can be bounded as V̇L

a.e.
≤ −κ ∥Z∥

2

−ZT
L HZL−κ ∥Z∥

2
+ι, where ZL ≜

[
∥x∥

Θ̃ W̃c

 W̃a

]T ∈

R4. Provided the sufficient condition λmin {H} > 0 is met then
V̇L

a.e.
≤ −κ ∥Z∥

2 , ∀ ∥Z∥ ≥
√

ι
κ
, for all Z ∈ Bξ .

Hence, VL is a common Lyapunov function, and therefore,
Khalil (2002, Theorem 4.18) is invoked to conclude that the
concatenated state Z is uniformly ultimately bounded such that
lim supt→∞ ∥Z (t)∥ ≤ ν−1

l

(
ν l
(√

ι
κ

))
. Since, Z ∈ L∞, it follows

that Θ̃, W̃c, W̃a, x ∈ L∞, and therefore u ∈ L∞. Furthermore,
since W is a continuous function of x, it follows that W (x) ∈

L∞.16 ,17

Remark 6. The sufficient condition λmin {H} > 0 can be satisfied
by increasing the gain ka2, and selecting Qx (x), the penalty weight
R, and update gain Ka with large minimum eigenvalues. For
system and fault estimation, increasing the number of neurons
p1 and p2 can decrease the function approximation errors ε1 (x)
and ε2 (x), and increasing the size of the history stack can result
in a larger minimum eigenvalue, i.e. λmin

{∑M
i=1 Y

T
i Yi

}
. Therefore,

selecting extrapolation points xi (x (t) , t) such that c is large,
increasing the number of neurons for parameter estimations,
i.e. p1 ≫ n, p2 ≫ m, and selecting M ≫ p will ensure the
sufficient condition is satisfied.

Remark 7. Since the Lyapunov analysis results in local uniform
ultimate boundedness, the convergence results are conditioned
on selection of an initial guess for the weights that is close
to the ideal weights which correspond to the unique positive
definite solution of the HJB as opposed to the ideal weights
that correspond to other solutions which are not positive defi-
nite. Appropriate selection of an initial guess and the developed

15 The terms ∆2 and ∆2i are defined as ∆2 ≜ −∆ΦΦsΘ̃ + ∆aW̃a + ∇S∆S +

∆f + ∆ and ∆2i ≜ −∆ΦiΦsiΘ̃ + ∆aiW̃a + ∇Si∆Si + ∆fi + ∆i , where Φs ≜[(
φT
1 (x) ⊗ In

)
,

(
φT
2 (x) ⊗

(
−αg (x) Λ

(
sgn

(
ˆD
))))]

.
16 Using Assumptions 2 and 5, the terms ∆a , ∆S , and ∆f are bounded as

∥∆a∥ ≤ ∆a , ∥∆S∥ ≤ ∆S , for ∆a, ∆S ∈ R>0 , and
∆f

 ≤
(σ T∇W + ∇ε

)Lf ∥x∥,

respectively. The functions ∆Φ , ∆Φi, ∆, ∆i : Rn
→ R are uniformly bounded

over χ such that the residual bounds ∥∆Φ∥, ∥∆Φi∥ , ∥∆∥, ∥∆i∥ decrease with
decreasing ∥∇S∥, ∥∇W∥, ∥ε∥, and ∥εi∥.
17 Using Assumption 2 and the Mean Value Theorem between f (0) and f (x)
for x ∈ χ yields ∥f (x)∥ ≤ Lf ∥x∥, where Lf ∈ R>0 .
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Lyapunov-based stability-preserving update laws implicitly en-
sure that minimization of the BE results in approximation of the
positive definite solution of the HJB equation as desired.

5. Simulation

To demonstrate the effectiveness of the developed method,
two simulations for a two-state nonlinear system are provided.
The control-affine system in (1) is considered with f (x) =[
−x1 + x2,

x2(cos(2x1)+2)2−x1−x2
2

]T
and

g (x) =
[
0, cos (2x1) + 2

]T .
In the first simulation, a constant reduced effectiveness fault

is considered such that µa (x) = 0.5. Moreover, the drift dy-
namics are assumed to be linear-in-the-parameters (LP) and
an exact basis for system identification is provided. The ba-
sis to estimate f (x) the basis φ1 (x) is selected as φ1 (x) =[
x1, x2, x2

(
1 − (cos (2x1) + 2)2

)]T
with f o (x) = 02×1, while the

basis to estimate µ (x) is selected as φ2 (x) = [1, (ln (12×1+

exp (x)))T
]T
. The StaF basis is selected as σ (x, c (x)) = [σ1 (x,

c1 (x)) , σ2 (x, c2 (x)) , σ3 (x, c3 (x))]T , where σi (x, ci (x)) = xT

(x + 0.7υd (x) di (x)), i = 1, 2, 3, υd (x) ≜
(

xT x+1×10−5

1+xT x

)
, and the

offsets di are selected as d1 (x) = [0, 1]T , d2 (x) =

[√
3
2 , − 1

2

]T
, and

d2 (x) =

[
−

√
3
2 , − 1

2

]T
. For BE extrapolation, a single point is se-

lected at random from a uniform distribution over a
(

xT x+1×10−4

1+0.5xT x

)
×

(
xT x+1×10−4

1+0.5xT x

)
square centered at the current state x (t). The

initial conditions and gains conditions are shown in Table 1.18
Fig. 1 shows the developed method regulates the system state

and input successfully to the origin for the first simulation. Specif-
ically, Fig. 1a and b show that the states and applied control
policy of the system converge to the origin. Fig. 1c shows that
the estimates of the unknown parameters, represented by Ŵ1 (t),

converge to the true values W1 =

[
−1, 1, 0

−0.5, 0, −0.5

]T
, which

are known since the drift dynamics f (x) were modeled using
a known basis, i.e. ε1 (x) = 02×1. In Fig. 1d, the fault estimate
µ̂a converges to actual fault µa = 0.5; even though the fault
is estimated using an uncertain basis. Fig. 1e and f show that
the critic and actor weight estimates remain bounded. Since, the
optimal weights W (x) are unknown, the estimates cannot be
compared to their ideal values.

In the second simulation, a state-varying reduced effectiveness
fault is considered as µa (x) = 0.5 + 0.2

(
1 −

(
max

{
tanh

(
x21
)
,

tanh (x2)})2
)
sin (x1). The drift dynamics are assumed to be LP;

hence, an exact basis for system identification of f (x) is provided.
The basis to estimate f (x) is selected the same as in the first
simulation, while to estimate the fault µa (x), the basis φ2 (x) =[
1,
(
ln
(
14×1 + exp

(
V T

µ x̄
)))T]T is selected, where x̄ ≜

[
1, xT

]T and

Vµ = U [0.25, 2] 13×4. The rest of the parameters, apart from the
dimension of θ̂ (t) changing from a 7 × 1 to a 11 × 1 vector,
remain the same as in the first simulation.

The results for the second simulation considering a state-
varying fault are shown in Fig. 2. Similar to the first simulation,
the system state and control policy converge to the origin, as
shown in Fig. 2a and b, respectively. Fig. 2c shows that the drift

18 The notation U [a, b] × 1n×m denotes a n × m−dimensional matrix with
entries selected from a uniform distribution on [a, b], and 1n×m denotes a n×m
matrix of ones.

dynamic parameter estimates converge to close to the true val-
ues, which are represented by the dashed green lines. Moreover,
Fig. 2d shows that the fault estimate converge to the true fault at
around 4.5 s. Finally, similar to the first simulation, the actor and
critic weight estimates are shown to remain bounded in Fig. 2e
and f but cannot be compared to the ideal values since they are
not known.

To show the advantage of the developed approach in this pa-
per compared to the preliminary results in Deptula et al. (2018),
a comparison of the control policy, system states, and total cost
is performed. To provide a fair comparison, the gains are kept
the same for each method. The results are shown in Fig. 3 for
both the system subject to a constant fault as in the first sim-
ulation and a state-dependent fault as in the second simulation.
Shown in Fig. 3a and b, the developed result provides a smaller
control effort compared to the preliminary result. The developed
method also regulates the system to the origin faster than the
preliminary approach in Deptula et al. (2018), especially for the
constant fault case, as shown by Fig. 3c and d. Moreover, because
a smaller control effort is used and the system state is regulated
to the origin faster, the total cost is smaller when implementing
the developed method compared to the result in Deptula et al.
(2018). In Deptula et al. (2018), a robustness term was added
to the approximate controller. This term caused the controller
deviate from optimality, whereas in the developed method in this
paper, the approximate controller in (22) closely resembles the
approximate form of the control policy in (5) after substituting
in (21). This, and because the developed method in this paper
considers state-varying faults, results in the developed method
to better handle both the static and state-varying scenarios.

6. Conclusion

An infinite horizon regulation problem for a system with un-
known drift dynamics and control effectiveness fault is investi-
gated. An integral data-based system parameter estimator which
relaxes the PE condition is developed to simultaneously estimate
the drift dynamics and unknown control effectiveness pertur-
bation. Furthermore, the problem is posed as an optimal regu-
lation problem and a local StaF-based ADP method is used to
approximate the optimal value function weights. Uniformly ul-
timately bounded convergence is shown via a Lyapunov stability
analysis for the closed-loop system. Simulation results for a two-
state nonlinear system are included and compared to preliminary
results to illustrate the performance of the developed method.

The developed method focused on a state-varying control
effectiveness fault with unknown drift dynamics; however, many
systems experience faults that occur at random times and are
subject to state-constraints, which can cause potentially unsafe
systems. In addition, many systems experience biased faults
which degrade controller performance. These different scenarios
serve as motivation to possibly investigate the development of
a safe ADP approach such as Yang et al. (2019). A topic of
future research would be to investigate an ADP approach which
considers randomly occurring faults and biased input faults in
systems that may be subject to state constraints.
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Fig. 1. The system trajectory (a), approximate optimal input (b), estimates of the unknown parameters (c) and fault (d) using the update laws (11) and
(12), and estimates of the critic (e) and actor (f) weights using the update laws (24)–(26), respectively. The constant fault, shown in Fig. 1d, is estimated as
µ̂a (t) = Ŵ T

2 (t) φ2 (x (t)) and converges to the true fault µa (x) shown by the dashed green line.

Fig. 2. The system trajectory (a), approximate optimal input (b), estimates of the unknown parameters (c) and fault (d) using the update laws (11) and (12), and
estimates of the critic (e) and actor (f) weights using the update laws (24)–(26), respectively. The estimate for state-varying fault, shown in Fig. 2d, is estimated as
µ̂a (t) = Ŵ T

2 (t) φ2 (x (t)) and converges to the true fault shown by the dashed green line.

Fig. 3. The comparison of the applied control policy u (t) (Fig. 3a and b), system state x (t) (Fig. 3c and d) and total cost (Fig. 3e and f) between the designed method
and the method in Deptula et al. (2018). Fig. 3a, c, and e represent the results for the constant fault while Fig. 3b, d, and f represent the results for the state-varying
fault. In each figure, the blue squares represent the developed controller in this paper, while the green circles represent the controller in the preliminary result
in Deptula et al. (2018).
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Table 1
Initial conditions and parameters for the first simulation.
Initial conditions at t0 = 0

x (0) = [1.0, −1.0]T , Ŵc (0) = U [2, 3] × 13×1, Ŵa (0) = 0.7 × Ŵc (0) ,

Γc (0) = 10I3, θ̂ (0) = U [0.25, 1] × 19×1, Γ (0) = 50I9.

Penalizing parameters

Qx (x) = xT qxx, qx = 1.25I2, R = r̄ = 0.2, α = 2, S (x) =
0.1xT x
1+xT x

.

Gains and parameters for ADP update laws

kc1 = 0.001, kc2 = 0.9, ka1 = 0.75, ka2 = 0.02, γ1 = 0.05, βc = 0.005, Ka = I5, εd = 0.02, N = 1.

Gains and parameters for system identification

M = 30, T = 0.01, ℓ = 1, kf = 0.1, kp = 0.0001, kCL = 10, β = 10.

Appendix. Auxiliary terms

To facilitate the analysis in Section 4, κ ∈ R>0 is defined as κ ≜

min
{

q
4 ,

cL1
16 ,

kc2c
4 ,

(ka1+ka2)

4

}
and the constants ϕθx, ϕcx, ϕac, ϕcθ ,

ϕaa ∈ R>0 are defined as ϕθx ≜
∇S + W T∇σ + σ T∇W + ∇ε


ϕgcs, ϕcθ ≜ kc1 3

√
3

16
√

γ
∥∆Φ∥∥Φs∥ + kc2 1

N

∑N
i=1

3
√
3

16
√

γ
∥∆Φi∥∥Φsi∥,

ϕac ≜ ka1 + kc1 3
√
3

16
√

γ
∥∆a∥ + kc2 1

N

∑N
i=1

3
√
3

16
√

γ
∥∆ai∥ +

1
Γ c

∥∇W∥ϕgW 2∥∇σ∥, ϕcx ≜ 1
Γ c

∥∇W∥Lf + kc1 3
√
3

16
√

γ

(σ T∇W + ∇ε
)

Lf + kc1 3
√
3

16
√

γ
∆S +

1
Γ c

∥∇W∥ϕgW 2, ϕac ≜ 1
λmin(Ka)

∥∇W∥

(
Lf +

ϕgW 2cS + kc1 3
√
3

16
√

γ

(
α 1

εd
+

1
2λmin(R)

)
∥W∥W

2
2φ

2
2g

2cs
)
, ϕaa ≜(

1
λmin(Ka)

∥∇W∥ϕgW 2 ∥∇σ∥+
3
√
3

16
√

γ

(
α 1

εd
+

1
2λmin(R)

)
∥W∥W

2
2φ

2
2g

2(
kc1∥∇σ∥

2
+

kc2
N

∑N
i=1 ∥∇σi∥

2))
, where ϕg ≜ gµa

1
2

1
λmin(R)φ2g .

Furthermore, the constant ι ∈ R>0 is defined as ι ≜ ι∆+
ι2x
q +

4ι2
θ

cL1
+

ι2c
kc2c

+
ι2a

(ka1+ka2)
where ιa ≜ ka2∥W∥+

3
√
3

16
√

γ

(
α 1

εd
+

1
2λmin(R)

)
W

2
2φ

2
2

g2
(
kc1∥∇σ∥

2
∥W∥ +

kc2
N

∑N
i=1

(
∥∇σi∥

2
∥W∥ + cs ∥xi∥

))
∥W∥ +

1
λmin(Ka)

∥∇W∥ϕgW 2∥∇σ∥∥W∥ +
∇S + W T∇σ + σ T∇W + ∇ε


ϕgW 2∥∇σ∥, ιc ≜ 1

Γ c
∥∇W∥ϕgW 2∥∇σ∥∥W∥ + kc1 3

√
3

16
√

γ

∥∆∥ + kc2 1
N
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i=1

3
√
3

16
√

γ

(
∇S∥∆Si∥ +

∆fi
+ ∥∆i∥

)
, ιθ ≜∇S + W T∇σ + σ T∇W + ∇ε

ϕg∥∇σ∥∥W∥,

ιx ≜
∇S + W T∇σ + σ T∇W + ∇ε

gµa
1
2

1
λmin(R)ε2gcs, and ι∆ ≜

v1
2

cL1
+

∥∇S+W T∇σ+σ T∇W+∇ε∥gµa
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×
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2 φ2 + ε2
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)
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.
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