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Neural Network Control of a Robot Interacting With an Uncertain
Viscoelastic Environment

S. Bhasin, K. Dupree, P. M. Patre, and W. E. Dixon

Abstract—A continuous controller is developed for a robot that
moves in free space, undergoes a collision with a viscoelastic en-
vironment, and then regulates the new coupled dynamic system
to a desired setpoint. Since the model for the viscoelastic surface
contains uncertainties that do not satisfy the linear-in-the-param-
eters assumption, the model is approximated by a neural network
feedforward term, which is combined with a continuous feedback
term to guarantee uniformly ultimately bounded regulation of the
system despite parametric uncertainties in the robot and the vis-
coelastic environment. Experimental results of a two-link robot in-
teracting with a human tissue phantom demonstrate the perfor-
mance of the proposed controller.

Index Terms—Backstepping, contact transition control,
human-robot interaction, Lyapunov methods, nonlinear con-
trol, robot control, soft/viscoelastic impact.

1. INTRODUCTION

OBOTIC systems are often required to physically interact
R with an environment; yet, this interaction raises stability
and performance concerns. One strategy to account for poten-
tially destabilizing impact forces is to model the robot-environ-
ment interaction and include these dynamics in the control de-
sign and stability analysis. Hence, significant efforts have fo-
cused on developing robot-environment contact models.
Hertz [1] developed one of the first contact models, where
a linear spring is used to relate the impact force to local de-
formation. Since Hertz’s early work, different contact models
have been developed that can also account for energy dissipa-
tion effects at impact through the inclusion of a damping term.
The models range from the simple linear Kelvin—Voigt model to
the more complex impact pair model [2]. Hunt and Crossley [3]
proposed a nonlinear compliant contact model, which not only
included both stiffness and damping terms, but also eliminated
the discontinuous impact forces at initial contact and separation,
thus making it more suitable for robotic contact with compliant
environments. Marhefka and Orin [4] used the Hunt—Crossley
model for simulation of robotic systems undergoing a contact
transition, and more recently, the model was used in an online
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estimation algorithm to estimate the mechanical impedance pa-
rameters during contact [5]. Because the model has been shown
to better represent the physical nature of the energy transfer
process at contact [6], it has found acceptance in the scientific
community [4]-[6].

Given some model of the impact dynamics, another challenge
is to develop a closed loop controller for a robot, as it transi-
tions from a non-contact to a contact state. The destabilizing
impact forces and the uncertainty in the environment dynamics
make it a complex control problem. A variety of techniques
have been developed to control the robot motion in the pres-
ence of a contact transition [7]-[19]. Hogan [7] developed an
impedance control technique for contact transition with a stiff
environment. A hybrid method for control of position and force
was proposed in [8]. Yousef-Toumi and Gutz [9] used integral
force compensation with velocity feedback to improve transient
impact response. Mills and Lokhorst [10] proved stability of
contact transition using a discontinuous controller for compliant
environments. Tarn et al. [11] used positive acceleration feed-
back together with a switching control strategy for force regu-
lation and contact transition control. Discontinuous control ap-
proaches are also proposed in [12], [13]. Stability of a system
undergoing contact transition is investigated using hybrid sys-
tems theory in [19] and [20]. In [20], the robot is modeled as
a switched system, which uses a proportional-differential (PD)
controller for position control in the non-contact phase and a
parallel force/position controller in the contact phase. Recently,
intelligent control approaches have been explored for coordi-
nated control of mobile manipulators in contact with a com-
pliant environment [21]. Some of the limitations of the control
approaches discussed above are the use of a simplistic contact
model, and the need for exact knowledge of the robot and/or en-
vironment dynamics.

The development in this brief and our previous work in [18]
and [22] investigate the problem of robot contact transition with
a viscoelastic environment. In our previous efforts [16], [23],
a linear spring contact model was used to develop a controller
for robot contact transition with a stiff environment. The con-
tribution of the work was the development of a single contin-
uous controller for both the non-contact and contact states of
the robot. Experiments were performed where the robot collided
with a stiff aluminum surface. Motivated by applications where
the robot will collide with a compliant/viscoelastic surface, our
preliminary work in [17] used the more general Hunt—Crossley
contact model to account for the energy dissipation at contact.
However, the development in [17] assumed knowledge of the
local deformation of the material raised to the Hertzian com-
pliance exponent, which is usually difficult to determine [24].
One reason that exact knowledge of the Hertzian compliance
exponent is required in [17] is that this effect does not satisfy
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the linear-in-the-parameters (LP) assumption. This limitation is
overcome in this brief by the use of neural networks (NNs),
which can approximate non-LP dynamics. Uniformly ultimately
bounded (UUB) stability of the controller is proven using a
Lyapunov-based stability analysis. Experiments with a human
tissue phantom illustrate the performance of the controller.

In comparison to previous results in literature, efforts in this
brief are motivated by the desire to develop a continuous con-
troller that can guide a robot from a non-contact position to con-
tact with an uncertain environment and then regulate the cou-
pled dynamic system to a desired setpoint. Also, many regula-
tion problems in robot control literature, constrained or uncon-
strained, can be solved using a model-free approach. A simple
proportional-integral-differential (PID) controller can be used to
regulate the robot end effector without the need to know or adapt
for the robot dynamics. However, the problem scenario consid-
ered in this brief is fundamentally different. The constrained
space of the robot is not static rather it is a dynamic system
(viscoelastic mass-spring-damper system, also referred to as the
environment) and the objective is to regulate the state of the
dynamic environment and not the robot end-effector, which is
the case with most regulation results in literature. The uncertain
viscoelastic effects at the contact interface between the robot
and the dynamic environment are accounted for by including a
physically consistent contact model in the closed loop error dy-
namics. A backstepping approach is used to control the robot
states such that the environment position is driven to a desired
set-point. NNs are used to approximate the unknown dynamics
of the environment and the robot, and should normally lead to a
model-free approach; however, to satisfy the continuity require-
ment of the controller certain discontinuous, non-differentiable
terms are left out of the NN approximation. These model based
terms are then treated as a disturbance and handled using con-
tinuous robust control methods.

II. DYNAMIC MODEL

The subsequent development is motivated by the scenario in
which a robot is controlled to move from a non-contact state
to a contact state with a viscoelastic environment such that the
environment is regulated to a desired position. The viscoelastic
environment is modeled by a mass-spring-damper system with
a viscoelastic contact interface The dynamic model for a rigid
two-link revolute robot in contact with a compliant viscoelastic
environment is given by

0 (D
My + b T + ks(Tm — 20) = Fine (2)

M (z,.) &y + C (2, 2y £ + h(z,) + |:Fm:|

In (1), z,.(t),4.(t),4.(t) € R? represent the planar Carte-
sian position, velocity, and acceleration of the robot end-ef-
fector, respectively, M (z,.) € R%*? represents the uncertain
inertia matrix, C(z,., ) € R?*2 represents the uncertain cen-
tripetal-Coriolis effects, h(x,) € R? represents uncertain con-
servative forces (e.g., gravity), F,,(t) € R denotes the inter-
action force between the robot and the environment during im-
pact, and F'(t) € R? represents the force control inputs. In (2),
T (1), Tm (t), Zm () € R represent the displacement, velocity,

and acceleration of the unknown mass m € R, zo € R rep-
resents the initial undisturbed position of the mass, b, € R is
the damping constant, and ks € R represents the unknown stiff-
ness of the spring connected to the mass. When the horizontal
position of the robot, denoted by z,1(t) € R, is greater than
or equal to the position of the viscoelastic material (i.e., when
2p1(t) > ,,(t)) contact occurs, and the interaction force F,, (t)
is modeled using the Hunt—Crossley contact model as [22]

Fo 2 \6™ + b8§™ 3)

where A € R is the unknown stiffness of the contact interface,
b € R is the unknown impact damping coefficient, and 6(¢) € R
denotes the local deformation of the material defined as

g2l
N Tyl — Tm,

Alsoin (3), 6(1‘) is the relative velocity of the contacting bodies,
and n € R is the unknown Hertzian compliance coefficient
which depends on the surface geometry of the contact. The
model in (3) is a continuous contact force-based model wherein
the contact forces increase from zero upon impact and return to
zero upon separation. Also, the energy dissipation during im-
pact is a function of the damping constant which can be related
to the impact velocity and the coefficient of restitution [3]. The
contact is considered to be direct-central and quasi-static (i.e.,
all the stresses are transmitted at the time of contact and sliding
and friction effects during contact are negligible) where plastic
deformation effects are assumed to be negligible. The following
skew-symmetric relationship is satisfied [25]

Tr1 < Ty
Tr1 2 T

“

¢ (30 - Clonin) ) €=0 VR ©

Assumption 1: The inertia matrix M (z,.) is symmetric, pos-
itive definite, and can be lower and upper bounded as

ar [|€]1? < ETME < as €| VE € R? (6)

where a1,a2 € R are positive constants and ||-|| denotes the
standard Euclidean norm. Also, the minimum singular value of
the Jacobian, J(q) is greater than a known, small positive con-
stant € > 0, such that maX{HJ_l(q) ||} is known a priori, and
hence, all kinematic singularities are always avoided. Because
the Jacobian singularity is avoided the task space inertia matrix
M (z,.) can be assumed to be positive definite.

Assumption 2: The robot and mass-spring-damper positions,
x,(t) and z,,(t), and the corresponding velocities, &, (t) and
Zm(t), are measurable. Further, it is assumed that z,.(t) is
bounded based on the geometry of the robot.

Assumption 3: The local deformation of the viscoelastic
material during contact, §(¢), defined in (4), is assumed to be
bounded. Also, the unknown constants in the dynamic models
(2) and (3), i.e., m, by, ks, A, b, n are assumed to be bounded.

Remark 1: While the subsequent control design and stability
analysis are developed for a two degree-of-freedom (DOF)
system in a planar Cartesian-space, the underlying mathematics
can be extended to a higher DOF robot if the environment is
constrained to move along a straight line. However, if there
are no constraints on the environment, additional development
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would be required to control the position of the environment
since the interacting force F),, (t), modeled as (3), which is used
to control the position of the environment through the robot,
acts only along a straight line perpendicular to the surface of
the environment.

III. CONTROL DEVELOPMENT

In the subsequent control development, the desired robot ve-
locity is designed as a virtual control input to the unactuated
viscoelastic environment. The desired velocity is designed to
ensure that the robot impacts and then regulates the mass to a de-
sired position. Since it is not possible to directly control the mass
trajectory, backstepping methods are used to develop a control
input to ensure that the robot tracks the desired trajectory despite
the non-contact to contact transition and parametric uncertain-
ties in the robot and the environment. The viscoelastic model
requires that the backstepping error be developed in terms of the
desired robot velocity. A challenge to backstep on the desired
robot velocity is that it is premultiplied by 6(¢), which is zero
when the robot and mass are not in contact. Hence, a strategic
combination of nonlinear damping and NN backstepping is used
in the subsequent development.

A. Control Objective

The control objective is to regulate the position of the envi-
ronment via a robot that transitions from non-contact to contact
state with the environment through an impact collision. To quan-
tify the control objective, the following errors are defined

Er = Lyrd — Tp, €m S Tmd — Tm (7)
where e,.(t) 2 [e1(t),e2(t)]T € R2 and e, (t) € R
denote the errors for the end-effector of the robot and
mass-spring-damper system, respectively. In (7), z,,qa € R
denotes the constant known desired position of the mass, and
Zrd(t) N [ra1(t), 7ra2]T € R? denotes the desired position
of the end-effector of the robot. To facilitate the subsequent
control design and stability analysis, filtered tracking errors for
the robot and the mass-spring-damper, denoted by 7,.(t) € R?
and r,,(t) € R respectively, are defined as

T E bt ey, Tm = e+ Yem ®)

where a,y € R are positive constant gains.

B. NN Feedforward Estimation

NN-based estimation methods are well suited for control
systems where the dynamic model contains uncertainties as
in (1)—(3). Multilayer NNs have been shown to be capable
of approximating generic nonlinear continuous functions. Let
S be a compact simply connected set of RV'*!. With map
f:S — R™, define C" (S) as the space where f is continuous.
There exist weights and thresholds such that some function
f(z) € C™ (S) can be represented by a three-layer NN as [26]

f@)=WTo (VTz) +e(z) )

for some given input z(t) € RM*'. In (9), V € R(M+DxN2
and W € R(N2+1x" are bounded constant ideal weight ma-
trices for the first-to-second and second-to-third layers, respec-
tively, where [V; is the number of inputs in the input layer, N is
the number of neurons in the hidden layer, and n is the number
of outputs in the output layer. The activation function in (9) is
denoted by o (-) € RM2*! and ¢ (x) € R" is the functional
reconstruction error. Based on (9), the typical three-layer NN
approximation for f(x) is given as [26]

f (@) 2WTo(VT2) (10)
where V() € RNH+DXN2 and W (t) € RONV2+T1DX" are sub-
sequently designed estimates of the ideal weight matrices. The
estimate mismatch for the ideal weight matrices, denoted by
V(t) € RNHDXN2 and W(t) € RN2+1DX" are defined as
VAV _VandW 2 W - W, respectively, and the mismatch
for the hidden-layer output error for a given z(t), denoted by
5(x) € RV2*1 is definedas 6 2 0 — 6 = o(VTz) —o(V ).
The NN has several properties that facilitate the subsequent de-
velopment.

1) Property 1: The Taylor series expansion for o (V7'z) for
a given £ may be written as [26]

c(VTz)=o(VTz)+ o' (VIx)VTz + O(VT2)?2  (11)
where o/(VTz) = do (VTz) /d (VT2) |yrpyr,, and
O(VT)? denotes the higher order terms. Simplifying (11)
yields
b6=6"VIiz +O(VTz)? (12)
where 6/ £ o/ (V™).

2) Property 2: The ideal weights are assumed to exist and
be bounded by known positive values, i.e., ||V||?F < Vp and
||W||§, < Wpg, where ||-|| - is the Frobenius norm of a matrix.

3) Property 3: The estimates for NN weights, W (t) and
V (), can be bounded using the projection algorithm as in [27]
and [28].

4) Property 4: The activation function o (-) and its derivative
are bounded, e.g., sigmoidal functions, hyperbolic functions,
etc.

5) Property 5: On a given compact set S, the functional re-
construction error £(z) is bounded, i.e., ||e(z)|| < €, where &,,
is a known positive constant.

C. Closed-Loop Error System

The open-loop error system for the mass can be obtained by
multiplying (8) by m and then taking its time derivative as

My = f1 — A" — b6S™ — e, (13)
where the function f1(¢) € R is defined as
Fr & bt + k(@ — m0) + mYém + em. (14)
The auxillary function in (14) can be represented by as
fi=Wor (Vi z1) + e (21) (15)
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where the NN input z1 (t) € R is defined as z1 = [1, e, 7m] 7,
Wy € RWNm2+1)x1 and Vi € R3* N2 are ideal NN weights,
N2 € R denotes the number of hidden layer neurons, and
em € R is the functional reconstruction error. Since the open-
loop error expression for the mass in (13) does not have an actual
control input, a virtual control input, @,.41(t), is introduced by
adding and subtracting (1 — b6™),.q1 to (13) as

MTy = WlTal (VlTxl) +em (z1) — A" — bés™

—em+ (1 =b6")Erar — (1 — b6™)&rar.  (16)

To facilitate the subsequent backstepping-based design, the vir-

tual control input to the unactuated mass-spring-damper system
is designed as

a1 = Wl (171%1) — k. (17)

In (17), k,, € Ris a constant positive control gain, and Wh (t)

ROVm2+1x1 and V(1) € R3*Nm2 are the estimates of the ideal

weights, which are updated based on the subsequent stability
analysis as

N . A~ A1 YT
W1: proj (lealrm - leo'l Vl xlrm,)

Vi=proj(Corzi W, r,) (18)
where Ty € RWm2tDX(Nem2+1) T 0 e R3%3 are constant,
positive definite, symmetric gain matrices, and proj(-) denotes
a projection algorithm! utilized to guarantee that the weight es-
timates Wy (¢) and V;(¢) remain bounded [27], [28]. The esti-
mates for the NN weights in (18) are generated online (there is
no offline learning phase). Also, z,q2 = p, where p € R is an
appropriate positive constant, selected so the robot will impact
the mass-spring-damper system. 42 (t) is the desired robot po-
sition measured tangential to the tissue surface. Since the mass
is to be controlled in the direction normal to the tissue surface,
it is only required that x,.42(¢) be chosen such that the robot im-
pacts the tissue surface. The closed-loop error system for the
mass can be developed by substituting (17) into (16) as

miy, = Wi oy (VlTiljl) - Wfol(VITxl) +em (x1)
— kmrm — AO" + 00" — bO"E,
—em + (1 — blsn).’i?le. (19)
Adding and subtracting W 61 + W, to (19), and then using
the Taylor series approximation in (12), the following expres-
sion for the closed-loop mass error system can be obtained

My = Wf&l—Wf&1V1T$1+WF&/1‘~/1T$1 —kmTm—em+wy

(20)
where the notation 64 and & is introduced in (12), and w1 (t) €
R is defined as

wy = WLV ey + WEO(V T 21)% + ey (z1) — A6™

IThe initial weights are selected in some compact set, then new estimates
are generated based on the weight update laws in (18). If the weights on the
boundary of the set are found to be directed outside the compact set, they are
projected back into the set using a smooth projection algorithm (see [27], [28]
for details).

+ 06" — b8 em + (1 — b8 )Ty - (1)
Using Property 2-5 and [26], w1 (t) can be bounded? as
lwi] < em1 + cm2 ||2]| (22)

where ¢y,1, cm2 € R are computable known positive constants
and z € RS is defined as

z2[em Tm el rT]. (23)
The open-loop robot error system can be obtained by taking
the time derivative of r,.(¢), premultiplying by the robot inertia

matrix M (z, ), and utilizing (1), (7), and (8) as

M’f’T:fZ—CTT_F (24)

where the function f>(t) € R? is defined as
fo & Mg+ Maé, + h+ Ciyg + Cae, + [A‘S 0 } .
(25)

By representing the function f>(¢) by a NN, the expression in
(24) can be written as

Mi, =Wy oy (Vi 12) + &, (z2) — Cr, — F (26)

where the NN input 25(t) € R'¥ is defined as z(t) =
[1,6,2T, a7, 66,aT &7, T )T Wy € RWN2HDX2 " and
Vo € R¥XNr2 are ideal NN weights, N,» € R denotes the
number of hidden layer neurons, €, € R is the functional
reconstruction error. From the choice of the virtual control
input in (17), an expression for Z,.41 (t) can be developed which
is continuous and does not require acceleration measurements.
This fact can be used to show that the input z2(¢) to the NN
is continuous and known. Based on (26) and the subsequent
stability analysis, the robot force control input is designed as

F=WZlo, (f/szz) F ko + e, 27)
where £, € R is a constant positive control gain, and Wo(t) €
RN-2+1X2 and Vo (t) € R'3*N+2 are the estimates of the ideal
weights, which are designed based on the subsequent stability
analysis as

7 . A T AT T
Ws=proj (F“,QJQTT — D205V xor, )

Vo=proj (Tuawarf WY 5}) (28)
where Ty € RWr2tD)x(Nr241) T o e RI3X13 gre constant,
positive definite, symmetric gain matrices. Substituting (27)
in (26) and following a similar approach as in the mass error
system in (19)—(20), the closed-loop error system for the robot
is obtained as

. 1T ~ T ~1 YT T~ ;T
M, = W6y — WLVl ag + Wi 64V, g

—Cry —kpry — e + wo 29)

2Since the term w; (t) in (21) consists of approximation errors and terms
which cannot be adapted for, it is treated as disturbance and handled using robust
control techniques. Also, w (1) contains the estimation error W, (t) which can
be shown to be bounded, i.e., W; € L, since W; in (18) is bounded by

projection and W, is a constant ideal weight matrix.



BHASIN et al.: NEURAL NETWORK CONTROL OF A ROBOT INTERACTING WITH AN UNCERTAIN VISCOELASTIC ENVIRONMENT 951

(7)

Fig. 1. Top view of the experimental testbed including: (1) LVDT, (2) undercarriage, (3) air bearings, (4) sensor housing, (5) Link 2, (6) aluminum rail, (7) Link
1, (8) tissue housing, (9) U-shaped aluminum plate, (10) spring. (Right) (1) Tissue phantom housing, (2) viscoelastic tissue phantom, (3) inductive sensor.

where wa(t) € R? is a disturbance term defined as

wy = WLV wg + WOVl 25)? + &, (z2).  (30)
Using Property 2-5 and [26], w2(t) can be bounded as
l[wal < cr1 + cra||2]] 3D

where c¢,1, ¢.o € R are computable known positive constants.

IV. STABILITY ANALYSIS

Theorem: The controller given by (17), (18), (27), and (28)
ensures uniformly ultimately bounded regulation of the states of

the robot and mass-spring-damper system as
lz(t)|| < ere™ " + ¢ (32)

provided the control gains are selected according to the suffi-
cient gain conditions

02 C2
min(7, 1, Aia {or}) > 2% + 222 (33)
where €9, £1, 2 € R denote positive constants; Amin{-} denotes
the minimum Eigenvalue of a matrix, the control gains k,,, and
k,. are introduced in (17) and (27), respectively; ¢,,2 and c,.o are
introduced in (22) and (31).
Proof: Let V(t) € R denote a positive definite, radially
unbounded function defined as
1 1 1 ~ -
V= 57’3er7« + §€Z€r + §tr (WlTF;%Wl)
1 - . 1 - -
+ Str(VIT ) + Str (WH T30
1 ~ ~ 1 1
+otr (VQTF;; Vg) Fomrl sk, (34)
2 2 2
Using (5), Assumption 3, (8), (18), (20), (22), (28), (29), and
(31), an upper bound for time derivative of V' (¢) can be deter-
mined as

14 < —k, ||""T||2 — Amin {0} ||er||2 - kmr?n - '7672n

+ (em1 + cmz [[2]]) [rm| + (cr1 + oz [[2]]) 7] . (35)
The control gains k,,, and k,. are now defined as
km £ kit + ko + 13k 2k + ko +1 (36)

where ki, k- € R, (1 = 1,2) are positive constant nonlinear
damping gains. Substituting for k,,, and k,, the expression in
(35) can be rewritten as
V< =5l =i = Amin {a} leol” = Il

- [kmﬂ"?n — Cm1 |7"m|] - [km2r¢2n — Cm2 HZH |Tm|]

2 2
= [ el = o lrll] = [z Irall® = coa Nzl ]
(37

Completing the squares on the bracketed terms and provided

the sufficient gain condition in (33) is satisfied, the expression
in (37) can be reduced to

V< |t Sm 4 o (38)
-6z

a 4km1 4kr1

where 3 € R is a positive constant. The expres-
sion in (38) can be used to show that V(¢) is

negative whenever 2z(¢) lies outside the compact set
Q. = {z Szl € V2 /A + cfl/4kr1/ﬂ}, and hence,
||z(t)]| is UUB [29]. The size of €2, can be made arbitrarily
small by increasing the control gains k,, and k,. Using the
definition of z(t) in (23), r.(t), (1), Tm(t),em(t) € Loo,
and hence, F(t) and all closed-loop signals remain bounded.
Standard signal chasing analysis can be used to show that all
signals remain bounded.

Remark 2: The above analysis assumes that the NN approxi-
mation property holds throughout. However, according to Prop-
erty 7, the NN universal approximation property only holds on
a compact set. To show that the NN inputs always stay inside a
compact set, consider the NN for the robot (25), (26). The input
vector xo(t) can be bounded as

l[zall < co+ e llz]]- (39)

where cg,c; € R are computable positive constants. Let the
NN approximation property hold for fo(x2) given an accuracy
e(|le,]| < e), for all z5(t) inside a compact set Q,, = {z :
lz]| < 6} for 6, > co, where the size of the set €,, can
be increased by increasing the number of hidden layer neurons.
Using (39), another compact set can be defined as €2, = {z :
llz|| € 6, — co/c1}. To ensure that the NN input z5(¢) always
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stays inside the compact set €2, , it is sufficient to show that the
system states z(t) € 2.V¢ > 0. First, the initial conditions are
chosen to be such that z(0) € €., which ensures that the NN ap-
proximation property holds at time ¢ = 0. Now using the above
Lyapunov stability analysis, it can be shown that V' (¢) is neg-
ative whenever z(t) lies outside the compact set 2. To prove
that z(¢) € Q. it is sufficient to show that €2, lies completely
inside €., which leads to the following gain condition:

2 2 2
Conl ch o — o
<
4]i:m1 + 4]%1 ﬂ ( C1 )
which can be satisfied by increasing the control gains k,,, and k..
Hence the NN approximation holds throughout provided (40)

is satisfied. Similar analysis can be done with the NN used for
approximating the environment dynamics in (17).

(40)

V. EXPERIMENTAL RESULTS

A. Testbed

The increasing applications involving physical human-robot
interaction motivate the development in this brief. For example,
in robot gait rehabilitation, a robot may be required to quickly
push on a person’s limb leading to an impact between the vis-
coelastic limb and the robot. Towards such an eventual goal, the
developed controller was experimentally tested using a two-link
robot interacting with a human tissue phantom, as depicted in
Fig. 1. The goal of this laboratory-scale bench-top experiment
is to examine the performance of the developed controller in
a controlled setting with the viscoelastic tissue phantom. In the
same spirit as in [7], the DOF of the test apparatus is restricted to
two so that additional kinematic complexity is avoided without
loss of generality.

The testbed consists of a two-link planar revolute robot (link
lengths [y = 0.37 mand /s = 0.21 m) and a mass-spring system
(mass m = 30 kg, spring stiffness = 15.1 N/m) that houses
the tissue phantom. The body of the mass-spring system in-
cludes a U-shaped aluminum plate (item (9) in Fig. 1) mounted
on an undercarriage (item (2) in Fig. 1) with porous carbon air
bearings (item (3) in Fig. 1) which enables the undercarriage
to glide on an air cushion over a glass covered aluminum rail
(item (6) in Fig. 1). A steel core spring (item (10) in Fig. 1) con-
nects the U-shaped aluminum plate to an aluminum frame, and
a linear variable displacement transducer (LVDT) (item (1) in
Fig. 1), held between the aluminum frame and aluminum plate,
measures the position of the mass. The HR 2000 series Schae-
vitz sensor has a nominal linear range of = 50.8 mm and fre-
quency range from 400 Hz to 5 kHz. The viscoelastic tissue
phantom [item (2) in Fig. 1 (Right)], which acts as the impact
surface, is held inside a tissue housing [item (8) in Fig. 1 and
item (1) in Fig. 1 (Right)], which is connected to the aluminum
plate through the sensor housing (item (4) in Fig. 1). The tissue
phantom obtained from Simulab Corporation (model TSM-10),
models the mechanical behavior of skin and subcutaneous fat.
The sensor housing holds a non-contact linear proximity mea-
suring inductive sensor (51U, KD 2440) (item (3) in Fig. 1),
from Kaman Measuring Systems, which measures the tissue de-
formation as the robot impacts the tissue surface. Signal con-
ditioning electronics sense impedance variation as the gap be-

tween the sensor and the robot, an electrically conductive target,
changes resulting in a displacement signal. In lieu of the in-
ductive sensor used in this experiment, future robotic systems
could perhaps use one of a variety of ultrasonic transducers that
can be used to measure tissue deformation [30]. The two-link
planar robot (items 5 and 7 in Fig. 1) is made of two aluminum
links, mounted on 240.0 N-m (base link) and 20.0 N-m (second
link) direct-drive switched reluctance motors. The motors are
controlled through power electronics operating in torque con-
trol mode. The motor resolvers provide rotor position measure-
ments with a resolution of 614 400 pulses/revolution, and a stan-
dard backwards difference algorithm is used to numerically de-
termine angular velocity from the encoder readings. A Pentium
2.8 GHz PC operating under QNX hosts the control algorithm.
Data acquisition and control implementation were performed at
a frequency of 1.0 kHz using the ServoToGo I/O board.

B. Results

The initial conditions for the robot and the mass po-
sition were (in millimeters) (2,1(0),22(0),z,(0)) =
(15.4,512.2,164.6). The coordinates z,; and z,, lie along
the X;-axis (the axis along which the mass moves), and z,.o
lies along the Xs-axis of the coordinate system fixed to the
ground with origin at the point where the first link of the robot
is attached to the base motor. The robot and mass-spring were
initially at rest. The desired position of the viscoelastic mass
was chosen as z,,4 = 194.6 mm. The end-effector of the
robot was initially 149.2 mm from the initial position of the
viscoelastic mass and 179.2 mm from the desired setpoint of
the mass, along the X;-axis. Once the initial impact occurs,
the robot is required to move the viscoelastic mass 30 mm
along the X -axis. The control gains were tuned based on user
experience as k,, = 100, k. = diag{257,23}, v = 0.05,
a = diag {12,14}. Based on the results of the stability anal-
ysis, k., and k, were chosen sufficiently large to decrease the
residual error. The gains for the NN weight adaptation were
selected as I'yy1 = 8.8In,, ,41, I'v1 = 1613, T2 = 631N, ,41,
'y = I3, where I, € RP*P denotes an identity matrix. The
number of hidden layer neurons for the mass-spring and robot
system are chosen as N,,2 = 5 and N,, = 8, respectively,
a choice which reflects a trade-off between performance and
computational expense. The initial NN input layer weights
V1(0) and V5(0) are selected randomly such that the activation
functions o1 (-) and o2(-) form a basis. The output layer weights
W1(0) and W5(0) are both initialized to zero.

Starting from the initial conditions, the robot impacts the vis-
coelastic mass in approximately 0.9 s. The errors in position
for the viscoelastic mass-spring system and the robot are shown
in Fig. 2. The peak steady-state position error of the end-ef-
fector of the robot along the X;-axis |e,1(¢)| and along the
Xo-axis |ey2(t)| are 1.14 and 4.51 pm, respectively. The peak
steady-state position error of the viscoelastic mass |e,, (t)] is
53.8 pm. The desired robot velocity, which is designed as a
virtual control input to the robot is determined from (17). The
desired robot trajectory along the X -axis z,.q41(¢) is computed
by integrating the desired robot velocity (441 (¢)), and the de-
sired trajectory along the X»-axis is chosen as x4 = 361.1
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Fig. 2. Mass-spring and robot errors e() with the proposed controller. Plot (a) indicates the position error of the robot tip along the X1 -axis (i.e., e.1 (%)), (b) is
the position error of the robot tip along the X»-axis (i.e., €,2 (t)), and (c) is the position error of the mass-spring (i.e., €, (t)).

mm. The deformation of the tissue phantom 6(¢) during im-
pact is found to be 15 mm at steady state. Results are com-
pared with a standard PID controller used to regulate the po-
sition of the end-effector without any knowledge about the vis-
coelastic environment. The PID controller has the same initial
and final conditions as the proposed controller. Unlike the pro-
posed controller where the desired trajectory for the robot is de-
signed based on approximation of the environment dynamics,
the desired set-point of the end-effector with the PID controller
is the same as the final mass position. Two PID controllers (PID
I and PID II) are implemented. With PID I, the control torques
are saturated and the saturation limit kept below the peak torque
produced by the proposed controller. The control gains for PID
I are chosen as K, = diag{7000,400}; K; = diag{300,50},
K, = diag{200, 30}, where K,,, K; and K, refer to the pro-
portional, integral and derivative components of the PID, re-
spectively. With PID II, the control torques are allowed to be
as high as the proposed controller but to ensure safe opera-
tion the control gains are chosen lower than PID I, as K, =
diag{3500,350}; K; = diag{300,50}, K, = diag{200,20}.
A summary of experimental results is provided in Table 1.

C. Discussion

The experimental results show that the proposed controller
ensures stable contact transition while achieving the control ob-
jective of regulating the environment to a desired position. Com-
parison with a PID controllers (I and IT) in Table I shows that the

TABLE I
SUMMARIZED EXPERIMENTAL RESULTS

Controller Proposed | PIDI | PID II
Time to impact (sec) 0.9 0.4 0.3
Settling time after impact (sec) 22 2.0 1.0
Steady state error e,, (mm) 0.05 16.7 17.9
RMS error e, (mm) 9.5 17.6 18.3
Robot velocity at impact (mm/sec) 81.9 3184 | 319.5

PID has a higher velocity at impact, more steady-state error, and
a better transient response than the proposed controller. These
results can be attributed to the fact that the PID uses no knowl-
edge of the environment and hence cannot account for the vis-
coelastic effects.

The experimental results provide insight into practical im-
plementation issues with the proposed controller. The use of
the inductive sensor to measure the tissue deformation is not
likely feasible in a practical scenario. However, as mentioned
in the Section V-A, the use of a non-contact ultrasonic sensor,
commonly used for studying tissue characteristics, can be used
in lieu of the inductive sensor. The development assumes in
this work that the contact is perfectly detected by the inductive
sensor which may not be possible in every scenario because of
issues related to sensor placement and sensor noise. It would be
interesting to explore some robust mechanisms of detecting im-
pact wherein the controller is robust to inaccuracies in detecting
impact. An alternative approach could be to use a vision-based
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Fig. 3. Applied control torques .J 7 (¢)F(t), with the proposed controller, for the (a) base motor and (b) second link motor.

method for detecting impact. Although the size of the UUB re-
gion can be made arbitrarily small by increasing the gains k&,
and k., high gain feedback can result in a higher impact force
which is undesirable for human-robot interaction. Our future
work [31] attempts to overcome this problem of limiting the im-
pact force by saturating the feedback terms of the controller. A
question also arises when choosing the number of hidden layer
neurons. This choice involves a tradeoff between the approxima-
tion accuracy of the NN and the computational expense of in-
creasing the number of neurons. In the experiment, the number
of neuron was limited to IV,,,» = 5 and N,.» = 8 for successful
real-time operation of the control algorithm at 1 KHz for the
aforementioned computational platform. It was observed that
increasing the NN gains made the neural network learn faster;
however, increasing the gains beyond a certain limit caused the
mass to overshoot the desired position. Slight improvement in
the transient response was further achieved by increasing the
number of hidden layer neurons of the NN, but this led to an in-
creased computational burden. A hybrid control strategy (e.g.,
[19]), may be an alternative for improving the transient perfor-
mance.

VI. CONCLUSION

Unlike previous contact transition problems, the aim of this
research is to control the states of an unactuated dynamic system
through an impact collision by another dynamic system (robot).
A possible use of robots for human-robot interaction motivates
the development in this brief. The use of NNs makes it pos-
sible to include an uncertain non-LP physically consistent con-
tact model (Hunt—Crossley) in the error system dynamics. A

Lyapunov-based backstepping approach is used to generate the
desired robot velocity signal and a control input to the robot is
designed to ensure stability. Experimental results of a robot in-
teracting with a tissue phantom show that the controller ensures
a stable interaction with the viscoelastic environment. Practical
implementation issues are also discussed in this brief.
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