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Abstract—The problem of prescribing, reducing, or controlling
the interaction forces between a robot and the environment during
a noncontact-to-contact transition is intriguing because large in-
teraction forces can damage both the robot and/or the environment
or lead to degraded performance or instabilities. In this paper, we
consider a two-link planar robotic arm that transitions from free
motion to contact with an unactuated mass–spring system. The ob-
jective is to control a robot from a noncontact initial condition to a
desired (in-contact) position so that the mass–spring system is reg-
ulated to a desired compressed state. The feedback elements for
the controller in this paper are contained inside hyperbolic tan-
gent functions as a means to limit the impact forces resulting from
large initial conditions as the robot transitions from a noncontact to
contact state. The main challenge of this work is that the use of sat-
urated feedback does not allow some coupling terms to be canceled
in the stability analysis, resulting in the need to develop state-de-
pendent upper bounds that reduce the stability to a semiglobal re-
sult. New control development, closed-loop error systems, and Lya-
punov-based stability analysis arguments are used to conclude the
result. It is interesting to note that only the position and velocity
terms are required for the proposed controller (i.e., the controller
does not depend on measuring the impact force and the accelera-
tion terms). Experimental results that successfully demonstrate the
control objective are provided.

Index Terms—Actuator constraint, adaptive control, Lyapunov
method.

I. INTRODUCTION

T HE PROBLEM of controlling a robot during a noncon-
tact-to-contact transition has been a historically chal-

lenging problem that is practically motivated by applications
that require a robotic system to interact with the environment.
The control challenge is due, in part, to the impact effects that
result in possible high stress, rapid dissipation of energy, and
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fast acceleration and deceleration as stated in [1]. Over the last
two decades, results such as [2]–[44] have focused on control
designs that can be applied during the noncontact-to-contact
transition. One main theme in these results is the desire to pre-
scribe, reduce, or control the interaction forces during or after
the robot impact with the environment such as [2]–[25] because
large interaction forces can damage both the robot and/or the
environment or lead to degraded performance or instabilities.

Among [2]–[25], two main approaches have been exploited to
accommodate for the noncontact-to-contact transition. The first
approach is to exploit the kinematic redundancy of the manipu-
lator to reduce the impact force [4]–[6]. The second mainstream
approach is to exploit a discontinuous controller that switches
based on the different phases of the dynamics (i.e., noncon-
tact, robot impact transition, and in-contact coupled manipu-
lator and environment) as in [7]–[18]. Typically, these discontin-
uous controllers consist of a velocity controller in the precontact
phase that switches to a force controller during the in-contact
phase. Motivation exists to explore alternative methods because
kinematic redundancy is not always possible, and discontinuous
controllers require infinite control frequency (i.e., exhibit chat-
tering) or yield degraded stability results (i.e., uniformly ulti-
mately bounded).

In this paper, we consider a two-link planar robotic arm
that transitions from free motion to contact with an unactuated
mass–spring system. The robot/mass–spring-system collision is
modeled as a differentiable impact as in recent work in [1] and
[26] and in our previous efforts in [27]–[30]. As in our previous
efforts in [27] and [28], the objective is to control a robot from
a noncontact initial condition to a desired (in-contact) position
so that the mass–spring system is regulated to a desired com-
pressed state. The focus of our previous work was to develop a
continuous exact model knowledge [27] and adaptive controller
[28] that could achieve the objective despite the impact colli-
sion disturbance. When these results were implemented in the
presence of large initial conditions, a violent impact between
the robot and the mass–spring system resulted. In fact, the con-
troller was artificially saturated (the saturation effects were not
considered in the stability analysis) to reduce the impact forces
so that the mass deflection would not destroy the capacitance
probe. These results provide the motivation for the current con-
trol development. Specifically, the feedback elements for the
controller in this paper are contained inside hyperbolic tangent
functions as a means to limit the impact forces resulting from
large initial conditions as the robot transitions from noncontact

1063-6536/$26.00 © 2009 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on November 2, 2009 at 09:02 from IEEE Xplore.  Restrictions apply. 



LIANG et al.: CONTROLLER FOR ROBOTIC SYSTEM UNDERGOING NONCONTACT-TO-CONTACT TRANSITION 1331

Fig. 1. MSR system is an academic example of an impact between two dynamic
systems.

to contact. Although saturating the feedback error is an intuitive
solution that has been proposed in previous literature for other
types of robotic systems with limited actuation (e.g., see [45]
and the references within), several new technical challenges
arise due to the impact condition. The main challenge is that
the use of saturated feedback does not allow some coupling
terms to be canceled in the stability analysis, resulting in the
need to develop state-dependent upper bounds that reduce the
stability to a semiglobal result (as compared to the global re-
sults in [27]–[30]). The semiglobal result is problematic in the
current applicative context because certain control terms do not
appear in the closed-loop error system during the noncontact
condition, resulting in a uniformly ultimately bounded result
until the robot makes contact. Hence, the result hinges on new
development within the semiglobal stability proof for an error
system that is only uniformly ultimately bounded during the
noncontact phase. This problem is exacerbated by the fact that
the Lyapunov function contains radially unbounded hyperbolic
functions of some states that only appear inside saturated
hyperbolic terms in the Lyapunov derivative. New control
development, closed-loop error systems, and Lyapunov-based
stability-analysis arguments are used to conclude the result.
It is interesting to note that only the position and velocity
terms of the mass–spring system and the joint angles and the
angular velocity terms of the planar robotic arm are required
for the proposed controller (i.e., the controller does not depend
on measuring the impact force and the acceleration terms).
Experimental results that successfully demonstrate the control
objective are provided.

II. DYNAMIC MODEL

The subsequent development is motivated by the academic
problem shown in Fig. 1. The dynamic model for the two-link
planar robot shown in Fig. 1 can be expressed in the joint space
as

(1)

where , , and represent the angular
position, velocity, and acceleration of the robot links, re-
spectively, represents the uncertain inertia

matrix, represents the uncertain centripetal
Coriolis effects, represents
uncertain conservative forces (e.g., gravity), and
represents the torque control inputs. The Euclidean posi-
tion of the end point of the second robot link is denoted by

, which can be related to the
joint space through the following kinematic relationship:

(2)

where denotes the manipulator Jacobian. The un-
forced dynamics of the mass–spring system in Fig. 1 are

(3)

where , , and represent the displace-
ment, velocity, and acceleration of the unknown mass ,

represents the initial undisturbed position of the mass,
and represents the unknown stiffness of the spring.

Assumption 1: We assume that and can be
bounded as

(4)

where is a known constant that is determined by the
minimum coordinate of the robot along the -axis and

is a known positive constant. The lower bound assumption
for is based on the geometry of the robot, and the upper
bound assumption for is based on the physical fact that
the mass is attached by the spring to some object and the mass
will not be able to move past that object.

After premultiplying the robot dynamics by the inverse of the
Jacobian transpose and utilizing (2), the dynamics in (1) and (3)
can be rewritten as [27], [28]

(5)

(6)

where denotes the manipulator force.
In (5) and (6), denotes the impact force acting
on the mass that occurs when (see Fig. 1) is
assumed to have the following form [1], [26]

(7)

where represents an unknown positive stiffness con-
stant and is defined as

.
(8)

The dynamic model in (5) exhibits the following properties that
will be utilized in the subsequent analysis.

1) Property 1: The inertia matrix is symmetric, pos-
itive definite, and can be lower and upper bounded as

(9)

where and are positive constants.
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2) Property 2: The following skew–symmetric relationship
is satisfied:

(10)

3) Property 3: The robot dynamics given in (5) can be lin-
early parameterized as

where contains the constant unknown system parame-
ters and denotes the known regression
matrix.

Assumption 2: We assume that the mass of the mass–spring
system can be upper and lower bounded as

where and denote known positive bounding con-
stants. The unknown stiffness constants and are also as-
sumed to be bounded as

(11)

where , , , and denote known positive
bounding constants.

Assumption 3: The subsequent development is based on the
assumption that , , , and are measurable
and that and can be obtained from and .

Remark 1: During the subsequent control development, we
assume that the minimum singular value of is greater
than a known small positive constant , such that

is known a priori, and hence, all kinematic
singularities are always avoided.

Remark 2: To aid the subsequent control design and analysis,
we define the vector as follows:

(12)

where .
4) Property 4: The following inequalities are valid for all

[45]:

(13)

(14)

(15)

III. CONTROL DEVELOPMENT

The subsequent control design is based on integrator back-
stepping methods. A desired trajectory is designed for the robot
(i.e., a virtual control input) to ensure that the robot converges to

and impacts with the mass and to ensure that the robot regulates
the mass to the desired position. Since we cannot directly con-
trol the robot trajectory, a force controller is developed to ensure
that the robot tracks the desired trajectory despite the transition
from free motion to an impact collision and despite uncertain-
ties throughout the mass–spring robot (MSR) system.

A. Control Objective

The control objective is to regulate the states of the
mass–spring system via a two-link planar robot that tran-
sitions from noncontact to contact with the mass–spring
through an impact collision. An additional objective is to
limit the impact force to prevent damage to the robot or the
environment (i.e., the mass–spring system). A regulation error,
denoted by , is defined to quantify this objective as

where and denote
the regulation error for the end point of the second link of the
robot and mass–spring system (see Fig. 1), respectively, and are
defined as

(16)

In (16), denotes the constant known desired position
of the mass, and denotes the
desired position of the end point of the second link of the robot.
The subsequent development is based on the assumption that

, , , and are measurable and that and
can be obtained from and , respectively. To facili-

tate the subsequent control design and stability analysis, filtered
tracking errors, denoted by and , are de-
fined as [47]

(17)

where , , and are positive constant gains and
is an auxiliary filter variable designed as [47]

(18)

where is a positive constant control gain and is
a positive constant filter gain. The filtered tracking error
is introduced to reduce the terms in the Lyapunov analysis (i.e.,

can be used in lieu of including both and in the
stability analysis). The filtered tracking error and the aux-
iliary signal are introduced to eliminate a dependence on
acceleration in the subsequently designed force controller [46].

B. Closed-loop Error System

By taking the time derivative of and utilizing (6),
(7), (16), and (17), the following open-loop error system can be
obtained:

(19)
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In (19), and . To facilitate the
subsequent analysis, the following notation is introduced [47]:

(20)
After using (17) and (18), the expression in (19) can be rewritten
as

(21)

where is an auxiliary term defined as

(22)

The motivation for the introduction of the filter signals
and and the selective grouping of the terms in (22) allow
the development of the following linear inequality (versus a
quadratic inequality):

(23)

where is a positive bounding constant and is
defined as

(24)

That is, the use of hyperbolic functions in the development of
and allow the linear inequality in (23) to be de-

veloped; without the hyperbolic functions, the bound would be
quadratic. Feedback terms in the controller can be used to damp
out terms that are bounded by a linear function of the states
without restricting the domain of the stability result as demon-
strated in the subsequent stability analysis. If the hyperbolic
terms had not been used in the filter structure, the bound in (23)
would have been quadratic, potentially limiting the domain of
the stability result (e.g., a semiglobal stability result).

Based on (21) and the subsequent stability analysis, the de-
sired robot link position is designed as

(25)

In (25), is an appropriate positive constant (i.e., is se-
lected; therefore, the robot will impact the mass–spring system
in the vertical direction), is a positive constant control
gain, and the control gain is defined as

(26)

where is a positive constant nonlinear damping gain.
The parameter estimate in (25) is generated by the
adaptive update law

(27)

In (27), is a positive constant, and denotes a suf-
ficiently smooth projection algorithm [48] utilized to guarantee
that can be bounded as

(28)

where and denote known constant lower and upper
bounds for , respectively.

After substituting (25) into (21), the closed-loop error system
for can be obtained as

(29)

In (29), the parameter estimation error is defined as

The open-loop robot error system can be obtained by taking
the time derivative of and premultiplying by the robot in-
ertia matrix as

(30)

where (5), (16), and (17) were utilized, and

(31)

where denotes a known
regression matrix and denotes an unknown constant
parameter vector. By making substitutions from the dynamic
model and the previous error systems, can be expressed
without a dependence on acceleration terms (see Appendix A).
Based on (30) and the subsequent stability analysis, the robot
force control input is designed as

(32)

where is a positive constant control gain and
is an estimate for generated by the following adaptive update
law:

(33)

In (33), is a positive definite constant diagonal
adaptation gain matrix, and denotes a projection algo-
rithm utilized to guarantee that the th element of can be
bounded as

(34)

where and denote known constant lower and upper
bounds for each element of , respectively.

The closed-loop error system for can be obtained after
substituting (32) into (30) as

(35)

In (35), the parameter estimation error is defined as

(36)
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IV. STABILITY ANALYSIS

Theorem 1: The controller given by (25), (27), (32), and
(33) ensures the semiglobal asymptotic regulation of the MSR
system in the sense that

as

provided that and are selected properly (see Appendix B)
and the following sufficient gain conditions are satisfied:

(37)

(38)

(39)

where and are known positive constants (see
Appendix B) and , , , , , , , , , , ,
and are defined in (4), (9), (11), (17), (18), (25), (26), and
(32), respectively.

Proof: See Appendix B.
Remark 3: The sufficient gain condition in (38) indicates that,

as becomes infinitely large, must also grow infinitely
large. See the classic discussion on this issue given in [33]. In
this result, we only consider contact with surfaces with finite

. In the experimental results for this paper, the actual values
for were selected much lower than the sufficient condition
indicated in (38), as is typical in Lyapunov-based designs.

V. EXPERIMENTAL RESULTS

The testbed shown in Figs. 2 and 3 was developed for the
experimental demonstration of the proposed controller. The
testbed is composed of a mass–spring system and a two-link
planar robot. The body of the mass–spring system includes a
U-shaped aluminum plate (item (8) in Fig. 2) mounted on an
undercarriage with porous carbon air bearings which enables
the undercarriage to glide on an air cushion over a glass-cov-
ered aluminum rail. A steel-core spring (item (1) in Fig. 2)
connects the U-shaped aluminum plate to an aluminum frame,
and a linear variable displacement transducer (LVDT) (item (2)
in Fig. 2) is used to measure the position of the undercarriage
assembly. The impact surface consists of an aluminum plate
connected to the undercarriage assembly through a stiff spring
mechanism (item (7) in Fig. 2). A capacitance probe (item
(3) in Fig. 2) is used to measure the deflection of the stiff
spring mechanism. The two-link planar robot (items (4–6) in
Fig. 2) is made of two aluminum links, mounted on 240.0-
(base link) and 20.0- Nm (second link) direct-drive switched
reluctance motors. The motors are controlled through power
electronics operating in torque control mode. The motor re-
solvers provide rotor-position measurements with a resolution
of 614 400 pulses/revolution, and a standard backward-differ-
ence algorithm is used to determine numerically the angular
velocity from the encoder readings. A Pentium 2.8-GHz PC
operating under QNX hosts the control algorithm, which was
implemented via a custom graphical user interface to facilitate

Fig. 2. Top view of the experimental testbed including the following: (1)
Spring, (2) LVDT, (3) capacitance probe, (4) link1, (5) motor1, (6) link2, (7)
stiff spring mechanism, and (8) mass.

Fig. 3. Side view of the experimental testbed.

real-time graphing, data logging, and the ability to adjust con-
trol gains without recompiling the program. Data acquisition
and control implementation were performed at a frequency of
2.0 kHz using the ServoToGo I/O board.

A. Experiment 1

The first experiment was conducted with the controller pro-
posed in this paper where the control input takes the form in
(32). The initial conditions for the robot coordinates and the
mass–spring position were (in meters)

(40)

The initial velocity of the robot and mass–spring were zero, and
the desired mass–spring position was (in meters)

(41)

That is, the tip of the second link of the robot was initially 176
mm from the desired setpoint and 146 mm from along the
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Fig. 4. Mass–spring and robot errors ���� with (solid line) the controller in (32) and with (dashed line) the controller in [28]. Plot (a) indicates the position error
of the robot tip along the � -axis [i.e., � ���], (b) indicates the position error of the robot tip along the � -axis [i.e., � ���], and (c) indicates the position error
of the mass–spring [i.e., � ���].

-axis (see Fig. 2). Once the initial impact occurs, the robot
is required to depress the spring (item (1) in Fig. 2) to move the
mass of 30 mm along the -axis.

The control gains and , defined as scalars in (17) and
(32), were implemented (with nonconsequential implications to
the stability result) as diagonal gain matrices to provide more
flexibility in the experiment. Specifically, the control gains were
selected as

(42)

The adaptation gains were selected as

(43)

The adaptation gains in (43) are used to enable the adaptive
estimate to be sufficiently changed relative to the large values of
the uncertain parameters in due to the impact stiffness terms.

The mass–spring and robot errors [i.e., ] are shown in
Fig. 4. The peak steady-state position error of the end point of
the second link of the robot along the -axis (i.e., )
and along the -axis (i.e., ) are 0.216 and 0.737 mm,
respectively. The peak steady-state position error of the mass
(i.e., ) is 2.56 m. The relatively large is due
to the mismatch between the estimate value and the real
value in . The relatively large is due to the
inability of the model to capture friction and slipping effects on
the contact surface. In this experiment, a significant friction is
present along the -axis between the robot tip and the contact

Fig. 5. Applied control torques � ���� ���, with controller in (32), for the (a)
base motor and (b) second link motor.

surface due to a large normal spring force applied along the
-axis.

The input control torques [i.e., ] are shown in
Fig. 5. The resulting desired trajectory along the -axis [i.e.,

] is shown in Fig. 6, and the desired trajectory along the
-axis was chosen as m.

B. Experiment 2

The second experiment was conducted with the same adap-
tive controller without saturating the feedback terms [28]

(44)
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Fig. 6. Computed desired robot trajectory � ���.

The initial conditions for the robot and the mass–spring were
chosen to be the same as that in (40). The initial velocity of the
robot and mass–spring were zero, and the desired mass–spring
position was the same as in (41). It was found that, with the
same control gains as in (42) and (43), the impact force was so
large that the aluminum plate was flexed to the point of con-
tact with the capacitance probe. On artificially saturating the
control inputs to the level that the impact force is acceptable,
it was found that the control inputs were not enough to drive the
mass–spring to the desired position. Hence, the control gains
needed to be tuned again to ensure a satisfactory performance.
They were chosen as

The adaptation gains were selected as

The mass–spring and robot errors [i.e., ] are shown in
Fig. 4. The peak steady-state position error of the end point of
the second link of the robot along the -axis (i.e., )
and along the -axis (i.e., ) are 0.376 and 0.075 mm,
respectively. The peak steady-state position error of the mass
(i.e., ) is 5 m.

The computed and actual control inputs which were artifi-
cially saturated are provided in Figs. 7 and 8, respectively.

C. Discussion

Figs. 4, 5, and 7 show that, for the same initial conditions
and comparable steady-state error values, the control input with
the controller in [28] has to be artificially saturated to limit the
forces during impact, whereas no such artificial saturation was
required with the controller in (32). The fact that the saturation

Fig. 7. Computed control torques � ���� ��� for the (a) base motor and (b)
second link motor for the controller in [28].

Fig. 8. (Solid line) Applied control torques � ���� ��� versus (dashed line)
computed control torques for the (a) base motor and (b) second link motor for
the controller in [28].

of the feedback terms of the controller in (32) is included in
the stability analysis is significant because the artificial satura-
tion of the computed torques in Figs. 7 and 8 may lead to insta-
bilities. The tradeoff for saturating the torques is that the con-
troller in [28] exhibits a reduced transient performance despite
the fact that the artificial saturation threshold is below the satu-
ration level of the controller in (32). The improved transient per-
formance of the controller in [28] is due to the feedback gains
multiplied directly by the state, versus the feedback gains mul-
tiplied by saturated trigonometric functions of the state as in
(32). For applications where the initial conditions are minimal
or large impact forces are acceptable, the controller in [28] may
provide the benefit of an improved transient performance; how-
ever, for applications that may have large errors or where impact
forces must be mitigated, the controller in (32) provides the ad-
vantage of limited actuation with proven stability.
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VI. CONCLUSION

In this paper, we consider a two-link planar robotic arm
that transitions from free motion to contact with an unactuated
mass–spring system. An adaptive nonlinear Lyapunov-based
controller with bounded torque input amplitudes is proven to
regulate the states of the system. The feedback elements for the
controller in this paper are contained inside hyperbolic tangent
functions as a means to limit the impact forces resulting from
large initial conditions as the robot transitions from noncon-
tact to contact. The continuous controller yields a semiglobal
asymptotic regulation of the mass–spring and robot links. In
comparison with the previous result [28], where the feedback
terms of the controller were not saturated, the controller in
this paper obtained a considerable reduction in the control
effort while achieving comparable steady-state error values.
Experimental results are provided to illustrate the successful
performance of the controller.

APPENDIX A
EXPRESSION OF

Since is a constant, the subsequent development is only
focused on determining . After using (16), (18), (25), and
(27), the first time derivative of can be determined as

(45)

Based on the fact that the projection algorithm for is de-
signed to be sufficiently smooth [48], the expressions in (27)
and (45) can be used to determine the second time derivative of

as

(46)

After substituting (18) and (19) into (46) for and ,
respectively, and substituting (6) and (7) into (46) for ,
the expression for in the linear parameterization
in (31) can be determined without requiring acceleration mea-
surements.

APPENDIX B
STABILITY ANALYSIS PROOF

In the following proof, a Lyapunov function and its derivative
are provided. The analysis is then separated into two cases: con-
tact and noncontact. For the noncontact case, the stability anal-
ysis indicates that the controller and error signals are bounded
and converge to an arbitrarily small region where contact must
occur. When contact occurs, a Lyapunov analysis is provided,
which illustrates that the MSR system asymptotically converges
to the desired setpoint.

Proof: Let denote the following nonnegative
radially unbounded function (i.e., a Lyapunov function candi-
date):

(47)

where (9) and (14) can be utilized to bound as

(48)

where is defined in (9) and , , and are
defined as

(49)

where denotes the maximum eigenvalue of a ma-
trix and and are the known upper bounds of
and , respectively. After using (10), (15), (17), (18), (26),
(27), (29), (33), and (35), the time derivative of (47) can be de-
termined as

(50)

The expression in (50) will now be examined under two different
scenarios.

Case 1—Noncontact: For this case, the systems are not in
contact , and (50) can be rewritten as

(51)
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Based on (11), (16), and (23), the expression in (51) can be
rewritten as

(52)

After completing the square on the last four lines, (52) can be
expressed as

(53)

where is defined as

provided is selected according to (37). Provided that is
selected according to the sufficient condition in (38), then (4),
(13), (48), and the fact that

(54)

for the noncontact case can be used to rewrite (53) as

(55)

In (55), is a known positive arbitrarily small constant
that is defined as

Provided that the following sufficient condition is satisfied:

(56)

the expression in (55) can be expressed as

(57)

where is a known constant and is defined as

(58)

In (57), can be made arbitrarily small by making large.
Based on (47) and (57), if , then Barbalat’s

lemma can be used to conclude that since is
lower bounded, is negative semidefinite, and can be
shown to be uniformly continuous (UC). As , even-
tually, . While , (47), (48), and
(57) can be used to conclude that , and the sufficient
condition given in (56) can be expressed as

(59)

Provided that , then, eventually,
. Based on (24) and (58), the fact that

can be used to conclude that , , , , and
. Since and from the use of a

projection algorithm, the previous facts can be used to conclude
that . Signal chasing arguments can be used to prove
that the remaining closed-loop signals are also bounded during
the noncontact case provided that (56) is satisfied.

If the initial conditions for are large enough that
, then the condition in (59) is sufficient. How-

ever, if the initial conditions for are inside the region
defined by , then can grow larger until .
Therefore, further development is required to determine how
large can grow so that the sufficient condition in (56) can
be satisfied. When is inside the region defined by , then

(60)

The expression in (60) can be used along with (24), (49), and
(58) to conclude that

(61)

The inequality in (61) can be used along with (48) to rewrite the
sufficient condition in (56) as

(62)

Hence, the final sufficient condition for (56) is given by (39)
where is defined as

That is, provided that , , , and are selected larger than
known constants (that depends on the initial conditions of the
states) according to (37), (38), and (39), all the states converge
to an arbitrarily small neighborhood .

The previous development can be used to conclude that, for
the noncontact case
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and hence

as (63)

Based on (63)

(64)

where is a known positive constant as for the
noncontact case.

Further analysis is required to prove that the manipulator
makes contact with the mass–spring system and to achieve the
control objective. Contact between the manipulator and the
mass–spring system occurs when . Based on
(64), a sufficient condition for contact can be developed as

(65)

After using (25), the sufficient condition in (65) can be ex-
pressed as

(66)

By using (16) and (20) and performing some algebraic manipu-
lations, the inequality in (66) can be expressed as

(67)
where and are defined in (28). From Assumption
1, can be upper bounded as

(68)

where denotes a known positive constant. If ,
then the sufficient condition in (67) may not be satisfied. The
condition that will only occur if an impact collision
that causes the mass to overshoot the desired position occurs.
However, even if an impact occurs and the mass overshoots the
desired position, the dynamics will force the mass position error
to return to the initial condition. That is,

where denotes a known positive constant. Based on
(68) and the fact that will eventually be lower bounded
by in a noncontact condition, the inequality in (67) can be
simplified as

(69)
Based on (69), the control parameter can be selected ac-
cording to the following sufficient condition to ensure that the
robot and mass–spring system make contact:

(70)

where is chosen as

Case 2—Contact: For the case when the dynamic systems
collide and the two dynamic systems become coupled1,
(50) can be rewritten as

where (11) was substituted for and (23) was substituted for
. Completing the square on the three bracketed

terms yields

(71)

Because (47) is nonnegative, as long as (37), (38), and (39) are
satisfied, (71) is negative semidefinite, and , , ,

, , , and . Due to the fact that
, , and , the expression in (17) can

be used to conclude that (and hence, is
UC). Due to the fact that , . Based
on (4), . Previous facts can be used to prove that

, and since , then . Due
to the fact that , , and , (18) can be
used to conclude that . The expression in (19) can
then be used to conclude that (and hence,
is UC). Based on (17) and the fact that and ,

. Furthermore, based on (28) and the fact that ,
, , , and , the expression in (25)

can be used to prove that . Based on the fact that
and , the expression in (16) can be used to

prove that . Given that , , , ,
, and , . The expression in (32)

and (34) can then be used to prove that . The ex-
pression in (35) can be used to conclude that
(and hence, is UC). Since and are UC, which
implies and are also UC, and be-
cause of the fact that , , and
are square integrable, Barbalat’s lemma can be used to conclude
that , , and as ,
which also implies and as . Based
on the fact that as , standard linear analysis
methods (see Lemma A.15 of [46]) can then be used to prove
that as .
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