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The occlusion of feature points and/or feature points leaving the field of view of a camera is a significant practical

problem that can lead to degraded performance or instability of visual servo control and vision-based estimation

algorithms. By assuming that one knownEuclidean distance between two feature points in an initial view is available,

homography relationships and image geometry are used in this paper to determine the Euclidean coordinates of

feature points in the field of view. A new daisy-chainingmethod is then used to relate the position and orientation of a

plane defined by the feature points to other feature-point planes that are rigidly connected. Through these

relationships, the Euclidean coordinates of the original feature points can be tracked even as they leave the field of

view. This objective is motivated by the desire to track the Euclidean coordinates of feature points on one face of a

satellite as it continually rotates and feature points become self-occluded. A numerical simulation is included to

demonstrate that the Euclidean coordinates can be tracked even when they leave the field of view. However, the

results indicate the need for amethod to reconcile any accumulated errorwhen the feature points return to thefield of

view.

Nomenclature

A = intrinsic camera-calibration matrix
d�j = distance to ��j plane along n

�
j

F j, F�j = frames attached to the �j and �
�
j planes

Gj = projective homography matrix of the jth frame

Hj = Euclidean homography matrix of the jth frame

I = fixed coordinate frame attached to the camera

mji, m
�
ji = normalized Euclidean coordinate of the ith feature

point of the �j and �
�
j planes expressed in I

�mji, �m�ji = Euclidean coordinate of the ith feature point of the
�j and �

�
j planes expressed in I

n�j = unit normal vector to the ��j plane expressed in I
pji, p

�
ji = image-space pixel coordinates for the ith feature

point of the �j and �
�
j planes

Rj, R
�
j = rotation from the �j and �

�
j planes to I

RFj
F i = rotation from frame i to frame j

SO�3� = set containing all 3 by 3 orthogonal matrices.

sji = coordinates of the ith feature point of the �j plane
expressed in F�j

xfj, x
�
fj = vector to the origin of F j and F �j expressed in I

xFkij = vector from the origin of frame i to the origin of
frame j, expressed in frame k

�ji = depth ratio of the ith feature point of the �j plane
�j = jth plane after it rotates
��j = jth plane when it first comes into the field of view

I. Introduction

V ISION-BASED technologies commonly exploit image
processing methods to identify feature points (e.g., corners or

centroids) on a target of interest. These feature points are then used to
determine the motion of the camera or target for image-based
estimation and control methods. If the feature points leave thefield of
view (FOV) or become occluded, then degraded performance or
instability of visual servo control and vision-based estimation
algorithms can occur. The fundamental challenge and potential
pervasive impact of developingmethods to keep the feature points in
the FOV has inspired a variety of research efforts. For example, the
results in [1,2] exploit partitioned or switching visual servoing
methods to keep the object in the FOV. In [3–8], potential fields or
navigation functions are used to ensure the visibility of the feature
points during closed-loop control. Zoom control is used in [9] to
adjust the focal length of the camera to keep all features in the FOV
during the control task. Some researchers have also investigated
methods to enlarge the FOV. For example, image mosaicing is used
in [10–13] to capture multiple images that are stitched together to
obtain a larger image, and in [14], multiple images are fused from
multiple cameras.

In addition to research focused on keeping the feature points in the
FOV, other research has focused on methods that are invariant to
occlusion or feature points leaving the FOV. For example, a linear
probabilistic recursive estimation method is described in [15] for
reconstructing three-dimensional structure and motion from an
integrated sequences of images. In [16], a smooth task function with
weighted features that allows visibility changes in the image features
during the control task is developed. A variety of feature-point-
tracking algorithms have also been proposed that can predict feature-
point locations (at least for short-time partial occlusions) based on
shape information such as aCADmodel and/or the time history of the
object (i.e., the object dynamics). Some examples of these
approaches are provided in [17–22].

An image-based estimation strategy is developed in this paper that
uses the preliminary efforts in [23] to determine the Euclidean
feature-point coordinates of features on a satellite by using multiple
images from a single camera based on knowledge of one geometric
length between two feature points. The motivation for this research
arises from the need for image-based state estimation and tracking of
a satellite, for which multiple feature points may become self-
occluded or leave the FOV; however, the development is generic to
any rigid body. Image geometry and homography relationships are
combined with a new daisy-chaining method [24,25] to achieve the
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results. Specifically, image geometry and homography relationships
are used to determine the Euclidean coordinates of nonoccluded
feature points in the camera FOV, and the daisy-chaining method is
used to link the successive images of the rigid body as feature points
(i.e., different surfaces of the spinning satellite) come into and leave
the FOV. A numeric simulation is included to demonstrate the
developed algorithm.

The contribution of the developedmethod is the ability to estimate
the Euclidean coordinates of the feature points even if the feature
points (permanently) leave the FOV or become occluded. The
developed estimation method is in contrast to previously described
visual servo control methods that require camera actuation by
switching, potential fields or navigation functions, or focal length
adjustment/zoom control to force the feature points to remain in the
FOV. Hence, the developed estimation method could be used to
augment those methods. Another contribution of this work is that
limited geometric knowledge of the object is required, in contrast to
methods that exploit a CADmodel or a dynamic model of the object.

II. Geometric Model

Consider a single camera observing the motion of a satellite that is
initially identified by four coplanar and noncollinear feature points.
Image processing techniques can often be used to select coplanar and
noncollinear feature points within an image. However, if four
coplanar target points are not available, then the subsequent
development can also exploit the virtual parallax method [26], in
which the noncoplanar points are projected onto a virtual plane.

To facilitate the ability to track the motion of the satellite, several
coordinate systems are defined. As depicted in Fig. 1, the frame I is
attached to the camera. Reference frames are denoted by F�j
(j� 1; 2; . . . ;1), which are associated with the planes ��j that are
attached to the different faces of the satellite. The frames are
numbered in ascending order based on the order that they enter the
FOV. The feature points have coordinates sji 2 R3 (i� 1; 2; 3; 4) in
theF�j coordinate frame. The vector from the origin of I to the origin

of F�j is x
�
fj 2 R3, where x�fj is measured in the I coordinate frame,

and the rotation fromF �j to I isR�j 2 SO�3�. The geometry between

the coordinate frames can be used to determine the initial Euclidean
positions of the jth frame’s feature points:

�m �ji � x�fj � R�j sji (1)

where �m�ji 2 R3 denotes the Euclidean coordinates of the feature

points on the plane ��j expressed in I :

�m �ji ≜ � x�ji y�ji z�ji �T (2)

The planes and coordinate frames that include an asterisk in the
notation denote static instances of a moving plane or coordinate
frame. Specifically, the asterisk is used to denote the static instant in
time that the feature points that define a plane are first visible. As the
plane or coordinate frame moves, the asterisk is dropped, to denote
the moving plane/frame. For example, as ��j moves from its

reference position when the feature points that define the plane are
first visible, it is denoted by �j�t� and the frame attached to �j�t� is
defined as F j�t�. The vector from the origin of I to the origin of
F j�t� and its rotation fromF j�t� to I are denoted by xfj�t� 2 R3 and
Rj�t� 2 SO�3�, respectively. The Euclidean coordinates of the jth
frame’s feature points after any rotation can be defined as

�m ji � xfj � Rjsji (3)

where �mji�t� 2 R3 denotes the Euclidean coordinates of the feature
points of �j expressed in I :

�m ji ≜ � xji yji zji �T (4)

After some algebraic manipulation of Eqs. (1) and (3), the
expression for �mji in Eq. (3) can be rewritten as

�m ji � �xfj � �Rj �m
�
ji (5)

where �Rj�t� 2 SO�3� and �xfj�t� 2 R3 are new rotation and
translation variables, respectively, defined as

�R j � RjR�Tj (6)

�x fj � xfj � �Rjx
�
fj (7)

By using the projective relationship depicted in Fig. 1,

d�j � n�Tj �m�ji (8)

the expression in Eq. (5) can be expressed as

�m ji �
�
�Rj �

�xfj
d�j
n�Tj

�
�m�ji (9)

In Eq. (9), n�j 2 R3 denotes the constant unit normal to the plane ��j
expressed in I , and d�j > 0 2 R is the distance to the plane along n�j .

III. Euclidean Reconstruction

A. Homography Decomposition

The relationship in Eq. (9) provides a means to quantify the
translation and rotation between a coordinate system’s location at
two points in time and space. Because the position and orientation
(i.e., pose) of F j and F�j cannot be directly measured, a Euclidean

reconstruction is developed in this section to obtain the position and
rotation information by comparing multiple images acquired from
the camera. Specifically, comparisons are made between mji�t� and
m�ji in terms of I . To facilitate the subsequent development, the

normalized Euclidean coordinates of the feature points for F j and
F�j can be expressed in terms of I as mji�t� and m�ji 2 R3,

respectively:

mji ≜
�mji

zji
m�ji ≜

�m�ji
z�ji

(10)

From Eqs. (9) and (10), the rotation and translation between the
coordinate systems F j and F�j can be related in terms of the

normalized Euclidean coordinates:

mji �
z�ji
zji|{z}
�ji

�
�Rj �

�xfj
d�j
n�Tj

�
|����������{z����������}

Hj

m�ji (11)

In Eq. (11), �ji�t� 2 R denotes depth ratios, and Hj�t� 2 R3	3

denotes Euclidean homographies [27]. Each Euclidean feature point
has a projected pixel coordinate expressed as

pji ≜ �uji vji 1 �T p�ji ≜ �u�ji v�ji 1 �T (12)

Fig. 1 Relationship between a coordinate frame in its initial position

and all subsequent positions.
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where pji�t� represents the image-space coordinates of the time-
varying feature points of F j, and p

�
ji 2 R3 represents the image-

space coordinates of the feature points of F �j . To calculate the

Euclidean homography given in Eq. (11) from pixel information, the
projected pixel coordinates are related to mji�t� and m�ji by the

pinhole-camera model:

pji � Amji p�ji � Am�ji (13)

where A 2 R3	3 is a known, constant, invertible, intrinsic camera-
calibration matrix. By using Eqs. (11) and (13), the following
relationship can be developed:

pji � �ji�AHjA
�1�|����{z����}

Gj

p�ji (14)

where Gj�t� 2 R3	3 denotes a projective homography. From four
points, sets of linear equations can be developed from Eq. (14) to
determine the projective homographies up to a scalar multiple.
Techniques described in [7,28] can be used to decompose the

Euclidean homographies to obtain �ji�t�, �xfj�t�=d�j , �Rj�t�, and n�Tj
for i� 1, 2, 3, 4 and j� 1; 2; . . . ;1.

B. Euclidean Reconstruction of the ��1 Plane

Because of the fact that a distance is assumed to be known on the
plane��1 , its Euclidean reconstruction is analyzed separately from the
other planes. For the Euclidean reconstruction of subsequent planes
that do not have an assumed known length, development is presented
in Sec. III.C. To solve for the Euclidean coordinates �m�11 and �m�12, a
new plane ��01 is created parallel to ��1 containing the pointm

�
11. This

new plane will intersect a line l�1 , which goes from the origin of I
throughm�12 and �m�12. The plane �

�0
1 intersects l�1 at a pointm

�0
12 2 R3.

As depicted in Fig. 2, the distance betweenm�11 andm
�0
12 is defined as

�1 2 R. The line l�1 and the plane ��01 are defined by the sets of all
points �1 and �2 2 R3 that satisfy the implicit functions

��
0

1 � f�1j � n�1 
 ��1 �m�11� � 0g (15)

l�1 � f�2j�2 � um�12 � 0g (16)

where u 2 R is some positive constant. The geometric relationships
in Eqs. (15) and (16) indicate that any vector from one of the points �1
on ��

0
1 tom�11 is normal to �n�1 , and that l�1 is the set of points �2 that

are linearly proportional tom�12 by some scalaru 2 R. FromEqs. (15)
and (16), the point at which the l�1 and ��

0
1 intersect (i.e., when

�1 � �2 �m�012) can be determined by solving Eq. (16) for �2,
substituting �2 into Eq. (15) for �1, solving the resulting expression
for u, and then substituting the expression for u into Eq. (16):

m�012 �
�n�1 
m�11
�n�1 
m�12

m�12 (17)

The result in Eq. (17) can be used to solve for �1:

�1 � km�
0

12 �m�11k (18)

Because ��1 2 R is assumed to be a known Euclidean distance
between �m�11 and �m�12 and �1, km�11k and km�

0
12k can be determined as

previously described, the similar triangle relationships derived from
Fig. 2:

�1
��1
� km

�
11k

k �m�11k
� km

�0
12k

k �m�12k
(19)

can be used to recover �m�11 and �m�12:

�m �11 �
k �m�11k
km�11k

m�11 �m�12 �
k �m�12k
km�012k

m�012 (20)

By using Eq. (20), the unknown constant scalar d�1 defined in Eq. (8)
can be determined. Because d�1 is now known andm�1i is measurable,
Eqs. (8) and (10) can be used to determine z�1i:

z�1i �
d�1

n�T1 m
�
1i

(21)

The Euclidean coordinates of the feature points on��1 expressed in I
can now be reconstructed by substituting Eq. (21) into Eq. (10):

�m �1i �
d�1

n�T1 m
�
1i

m�1i (22)

To facilitate the subsequent daisy-chainingmethod, the translation
from I toF�1 and the orientation ofF

�
1 with respect to I can also be

determined. Without loss of generality, the origin of F �1 is assumed
to be �m�11. The orientation of F�1 with respect to I introduced in
Eq. (1) can be expressed as

R�1 � � ix1 iy1 iz1 � (23)

In Eq. (23), ix1 2 R3 and iz1 2 R3 are defined as

ix1 �
�m�12 � �m�11

��1
(24)

iz1 ��n�1 (25)

and iy1 2 R3 is defined as the cross product of ix1 and iz1:

iy1 ��n�1 	
�m�12 � �m�11

��1
(26)

In Eqs. (25) and (26), the normal vector n�1 is known from the
homography decomposition of Eqs. (11) and (14). Because iz1 is
known from the homography decomposition of Eqs. (11) and (14),
the results in Eq. (20) can be substituted into Eqs. (24) and (26) to
determine ix1 and iy1. Based on Eq. (23), the rotation R

�
1 can now be

determined. Based on the fact thatR�1 can be determined and �R1�t� is
known from the homography decomposition of Eqs. (11) and (14),
R1�t� can now be determined from Eq. (6). Because the origin ofF�1
is selected as �m�11, the translation from I to F�1 introduced in Eq. (1)
as x�f1 is equal to �m�11, by definition. Given that d

�
1 , �R1�t�, �xf1�t�=d�1 ,

and x�f1 have been determined, Eq. (7) can be used to solve for xf1�t�.

C. Euclidean Reconstruction of the ��j Plane

To exploit the daisy-chaining strategy to link the pose of F 1 with
the pose of the subsequent frames F j (j� 2; 3; . . . ;1), the pose of
F j also needs to be determined. However, a known geometric length
is not available on�j, and so amethod different from that in Sec. III.B
must be developed. Specifically, in lieu of a known geometric length
between feature points, the development in this section uses the

Fig. 2 Geometry used to extract the Euclidean position and orientation

of feature points on a plane using a known distance.
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previous reconstructed information to determine a geometric
distance to the object that can be used to further support the Euclidean
reconstruction of the subsequent feature points. Specifically, under
the assumption that at some instant in time the �j�1 plane and �j
plane are both visible, the pose of F j�1 can be used to solve for the
pose ofF�j , provided that the planes undergo somemotionwhile they

are both in the FOV. Let t� 2 R denote some instant in timewhen the
two adjacent feature-point planes are both visible, and let t� 2 R
denote some time after some incremental motion has occurred.
BecauseF j�1 andF j are part of the same rigid body, the rotation and
translations for each of the planes are equal. Therefore, the known
rotation

Rj�1�t��RTj�1�t��

is equal to �Rj�t��. Similarly, the known translation

�x f�j�1��t�� � �xf�j�1��t��

is equal to �xfj�t��. The facts that �xfj�t�� is known and the
homography decomposition in Eq. (11) yields �xfj�t��=d�j can be

used to determine d�j , which is the magnitude of the vector �j 2 R3

that is defined from the origin of I to the plane ��j along the normal

n�j (see Fig. 3).
Without loss of generality, the origin of theF�j frame is assigned to

be �m�j1. As indicated in Fig. 3, the angle between �m�ji and�j is defined
to be �ji 2 S1 (i� 1; 2; 3; 4), which can be calculated using the
definition of the dot product,

�ji � cos�1
�
m�ji 
 n�j
km�jikkn�j k

�
(27)

and hence the magnitude of �m�ji can be determined as

k �m�jik �
d�j

cos �ji
(28)

Based on Eq. (28), �m�ji can now be calculated as

�m �ji �
k �m�jik
km�jik

m�ji (29)

To facilitate the subsequent daisy-chainingmethod, the translation
from I to F�j and the orientation of F �j with respect to I must be

determined. As the satellite rotates, the �1 plane will leave the FOV
and a new plane will become visible. The orientation of F�j with

respect to I introduced in Eq. (3) can be expressed as

R�j � � ixj iyj izj � (30)

In Eq. (30), ixj 2 R3 and izj 2 R3 are defined as

ixj �
�m�j2 � �m�j1
k �m�j2 � �m�j1k

(31)

izj ��n�j (32)

and iyj 2 R3 is defined as the cross product of ixj and izj:

iyj ��n�j 	
�m�j2 � �m�j1
k �m�j2 � �m�j1k

(33)

In Eqs. (32) and (33), the normal vector n�j is known from the

homography decomposition of Eqs. (11) and (14). Because izj is
known from the homography decomposition, the result in Eq. (29)
can be substituted into Eqs. (31) and (33) to determine ixj and iyj.
Based on Eq. (30), the rotation R�j can now be determined. Based on

the fact that R�j can be determined and �Rj�t� is known from the

homography decomposition of Eqs. (11) and (14), Rj�t� can be
determined. Because the origin of F �j is selected as �m�j1, the

translation from I toF �j , introduced in Eq. (3) as x
�
fj, is equal to �m�j1,

by definition. The fact that d�j , �Rj�t�, �xfj�t�=d�j and x�fj have been
determined can now be used to solve for xfj�t�.

IV. Daisy-Chaining

The previous development can be used to determine the pose ofF j

with respect to I when the feature points on�j are visible. The daisy-
chaining method presented in this section is used to determine the
relative pose between F 1 and F j so that the pose of F 1 can still be
determined even after the feature points on �1 leave the FOV,
provided that the feature points on �j are visible.

The relative pose between F j�1 and F j will not change, because
both time-varying coordinate frames are attached to the same rigid
body. Hence, the relative pose betweenF j�1 andF j only needs to be
determined once. As in the previous sections, the subsequent
development is based on the assumption that the feature points on
both�j�1 and�j are visible at somemoment in time. The first instant
when the feature points on both �j�1 and �j are visible is when �j
first enters the FOV, which is denoted as ��j . At this instant in time,

the pose ofF j is denoted byF �j , with a translation and rotation with
respect to I denoted as x�fj and R

�
j . At some instant when the feature

points on �1 are visible, a reference image is acquired that contains
the geometric length ��1. Based on the methods in Sec. III.B, the
Euclidean coordinates of the feature points on ��1 can be
reconstructed and expressed in I . The subsequent images of the
feature points on �1 can then be used to construct the homography
relationship given in Eq. (11), which allows the Euclidean
coordinates of feature points on�1 to continue to be reconstructed.At
some other point in time, the feature points on �1 and �

�
2 are both in

the FOV, and a second reference image is acquired. Assuming that
the next image is acquired when both �1 and ��2 have undergone
somemotion and the feature points on both planes are still visible, the
methods in Sec. III.C can be used to reconstruct the Euclidean
coordinates of the feature points on ��2 expressed in I . The
homography relationship given in Eq. (11) can then be used to
determine the relative pose ofF 2 with respect toF�2 expressed in I ,
as well as the pose ofF 2 with respect to I expressed in I . Given the
Euclidean coordinates of the feature points on�1 and�

�
2 expressed in

I , the constant relative pose of F 1 with respect to F 2 can be

determined. That is, the constant vector xF 2

21 2 R3 from the origin of
F 2 to the origin of F 1 expressed in F 2 is determined when F 2 and
F�2 are coincident:

xF 2

21 � R�T2 �xf1 � x�f2� (34)

In Eq. (34),R�T2 is used to express the difference xf1 � x�f2 inF 2. The

vector xF 2

21 is constant inF 2, but is time-varyingwhen expressed inI .
The constant rotation RF2

F1 2 SO�3� from F 1 to F 2 is determined
when F 2 and F�2 are coincident:

Fig. 3 Geometry used to extract the Euclidean position and orientation

of a plane using a known plane.

DUPREE ET AL. 957



RF2
F1 � R�T2 R1 (35)

As the satellite continues to rotate, the feature points in �1 will
leave the FOV, and the feature points on�2 and�

�
3 will eventually be

in the FOVat the same time. A third reference image is now acquired.
To estimate the pose ofF 1 and the Euclidean feature points of�1, the
vector xf1 from the origin of I to the origin of F 1, as well as the R1

rotation fromF 1 to I , are required. As stated earlier, the pose of F 2

with respect to I expressed in I has been determined, and so the
vector from the origin of F 2 to the origin of F 1 can be expressed in
I as

xI21 � R2x
F 2

21 (36)

even though�1 is no longer in the FOV. The vector from the origin of
I to the origin ofF 1 is equivalent to the vector from the origin of I to
the origin ofF 2 plus the vector from the origin ofF 2 to the origin of
F 1. Both of these vectors are known, and so the vector from the
origin of I to the origin of F 1 can be determined as

xf1 � xf2 � xI21 (37)

The rotation from F 1 to I is equivalent to the rotation from F 2 to I
multiplied by the rotation fromF 1 toF 2. Both of these rotations are
known, and so the rotation from F 1 to I can be determined as

R1 � R2R
F2
F1

Assuming that the next image is acquired when both �2 and �
�
3

have undergone some motion and the feature points on both planes
are still visible, then the methods in Sec. III.C can be used to
reconstruct the Euclidean coordinates of the feature points on ��3
expressed in I . The homography relationship given in Eq. (11) can
then be used to determine the relative pose of F 3 with respect to F�3
expressed in I , as well as the pose ofF 3 with respect to I expressed
in I . Given the Euclidean coordinates of the feature points on�2 and
��3 expressed in I , the constant relative pose ofF 2 with respect toF 3

can be determined; that is, the constant vector xF 3

32 2 R3 from the
origin ofF 3 to the origin ofF 2 expressed inF 3 is determined when
F 3 and F�3 are coincident:

xF 3

32 � R�T3 �xf2 � x�f3� (38)

The constant rotationRF3
F2 2 SO�3� fromF 2 toF 3 that is determined

when F 3 and F�3 are coincident is

RF3
F2 � R�T3 R2 (39)

The constant relative pose of F 1 with respect to F 3 can also be

determined. The constant vector xF 3

31 2 R3 from the origin of F 3 to
the origin of F 1 expressed in F 3 is equivalent to the vector from the
origin ofF 3 to the origin ofF 2 plus the vector from the origin ofF 2

to the origin of F 1, both expressed in F 3. Both of these vectors are
known, and so the vector from the origin of F 3 to the origin of F 1

expressed in F 3 can be determined as

xF3
31 � xF3

32 � xF3
21 � R�T3 �xf2 � x�f3� � R�T3 R2x

F2
21 (40)

The constant rotation RF3
F1 2 SO�3� from F 1 to F 3 is equivalent to

the rotation fromF 2 toF 3 multiplied by the rotation fromF 1 toF 2.
Both of these rotations are known, and so the rotation fromF 1 toF 3,
determined when F 3 and F�3 are coincident, is

RF3
F1 � RF3

F2R
F2
F1 (41)

This procedure can be continued indefinitely to calculate the vector
from the origin of I to the origin of theF 1 frame expressed in I . The
general equation for xf1�t� after j rotations is

xf1 � xfj � RjxFjj1 (42)

Likewise, the general equation for R1�t� after j rotations is

R1 � RjRFj
F1 (43)

TheEuclidean coordinates of the feature points on�1 after j rotations
can also be determined as

�m 1i � xfj � RjxFjj1 � RjR
Fj
F1s1i (44)

where x
F j

j1 �t� 2 R3 is the vector from the origin ofF j�t� to the origin
of F 1�t�, and R

F j

F 1
2 SO�3� is the rotation from F j�t� to F 1�t�.

V. Numerical Simulation

A. Simulation Setup

The geometric and daisy-chaining method developed in Sec. IV
was implemented in aMATLAB simulation. The uniform octagonal
satellite depicted in Fig. 4 was created and rotated 51 times about its
axis of symmetry by 0.4363 rad (25 deg). Each of the square sides
measures 1 by 1m. Smaller square sections are centered on each side
and the feature points were chosen to be the corners of these sections.
The symmetry of the object is coincidental and not required for the
feature-point calculations. Also, planar and nonplanar surfaces can
exist on the same object, but to form a homography matrix, four
feature points on a planar surface or eight nonplanar points are
needed. To simplify our analysis, four planar feature points are given
without loss of generality. The ��1 plane rotated a total 30.1069 rad
(1275 deg), left and reentered the FOV three times, and formed 29
image chains. The satellite was viewed by a camera with a scaled
focal length of 860 pixels, and the pixel coordinates of the principle
point were chosen to be [360, 240] pixels. Although the simulation
was implemented for a rotating satellite, the developed method can
be applied to a general rotating and translating rigid body.

B. Results and Discussion

The Euclidean errors of estimated feature points with no pixel
noise and a perfect camera calibration are plotted in Fig. 5 versus the
number of daisy chains between images. The errors were calculated
by subtracting the estimated Euclidean feature-point location
[Eq. (44)] from the actual Euclidean position for each axis. The actual
Euclidean position was known for the simulation and was only used
to quantify the estimation error. The errors grew as the chain number
grew, but were all on the order of 10�6 cm, resulting in a near-perfect
estimate, and any discrepancies were due to numeric noise. The
simulation was also executed assuming a nonperfect camera
calibration. Random error was introduced into the calibration in the
form of a uniform distribution on the interval ��5; 5� pixels.
Motivation for this degree of calibration uncertainty was derived
from the fact that typical calibration routines¶ yield resultswell below
the simulated uncertainty. For this camera-calibration routine, errors
in the scaled focal length of�1 pixel and errors in the principle point
of�2 pixels are not uncommon. The Euclidean estimation errors are

Fig. 4 Virtual satellite with feature points created in MATLAB.

¶Data available online at http://www.vision.caltech.edu/bouguetj/calib_-
doc/ [retrieved November 2007].
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plotted versus the chain number in Fig. 6. As in Fig. 5, the errors grew
as the chain number increased. This behavior is expected, due to the
fact that in any estimation algorithm in which the feature points
permanently leave the FOV, the error will continue to propagate. The
errors along the Y axis are less than the errors along the other axes,
due to the rotation being about the Y axis, which is the axis of
symmetry. Future efforts will focus on mitigating the propagation of
the estimation error along the X and Z axes. Some possible
approaches include resetting the estimate when a previously viewed
image returns to the FOV and linear filtering methods. To illustrate
the possible utility of this future work, we simulated a simple ad hoc
resetting approach for the uncertain camera-calibration case.

Whenever the first frame reenters the FOV, the measured value
replaced the estimated value. In this ad hoc demonstration, our
knowledge of the exact location of the satellite was used to determine
when the satellite reentered the FOV. The Euclidean estimation
errors are plotted versus the chain number in Fig. 7. As in Fig. 7 the
errors grew as the chain number increased, but due to the estimates
being reset (denoted by a circle in Fig. 7), they remain bounded.

VI. Conclusions

A new daisy-chaining method is combined with new image
geometry techniques to track the Euclidean position of the feature

Fig. 5 Errors for each point versus chain number for a perfect camera calibration and no pixel noise.

Fig. 6 Errors for each point versus chain number for a nonperfect camera calibration.
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points of a rotating and translating body despite the potential to leave
the field of view or become occluded. These methods allow for
relationships between frames to be determined as the rigid body
moves. By chaining the developed relationships to the inertial
camera frame, the Euclidean position of the feature points can be
estimated. This method shows promise, but some limitations are
apparent. For example, the numerical simulation demonstrates the
effectiveness of the method, but the errors have the potential to
accumulate (as in dead-reckoning navigation) if the feature points
leave the field of view and never return. The algorithm is also
susceptible to errors in the camera-calibration matrix. Future work is
required to alleviate these errors.
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