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Global Adaptive Output Feedback Tracking Control of
an Unmanned Aerial Vehicle

W. MacKunis, Z. D. Wilcox, M. K. Kaiser, and W. E. Dixon

Abstract—An output feedback (OFB) dynamic inversion control
strategy is developed for an unmanned aerial vehicle (UAV) that
achieves global asymptotic tracking of a reference model. The UAV
is modeled as an uncertain linear time-invariant (LTI) system with
an additive bounded nonvanishing nonlinear disturbance. A con-
tinuous tracking controller is designed to mitigate the nonlinear
disturbance and inversion error, and an adaptive law is utilized
to compensate for the parametric uncertainty. Global asymptotic
tracking of the measurable output states is proven via a Lyapunov-
like stability analysis, and high-fidelity simulation results are pro-
vided to illustrate the applicability and performance of the devel-
oped control law.

Index Terms—Adaptive control, dynamic inversion (DI), Lya-
punov methods, nonlinear control, robust control.

I. INTRODUCTION

D YNAMIC INVERSION (DI) is a similar concept as
feedback linearization that is commonly used within

the aerospace community to replace linear aircraft dynamics
with a reference model. Parametric uncertainty and unmodeled
disturbances present in the dynamic model can cause compli-
cations in DI-based control design due to the resulting DI error.
While DI-based control techniques have been successfully
applied to systems containing parametric uncertainty in the
corresponding dynamic models (e.g., see [1]–[4]), input-mul-
tiplicative uncertainty merits special attention. One method to
address uncertainty in the input matrix is to use a robust control
approach based on high gain or high frequency feedback.
For example, a sliding-mode controller is designed in [5] for
an agile missile model containing aerodynamic uncertainty.
The scalar input uncertainty in [5] was bounded and damped
out through a discontinuous sliding-mode control element. A
discontinuous sliding mode controller was also developed in
[6] for attitude tracking of an unpowered flying vehicle with an
uncertain column deficient non-symmetric input matrix. While
discontinuous sliding-mode controllers (SMC) are capable of
compensating for inversion error, the instantaneous switching
exhibited by such controllers (i.e., the “chattering” phenom-
enon) is undesirable for practical aircraft with rate limited
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actuators. Motivated by the need to eliminate infinite switching
to compensate for disturbances, a continuous (i.e., finite rate)
DI control design is developed in this brief, which is capable
of achieving asymptotic reference model tracking for a linear
time-invariant (LTI) aircraft model with linear in the parame-
ters (LP) uncertainty in the nonsquare (column deficient) input
matrix and additive bounded nonlinear disturbances. This result
builds on our preliminary work in [7], where a continuous ro-
bust controller achieves semi-global asymptotic tracking for an
uncertain aircraft model with a column deficient input matrix;
however, the controller in [7] requires the output measurements
and the respective time derivatives.

As an alternative to robust control designs such as SMC,
adaptive dynamic inversion (ADI) controllers seek to ac-
commodate for model uncertainty without exploiting high
gain or high frequency feedback. In [8], a full-state feedback
adaptive control design was presented for a general class of
fully-actuated nonlinear systems containing state-varying input
uncertainty and a nonlinear disturbance that is linear in the
uncertainty. The ADI design in [8] utilizes a matrix decompo-
sition technique [9], [10] to yield a global asymptotic tracking
result when the input uncertainty is assumed to be square and
positive definite. A semi-global multiple-input–multiple-output
(MIMO) extension is also provided in [8] using a robust con-
troller for the case when the input matrix uncertainty is square,
positive definite, and symmetric. A full-state feedback adaptive
controller is developed in [11], which compensates for para-
metric uncertainty in a linearly parameterizable nonlinearity
and a square input gain matrix. The approach in [11] applies
a matrix decomposition technique to avoid singularities in the
control law. An adaptive tracking controller is developed in
[12] for nonlinear robot systems with kinematic, dynamic, and
actuator uncertainties where the input uncertainty is a constant
diagonal matrix. In our previous work in [13], an ADI controller
is developed to achieve semi-global asymptotic tracking of an
aircraft reference model where the aircraft dynamics contain
column deficient nonsymmetric input uncertainty. However,
like our robust DI controller in [7] the ADI controller in [13]
also depends on the output states and the respective time
derivatives.

Calculation of output derivatives can amplify the effects of
noise and hinder controller performance. Motivated by the de-
sire to reduce the effects of noise in the control system, output
feedback control techniques have been widely investigated. The
aforementioned full-state feedback adaptive technique in [11]
is extended to an adaptive output feedback controller in [14]
via the use of state estimators. In [15] and [16], adaptive output
feedback controllers are designed for pitch and plunge motion
control of an aeroelastic wing system. A backstepping-based de-
sign technique using state estimators is presented in [15], which
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requires measurement of pitch angle and plunge displacement.
In [16], by obtaining a lower triangular form of the aeroelastic
system via state transformation, flutter suppression is achieved
using only pitch angle feedback. The control design in [15] is ex-
tended to compensate for unstructured uncertainty in [17]. The
design in [17] uses an inverse control law along with a high
gain observer to compensate for an unknown nonlinearly pa-
rameterizable function present in the dynamics. Two modular
adaptive control systems are developed in [18], which use an
estimation-based design to control pitch and plunge displace-
ment of an aeroelastic wing. It is assumed in [18] that the sign
of a control input coefficient is known along with the lower
bound of its absolute value. An output feedback controller is
presented in [19], which achieves flutter suppression and limit
cycle oscillations in a nonlinear 2-D wing-flap system. Para-
metric uncertainty in the dynamic model is addressed using a
Lyapunov-based adaptive law, and the unmeasurable states are
compensated using state estimators. The controller in [19] is
shown to regulate the pitch angle to a constant set point based
on the assumption that the structures of the aeroelastic model
and pitch spring nonlinearity are known. While the aforemen-
tioned ADI results compensate for parameteric uncertainty, they
cannot be used to yield asymptotic tracking in the presence
of unmodeled additive disturbances. The output feedback ADI
missle pitch controller in [20] is an exception that can be ap-
plied to achieve robustness with respect to model uncertainties
and disturbances, but the controller is based on a discontinuous
SMC design. Neural network (NN)-based ADI controllers have
been developed for aircraft with unstructured uncertainties in
results such as (e.g., see [4], [21]–[26]). However, these results
yield approximate tracking in the sense that they are limited to
uniformly ultimately bounded tracking unless coupled with a
discontinuous SMC element (e.g., [26]).

The contribution in this brief is the development of a contin-
uous adaptive output feedback controller that achieves global
asymptotic tracking of the outputs of a reference model, where
the plant model contains a nonsquare, column deficient, uncer-
tain input matrix and a nonvanishing bounded disturbance. In
comparison with the results in [4]–[8], [11], [14]–[26], the de-
veloped controller utilizes a continuous robust feedback struc-
ture to compensate for the additive nonlinear disturbance along
with an adaptive feedforward structure to compensate for para-
metric uncertainty. The current development exploits the ma-
trix decomposition technique in [9], [10] so that the controller
depends only on the output states, and not the respective time
derivatives. Specifically, minimal knowledge of the UAV dy-
namic model is exploited along with the matrix decomposition
technique to rewrite the tracking error dynamics in a form that
is amenable to controller design. This manipulation enables de-
sign of a continuous adaptive output feedback control law that
is capable of compensating for parametric input uncertainty
and a nonvanishing additive disturbance. Global asymptotic
tracking is proven via a Lyapunov-based stability analysis. To
illustrate the practical performance of the proposed control
design under realistic conditions, high fidelity numerical sim-
ulation results are provided, which take practical measurement
noise and aircraft actuator position and rate constraints into
account.

II. SYSTEM MODEL

The subsequent development is based on the following UAV
model [27]:

(1)

(2)

In (1) and (2), denotes a state matrix composed
of unknown constant elements, denotes a column
deficient input matrix composed of uncertain constant elements
with , denotes a known output matrix,

denotes the state vector, denotes a vector of
control inputs,1 and represents a state- and time-
dependent unknown, nonlinear disturbance. Based on (1) and
(2), a reference model is defined as

(3)

(4)

where is Hurwitz, is the reference
input matrix, is the reference input,
represents the reference states, are the reference
outputs, and is introduced in (2).

Property 1: The reference trajectory is designed such
that .

Assumption 1: The nonlinear disturbance and its first
two time derivatives are assumed to exist and be bounded by
known constants.

Assumption 1: A large magnitude disturbance (e.g., wind
gust) could cause the aircraft to become unstable or uncontrol-
lable; however, the subsequent development is based on the as-
sumption that the dynamics in (1) are controllable.

For a discussion of nonlinearities that can be represented by
for an aircraft, see [7].

III. CONTROL DEVELOPMENT

A. Control Objective

The control objective is to ensure that the outputs track
the time-varying outputs generated from the reference model in
(3) and (4). To quantify the control objective, an output tracking
error, denoted by , is
defined as

(5)

To facilitate the subsequent analysis, a filtered tracking error
[28], denoted by ,
is defined as

(6)

where is a positive, constant control gain. The subse-
quent development is based on the assumption that only the

1The subsequent development assumes that � ��� � and � �

(i.e., the number of inputs is equal to the number of outputs). However, this con-
trol design can be applied to systems for which � ��� � and � � ,
where � � � via the use of a pseudoinverse (e.g., Moore–Penrose) in the con-
trol law.
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output measurements [and therefore in (5)] are avail-
able. Hence, is not measurable and is not used in the control
development. The filtered tracking error is only introduced to fa-
cilitate the subsequent stability analysis.

To facilitate the subsequent robust output feedback control
development and stability analysis, the state vector will
be segregated into measurable and unmeasurable components.
This step will enable the segregation of terms that can be
bounded as functions of the error states from those that are
bounded by constants. To this end, the state vector can be
expressed as

(7)

where contains the output states, and
contains the remaining states. Likewise, the reference
states can also be separated as in (7).

Assumption 3: The states in (7) and the corresponding
time derivatives can be further separated as

(8)

where are assumed to
be upper bounded as

where is defined as

(9)

and are known nonnegative bounding con-
stants (i.e., the constants could be zero for different classes of
systems).

B. Open-Loop Error System

The open-loop tracking error dynamics can be developed by
taking the time derivative of (6) and utilizing the expressions in
(1)–(4) to obtain

(10)

where contains the reference states that correspond
to the output states in , and denotes the respective
time derivative. The auxiliary functions

and in (10) are defined as

(11)

and

(12)

Motivation for the selective grouping of the terms in (11) and
(12) is derived from the fact that the following inequalities can
be developed [29], [30]:

(13)

where are known positive bounding
constants.

C. Closed-Loop Error System

Based on the expression in (10) and the subsequent stability
analysis, the control input is designed as

(14)

where denote subsequently defined feed-
back control terms, and is a constant feedforward
estimate of the uncertain matrix . After substituting the time
derivative of (14) into (10), the error dynamics can be expressed
as

(15)

Assumption 4: Upper and lower bounds of the uncertain input
matrix are known such that the constant feedforward estimate

can be selected such that can be decomposed
as follows [8]–[10], [31]:

(16)

where is symmetric and positive definite, and
is a unity upper triangular matrix, which is diagonally

dominant in the sense that

(17)

In (17), and are known bounding constants,
and denotes the th element of the matrix . Pre-
liminary results indicate that this assumption is mild in the sense
that the decomposition in (16) results in a diagonally dominant

for a wide range of .
Based on (16), the error dynamics in (15) are

(18)

where

Since is positive definite, the following inequalities can be
developed:

(19)
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where are positive bounding constants. The
error dynamics in (18) can now be rewritten as

(20)

where is a strictly upper triangular matrix,
is an identity matrix, de-

notes a measurable regression matrix, and is a vector
containing the unknown elements of the and matrices, de-
fined via the parametrization

(21)

Based on the open-loop error dynamics in (20), the auxiliary
control term is designed as

(22)

and the auxiliary control term is designed as

(23)

where is a constant, positive control gain, is
a constant, positive definite, diagonal control gain matrix, and
is introduced in (6). The adaptive estimate in (22)
is generated according to the adaptive update law

(24)

where denotes the th component of ,
and denotes the th component of

, where the auxiliary term
is defined as2

(25)

For the adaptation law in (24) and (25), is a con-
stant, positive definite, symmetric adaptation gain matrix.

Property 2: The function in (24) denotes a normal
projection algorithm, which ensures that the following in-
equality is satisfied (for further details, see [32]–[35]):

(26)

where , denote known, constant lower and upper
bounds, respectively, of .

After substituting the time derivative of (22) into (20), the
closed-loop error system can be determined as

(27)

where denotes the parameter estimation error de-
fined as

(28)

2Since the measurable regression matrix � ��� contains only the reference
trajectories � and �� , the expression in (24) can be integrated by parts to
prove that the adaptive estimate �� ��� can be generated using only measure-
ments of � ��� (i.e., no � ��� measurements, and hence, no ����� measurements
are required).

Using the time derivative of (22), the vector can be ex-
pressed as

... (29)

where the auxiliary signals
and , and the

individual elements are defined as

(30)
, where the subscript denotes the th ele-

ment of the corresponding vector, and is defined as

(31)

It can be shown that the following inequalities can be developed
[8], [31]:

(32)

where is defined in (9), and are known positive
bounding constants. Note that only depends on the diagonal
elements to of due to the strictly upper triangular
nature of . After using (30) and (31), the time derivative of
can be expressed as

(33)

where

(34)

(35)

After utilizing Property 1, (24), and (26), the following inequal-
ities can be developed:

(36)

where are known positive bounding constants.
Based on (29), the closed-loop error system can be expressed

as

(37)

where

(38)

Based on (19), (32), and (38), the following inequalities can be
developed:

(39)
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where are known positive bounding constants, and
, , and are introduced in (19) and (36).

IV. STABILITY ANALYSIS

Theorem 1: The adaptive controller given in (14), (22)–(24)
ensures that the output tracking error is regulated in the sense
that

as (40)

provided the control gain matrix introduced in (22) is selected
sufficiently large (see the subsequent proof), is selected to
satisfy the following sufficient condition:

(41)

and the control gains and are selected to satisfy the fol-
lowing sufficient conditions:

(42)

where denotes the minimum eigenvalue of the argu-
ment, is introduced in (23), is introduced in (45), ,

, , , and are introduced in (19), (36), and (38), and
is introduced in (17). A detailed derivation of the gain condi-

tions in (42) can be found in the Appendix.
Proof: Let be a domain containing

, where is defined as

(43)

where the auxiliary function is defined as

(44)

where denotes the 1-norm of a vector, is defined in (17),
and the auxiliary function is defined as

(45)

Let be a continuously differen-
tiable, radially unbounded function defined as

(46)

which is positive definite provided the sufficient condition in
(42) is satisfied. After taking the time derivative of (46) and
utilizing (6), (37), (44), and (45), can be expressed as

(47)

Based on the fact that

(48)

can be upper bounded as follows:

(49)

After utilizing (24) and (39), can be upper bounded as

(50)

where . Completing the squares for
the bracketed terms in (50) yields

(51)

The inequality in (51) can be used to show that
; hence, . Given that

, standard linear analysis methods can be used
to prove that from (6). Since , (5)
can be used along with the assumption that
to prove that . Since , the assumption
that can be used along with (21) to prove
that . Given that , the
assumption that can be used along with the
time derivative of (22) to show that . Since

and the time derivative of (23) can be
used to show that , [36, Eq. 2.78] can be used to
show that can be upper bounded as

, , where is a
bounding constant. Given that ,
the time derivative of (14) can be used to upper bound the
elements of as .
[37, Th. 1.1] can then be utilized to prove that .
Hence, (37) can be used to show that . Since

, (9) can be used to show that is uniformly
continuous. Since is uniformly continuous, is
radially unbounded, and (46) and (51) can be used to show that

, Barbalat’s Lemma [38] can be invoked to
state that

as (52)

Based on the definition of , (52) can be used to show that

as (53)

V. SIMULATION RESULTS

A numerical simulation was created, which illustrates the ap-
plicability and performance of the developed control law for an
unmanned air vehicle (UAV). The simulation is based on the
state-space system given in (1) and (2), where the state matrix
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, input authority matrix , and nonlinear disturbance function
are defined as in (1).

While a vertical wind gust can effect the aerodynamic prop-
erties of the aircraft by changing the angle of attack, the aero-
dynamic angle of attack was shown to fluctuate by less than 5
degrees in the presence of the wind gust tested in this simula-
tion. Since the aerodynamic angle of attack remains sufficiently
small during closed-loop controller operation, it is assumed that
the nonlinearly disturbed LTI model given in (1) adequately rep-
resents the Osprey aircraft in the presence of wind gusts for the
maneuvers being tested in this numerical simulation.

Since the Osprey is a straight-winged aircraft with an aspect
ratio of 8.53, [39, Fig. 4.15] can be used to show that the Os-
prey does not have an unstable pitch break. Moreover, the aero-
dynamic angle of attack response of the Osprey remains small
during closed-loop control. Based on these facts, Assumption 2
is mild for this aircraft in the sense that the Osprey is unlikely
to lose controllability while performing the maneuvers tested in
this simulation.

The reference model for the simulation is represented by the
state space system given in (3)–(4), where the state matrix
and input matrix are designed with the specific purpose of
decoupling the velocity and pitch rate within the longitudinal
system as well as decoupling the roll rate and yaw rate within the
lateral system. In addition to this criterion, the design is intended
to exhibit favorable transient response characteristics (e.g., low
overshoot, fast rise time, and settling time, etc.) and to achieve
zero steady-state error [7], [13]. Simultaneous and uncorrelated
commands are input into each of the longitudinal and lateral
model simulations to illustrate that each model behaves as two
completely decoupled second order systems.

Based on the standard assumption that the longitudinal and
lateral modes of the aircraft are decoupled, the state-space
model for the Osprey can be represented using (1) and (2),
where the state, input, and output matrices of the longitudinal
and lateral subsystems are denoted , , ,

, and , , respectively. The
state-vector is defined as ,
where , denote the longitudinal and lat-
eral state vectors defined as and

, where the components of the state are
defined as in [7]. The control input vector is defined as

(54)

In (54), denotes the elevator deflection angle,
is the control thrust, is the aileron

deflection angle, and is the rudder deflection angle.
The state and input matrices for the longitudinal and lateral dy-
namic models of the Osprey fixed-wing aircraft were experi-
mentally determined at a cruising speed of 25 m/s at an altitude
of 60 m (see [7], [13] for details). The nonlinear disturbance
terms, denoted and , are defined as

(55)

(56)

where represents a disturbance due to a discrete ver-
tical wind gust as defined in [40], and the trigonometric terms in

and represent nonlinear dependence on gravity.
All states, control inputs, and adaptive estimates were initialized
to zero for the simulation.

The feedforward estimates and were selected as

(57)

Remark 1: For the choices for and given in (57),
Assumption 4 is satisfied. Specifically, the choice for
yields the following:

(58)

and the choice for yields

(59)

In order to develop a realistic stepping stone to an actual ex-
perimental demonstration of the proposed controller, the simu-
lation parameters were selected based on detailed data analyses
and specifications. The sensor noise values are based on Cloud
Cap Technology’s Piccolo Autopilot and analysis of data logged
during straight and level flight. These values are also corrobo-
rated with the specifications given for Cloud Cap Technology’s
Crista Inertial Measurement Unit (IMU). The objectives for the
longitudinal controller simulation are to track pitch rate and for-
ward velocity commands. Fig. 1 shows the reference and ac-
tual tracking results during closed-loop operation of the longi-
tudinal and lateral controllers. Fig. 2 shows the control effort
used during closed-loop operation of the longitudinal and lat-
eral controllers.

VI. CONCLUSION

A controller is presented, which achieves global asymptotic
tracking of a model reference system, where the plant dynamics
contain an uncertain input matrix and an unknown additive dis-
turbance. This result represents application of a continuous con-
trol strategy in a robust ADI framework to a dynamic system
with nonlinear, non-vanishing, nonlinearly parameterizable dis-
turbances, where the control input is multiplied by a non-square,
column deficient matrix containing parametric uncertainty. By
exploiting partial knowledge of the dynamic model, we are able
to prove a global asymptotic tracking result while weakening
some common restrictive assumptions concerning the system
uncertainty. A Lyapunov-based stability analysis is provided to
verify the theoretical result, and numerical simulation results are
provided to demonstrate the performance of the proposed con-
troller. Future efforts will focus on relaxing the limiting restric-
tions on the nonlinear disturbance. In addition, future work will
focus on control design for systems in the form of (1), where
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Fig. 1. Reference model (dashed line) and actual (solid line) output pitch rate (top left) and forward velocity (top right) responses during closed-loop longitudinal
controller operation, and roll rate (bottom left) and yaw rate (bottom right) responses achieved during closed-loop lateral controller operation.

Fig. 2. Control input elevator deflection angle � ��� (top left) and thrust � ��� (top right) used during closed-loop longitudinal controller operation, and
aileron � ��� (bottom left) and rudder � ��� (bottom right) deflection angle used during closed-loop lateral controller operation.

there are fewer inputs than outputs (i.e., where and
with ).

APPENDIX

Lemma 1: Provided the control gains and introduced
in (23) and (45), respectively, are selected according to the suf-
ficient conditions in (42), the following inequality can be ob-
tained:

(60)

Hence, (60) can be used to conclude that , where
is defined in (44).

Proof: Integrating both sides of (45) yields

(61)

where denote the th ele-
ments of , , , and , respectively, and
is introduced in (17). After substituting (6) into (61), utilizing
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(19), (36), (39), and Assumption 4, (61) can be upper bounded
as

(62)

where the facts that
and

,
were utilized, and and are defined as in (17). Thus, it is
clear from (62) that if and satisfy (42), then (60) holds.
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