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Summary

This work presents a novel framework based on adaptive learning techniques
to solve the continuous-time open-loop Stackelberg games. The method yields
real-time approximations of the game value and convergence of the policies
to the open-loop Stackelberg-equilibrium solution, while also guaranteeing
asymptotic stability of the equilibrium point of the closed-loop system. It is
implemented as a separate actor/critic parametric network approximator struc-
ture for every player and involves simultaneous continuous-time adaptation. To
introduce and implement the hierarchical structure to the coupled optimiza-
tion problem, we adjoin to the leader the controller dynamics of the follower. A
persistence of excitation condition guarantees convergence of both critics to the
actual game values that eventually solve the hierarchical optimization problem.
A simulation example shows the efficacy of the proposed approach.
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1 INTRODUCTION

Numerous applications of the optimization theory in engineering and economics require the solution of coupled opti-
mization equations.1,2 Game theory is a mathematical theory dealing with models of conflict and cooperation3 for such
coupled optimization problems. Specifically, game theory has been successful in modeling strategic behavior, where the
outcome for each player depends on the actions of the player and some or all of the other players. Every player chooses a
control to minimize her own performance objective. It is well known that each dynamic game consists of 3 parts: (1) the
players (agents), (2) the actions available for each player, and (3) the costs for every player that depend on their actions.

Interest in the control systems community has primarily focused on (noncooperative) zero-sum games, which solve
the H∞ robust control problem.1,4 However, dynamic team games may have some cooperative objectives and some selfish
objectives among the players. This cooperative/noncooperative balance is captured in non–zero-sum games.

This paper considers noncooperative non–zero-sum games, called Stackelberg games, named after Heinrich von Stack-
elberg in recognition of his pioneering work.5 Stackelberg games provide a framework to analyze and design hierarchical
interactions among self-interested players, where the objectives are no longer independent. In Stackelberg games, one
needs to differentiate between open-loop, closed-loop, and feedback strategies. Specifically, open loop refers to a decision
by each player based on the initial condition, and closed loop refers to the ability of the players to change their decisions
based on current information. Feedback strategies correspond to the ability of the leader to further change her strategy
in reaction to the follower's closed-loop strategy. In this paper, we consider open-loop Stackelberg strategies.
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These hierarchical games consist of 2 groups of players: leaders who have complete information about other play-
ers' strategies and followers who lack such information. Each leader selects her action by solving a 2-level optimization
problem that seeks to minimize her utility subject to the followers' actions as estimated by that leader. The followers then
select their actions, according to their observations from the aggregate impact of other users. Applications of Stackelberg
strategies include military intelligence, social behaviors, marketing, network communications, and multilevel optimiza-
tion for power systems.6 Two applications of Stackelberg games are the ARMOR program at LAX airport,7 where police
are able to set up checkpoints on roads leading to particular terminals and the IRIS program used by the US Federal Air
Marshals,8 where armed Marshals are assigned to commercial flights to defeat terrorist attacks.

Generally, the information structure in a Stackelberg game is the set of all available information for the players to
make their decisions. When an open-loop information structure is considered, no measurement of the state of the system
is available, and the players are committed to follow a predetermined strategy based on their knowledge of the initial
state, the system's model, and the cost functional to be minimized. Two possible approaches describe interactions in
a Stackelberg game. In the first approach, the follower asks the leader to choose a reaction to specify the leader's best
response to the follower's optimal behavior during the game. In the second approach, one may assume that the leader
announces the policy to the follower.

1.1 Related work
There has been extensive work on open-loop, closed-loop, and feedback Stackelberg equilibrium with different conditions
and solutions for such cases. For the closed-loop information structure case, each player has access to state measure-
ments and thus can adapt a strategy as a function of the system's evolution.2 An important observation in the work of
Papavassilopoulos and Cruz9 that a necessary condition for the principle of optimality to hold for the Stackelberg games
is that the leader's problem is actually a team control problem. Stackelberg games, in which the players use feedback
strategies, are difficult or impossible to solve for equilibria. Basar and Olsder1,10 characterized Stackelberg games as a
problem that cannot be solved by standard optimal control techniques, and Simaan and Cruz11,12 showed that open-loop
Stackelberg games yield time inconsistent equilibria. An analytical solution for open-loop Stackelberg games that satisfy
a Hamiltonian matrix has been proposed in the work of Abou-Kandil et al.13

Linear-quadratic Stackelberg games, including time preference rates, are studied in the work of Jungers.14 The work
of Khalil and Medanic15 considered closed-loop Stackelberg strategies for linear quadratic games when the system is sin-
gularly perturbed. Recently, Johnson et al16 has proposed a Stackelberg-based feedback controller for a Euler-Lagrange
system subject to state-dependent and bounded disturbances. Medanic17 considered 2-level and multilevel sequen-
tial decision-making problems for closed-loop Stackelberg strategies in problems described by linear systems with
quadratic performance criteria. The work18 showed that it is not possible to obtain a uniqueness result for dynamic
non–zero-sum games with the classical closed-loop strategy space for at least one of the players. Dynamic feedback
Stackelberg games have been considered in the work of Nie et al,19 where the authors defined some kind of solu-
tions related to the decision styles. Jungers et al20 considered the min-max and min-min Stackelberg strategies with
a closed-loop information structure, where necessary conditions for existence were derived. It is evident that up to
now, work on Stackelberg games has focused on offline matrix computations that do not allow the systems and the
players to achieve real-time gaming capabilities. Jank et al21 introduced a robot motion controller based on a Stack-
elberg game-theoretic approach and show improved performance through experiments. Static infinite Stackelberg
games for resilient control against an intelligent attacker in the cyber and physical layers is developed in the work of
Yuan et al.22

Thus, this paper is motivated by recent advances of reinforcement learning (RL).23,24 Reinforcement learning is a sub-
area of machine learning concerned with how to methodically modify the actions of an agent (player) based on observed
responses from the environment. In game theory, RL is considered as a bounded rational interpretation of how equilib-
rium may arise. Reinforcement learning is a means of learning optimal behaviors by observing the response from the
environment to nonoptimal control policies. Reinforcement learning methods offer many advantages that have motivated
control systems researchers to develop RL algorithms, which result in optimal feedback controllers for dynamic systems
that are described by difference or ordinary differential equations.25 In control theoretic terms, learning provides an online
solution to the derived Bellman equations, while updating the policies through minimizing user-defined criteria. Online
RL techniques have been developed for continuous-time systems in the work of Vrabie et al.26 A thorough survey of how
to use RL to solve online game theory-based control system algorithms by using data measured along the trajectories of
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the players has appeared in the work of Vamvoudakis al.27 The existence of unique Stackelberg equilibria was shown in
the work of Freiling et al28 and tied to the existence of solutions to certain nonsymmetric Riccati equations, which are
hard to solve.

1.2 Contributions
The contributions of this present paper are three-fold. We formulate a Stackelberg game as a hierarchical control problem.
We then propose an adaptive learning algorithm that guarantees that the policies of the leader and the follower form
a Stackelberg equilibrium by solving the derived leader-follower algebraic Riccati equations (ARE) online. Finally, we
derive tuning laws for all the approximator structures used and guarantee formally that the closed-loop system has a
stable equilibrium point. A subset of the results in this paper has appeared in the conference paper.29

1.3 Structure
This paper is organized as follows. Section 2 formulates the hierarchical control problem by using the 2-level optimiza-
tion and deriving the leader-follower necessary conditions. In Section 3, we derive the leader-follower coupled Riccati
equations and provide conditions for existence of solutions. Section 4 presents the main result, which is a real-time
learning algorithm along with a rigorous proof of stability and convergence. Section 5 presents a simulation example
that shows the effectiveness of the online algorithm along with a comparison to the offline team solution in the work of
Basar and Olsder.10 Section 6 provides concluding comments that include potential future efforts.

2 PROBLEM FORMULATION

Consider the two-player differential game

ẋ(t) = Ax(t) + B1u1(t) + B2u2(t), x(0) = x0, t ⩾ 0, (1)

where x ∈ Rn is the state available for feedback; u1 ∈ Rm, u2 ∈ Rq are the control inputs (ie, players); and A,B1, and B2
are plant and input matrices of appropriate dimensions. The control inputs or players have different hierarchical levels,
ie, u1 is the follower, and u2 is the leader.

Each player has the following cost functionals:

J1 = 1
2

xT
𝑓

P1𝑓x𝑓 + 1
2 ∫

t𝑓

0

(
xTQ1x + uT

1 R11u1 + uT
2 R12u2

)
dt ≡ 1

2
xT
𝑓

P1𝑓x𝑓 + 1
2 ∫

t𝑓

0
r1(x,u1,u2)dt,

J2 = 1
2

xT
𝑓

P2𝑓x𝑓 + 1
2 ∫

t𝑓

0

(
xTQ2x + uT

1 R21u1 + uT
2 R22u2

)
dt ≡ 1

2
xT
𝑓

P2𝑓x𝑓 + 1
2 ∫

t𝑓

0
r2(x,u1,u2)dt,

where tf > 0, a terminal time that can be fixed or variable, P1𝑓 ,P2𝑓 ∈ Rn×n ≻ 0, Qi ⪰ 0, Rii ≻ 0, and Rij ⪰ 0∀i,
j = 1, 2, i ≠ j are symmetric matrices. To solve such a problem, we seek optimal controls among the set of control
policies with complete state information. However, because the players have a different hierarchical level, we focus
on an open-loop Stackelberg equilibrium that is given by the following definition adopted from the works of Simaan
and Cruz.11,12

Definition 1. The leader knows the cost function mapping of the follower, but the follower may not know the cost
function mapping of the leader. The follower knows the control strategy of the leader and the follower always takes
this into account in computing her strategy and is restricted to those strategies, which minimize J1, according to

J1(u∗
1,u2) ⩽ J1(u1,u2),∀u2. (2)
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If there exists a pair (u∗
1,u∗

2) on the reaction set (best responses) of Player 1 such that

J2(u∗
1,u∗

2) ⩽ J2(u1,u2),

for any pair (u1,u2) on the reaction set (best responses) of Player 1, the pair (u∗
1,u∗

2) is defined as a Stackelberg
equilibrium strategy with Player 2 as a leader.

Remark 1. It should be noted that this definition is aimed to show the notion of a unique Stackelberg solution. For
the derived strategies, there must exist a unique open-loop solution to the follower's optimal control problem. A sta-
bilizing solution with a finite cost will ensure such uniqueness. This is essentially different from the widely used one
in the work of Bagchi et al,30 where the solution is indeed unique because of the constraint that the control weighting
matrices are positive definite and different from the general solution in the work of Leitmann,31 where the response
of the follower is allowed to be nonunique. The inequality in Equation 2 indicates that the leader considers what the
best response of the follower is, ie, how it will respond once it has observed the quantity of the leader. The leader then
picks a quantity that minimizes her payoff, anticipating the predicted response of the follower. The follower actually
observes this and, in equilibrium, picks the expected quantity as a response. If the optimal reaction set contains exactly
one admissible control for the follower, then a Stackelberg equilibrium can be interpreted as a Nash equilibrium in
conjunction with a parametric optimization problem.1,10

In open-loop information structure, which is the focus of this paper, the players in the Stackelberg game are committed
to follow a predetermined strategy. We are thus interested in finding the following value:

J∗1 = min
u1

(
1
2

xT
𝑓

P1𝑓x𝑓 + 1
2 ∫

t𝑓

t
r1(x,u1,u2)dτ

)
, for all policies u2 as functions of the state (3)

with the following associated Hamiltonian for the follower16,32,33:

H1(x, λ1,u1,u2) =
1
2

r1(x,u1,u2) + λT
1 (Ax + B1u1 + B2u2), (4)

where the necessary conditions (see the work of Chen and Cruz34) for optimality are Equation 1 and

𝜕H1

𝜕u1
= 0 ⇒ u∗

1 = −R−1
11 BT

1 λ1, (5)

λ̇1 = −
(
𝜕H1

𝜕x

)T

= −ATλ1 − Q1x, λ1(t𝑓 ) = P1𝑓x𝑓 . (6)

For the leader, we are interested in computing the following optimal value:

J∗2 = min
u2

(
1
2

xT
𝑓

P1𝑓x𝑓 + 1
2 ∫

t𝑓

t
r2(x,u∗

1,u2)dτ
)
,

with constraints (1) and (6). This extra constraint shall quantify how good the follower does after choosing Equation 3.

3 STACKELBERG GAME AND LEADER-FOLLOWER RICCATI EQUATIONS

The Hamiltonian associated with the leader with constraints (1) and (6) is

H2 = 1
2

r2
(

x,u∗
1,u2

)
+ λT

2
(

Ax + B1u∗
1 + B2u2

)
+ 𝑦T λ̇1, (7)

with u∗
1 given by Equation 5 and y, a Lagrangian multiplier to adjoin constraint (6). The necessary conditions for optimality

of the leader are Equations 1 and 6

𝜕H2

𝜕u2
= 0 ⇒ u∗

2 = −R−1
22 BT

2 λ2, (8)

λ̇2 = −
(
𝜕H2

𝜕x

)T

= −ATλ2 − Q2x + Q1𝑦, , λ2(t𝑓 ) = P2𝑓x𝑓 − P1𝑓 𝑦(t𝑓 ),
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and

�̇� = −
(
𝜕H2

𝜕λ1

)
= A𝑦 − B1R−T

11 R21R−1
11 BT

1 λ1 + B1R−T
11 BT

1 λ2, 𝑦(0) = 0. (9)

Remark 2. Note that y of Equation 9 will adjoin constraint (6) to the optimization problem of the leader. This will
actually solve the difference in hierarchies of the 2 players in the game.

Since this paper shall consider the linear quadratic case, the costate variables shall have the form16,35

λ1 = P1x, λ2 = P2x, 𝑦 = P3x,∀x,

where P1(t),P2(t),P3(t) ∈ Rn×n ≻ 0 are time varying and block diagonal matrices.

Remark 3. Note that y = P3x describes a linear transformation T ∶ Rn → Rn, ie 𝑦 = T(x).

We are ready to state the following lemma adopted from previous studies.2,11,28

Lemma 1. Assume that x0 ≠ 0, the matrix B2 is full rank, the pair (Q1,A) is observable, and at least one of the pairs
(A,B1) and (A,B2) is controllable. Let R11 ≻ 0,R22 ≻ 0,R21 ⪰ 0,Q1 ⪰ 0, and Q2 ⪰ 0 and the linear open-loop control
inputs issued from an open-loop Stackelberg strategy be given by Equations 5 and 8, and P1,P2, and P3 satisfy the coupled
differential Riccati equations

Ṗ1 = −P1A − ATP1 + P1B1R−1
11 BT

1 P1 + P1B2R−1
22 BT

2 P2 − Q1, (10)

Ṗ2 = −P2A − ATP2 + P2B1R−1
11 BT

1 P1 + P2B2R−1
22 BT

2 P2 − Q2 + Q1P3, (11)

Ṗ3 = −P3A + AP3 + P3B1R−1
11 BT

1 P1 + P3B2R−1
22 BT

2 P2 − B1R−T
11 R21R−1

11 BT
1 P1 + B1R−T

11 BT
1 P2, (12)

and the closed-loop equation is ẋ = (A − B1R−1
11 BT

1 P1 − B2R−1
22 BT

2 P2)x. Finally, if the coupled Riccati equations have a

unique solution

[ P1
P2
P3

]
, satisfying the boundary conditions P1(0) = 0,P2(tf) = P2f,P3(tf) = P3f − P2fP1(tf), and P3f = 0

with tf a sufficient large horizon, then Equations 5 and 8 form a Stackelberg equilibrium.

Proof. The Lemma is a direct conclusion of the results in previous studies.2,11,28

Remark 4. The existence of unique Stackelberg equilibria was shown to be tied to the existence of solutions to certain
nonsymmetric Riccati equations, which are difficult to solve. In the work of Bagchi et al,28 a connection between
solutions of a standard ARE and a nonsymmetric ARE were given. In a similar manner, sufficient conditions for
existence of a unique open-loop Stackelberg equilibrium by constructing appropriate potential functions was given in
the work of Freiling et al.32

Using the variation of parameters formula, we have

x(t) = φ(t, t0)x0 + ∫
t

t0

φ(t, τ)B1(τ)u1(τ)dτ + ∫
t

t0

φ(t, τ)B2(τ)u2(τ)dτ,

where φ(t, t0) = Aφ(t, t0) and φ(t, t) = I.
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The following algorithmic framework will be the basis for our approach.

4 ADAPTIVE LEARNING FOR OPEN-LOOP STACKELBERG GAMES

We need to define the following potential functions with gradients that provide the λ1 and λ2, respectively,

F∗
1 (x) = xTλ1 = vec(P1)Tϕ(x),∀x, (13)

and

F∗
2 (x) = xTλ2 = vec(P2)Tϕ(x),∀x, (14)

where vec(·) is a vectorization of the matrix Pi, i = 1, 2, and ϕ(x) denotes a bounded continuously differentiable basis
function. Note that one can pick ϕ(x) as radial basis or sigmoid functions so that they define a complete independent basis
set for F∗

1 and F∗
2 .

Since the functions F∗
1 and F∗

2 are not available, we shall consider the actual outputs of the 2 approximators, namely,
the critics, as

F̂1(x) = vec(P̂1)Tϕ(x),∀x, (15)

and

F̂2(x) = vec(P̂2)Tϕ(x),∀x, (16)

where P̂1 and P̂2 are the approximation matrices of the actual matrices P1 and P2. Similarly for the 2 control inputs (5)
and (8), 2-actor approximators can developed as

û1(x) = −R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T
Ŵ1,∀x, (17)

and

û2(x) = −R−1
22 BT

2
𝜕ϕ(x)
𝜕x

T
Ŵ2,∀x, (18)

with Ŵ1 and Ŵ2 denoting the current estimated values of vec(P̂1) and vec(P̂2), respectively.
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Approximate versions of Equations 4 and 7 can be defined with Equations 15 and 16 but for every u1 and u2 as

H1(x, λ1,u1,u2) =
1
2

r1(x,u1,u2) + λT
1 (Ax + B1u1 + B2u2) = e1,

and

H2(x, λ2,u1,u2) =
1
2

r2(x,u1,u2) + λT
2 (Ax + B1u1 + B2u2) + 𝑦T

(
−AT 𝜕ϕ(x)

𝜕x

T
vec(P̂1) − Q1x

)
= e2,

where e1 and e2 ∈ R are the residual errors. Hence, it is desired to select vec(P̂1) and vec(P̂2) to minimize the following
summation of squared residual errors:

Ei =
1
2

e2
i , i = 1, 2.

Now, we shall select the tuning laws for the critics such that e1 → 0, e2 → 0, vec(P̂1) → vec(P1), and vec(P̂2) → vec(P2).
For the follower and leader critics after using the normalized gradient descent, one has

vec( ̇̂P1) = − α1

(1 + σTσ)2
𝜕E1

𝜕vec(P̂1)

= − α1σ
(1 + σTσ)2

(
σTvec(P̂1) +

1
2

r1(x,u1,u2)
)
, (19)

and

vec( ̇̂P2) = − α2

(1 + σTσ)2
𝜕E2

𝜕vec(P̂2)

= − α2σ
(1 + σTσ)2

(
σTvec(P̂2) +

1
2

r2(x,u1,u2) + 𝑦T
(
−AT 𝜕ϕ(x)

𝜕x

T
vec(P̂1) − Q1x

))
,

(20)

where σ = 𝜕ϕ(x)
𝜕x

(Ax + B1u1 + B2u2). Properties of the tuning laws in Equations 19 and 20 are given in the work of
Vrabie et al.26 Specifically, for exponential convergence, we require a persistence of excitation (PE) condition for the
signal σ̄ ∶= σ

(1+σTσ)
. The following definition is adopted from the work of Ioannou and Fidan36 and is needed in adaptive

control if one desires to perform system identification.

Definition 2. The signal σ̄ is called PE over the interval [t, t+TPE], if there exist constants β1 and β2 ∈ R+ such that ∀t

β1I ≤ ∫
t+TPE

t
σ̄(τ)σ̄T(τ)dτ ≤ β2I,

where I denotes the identity matrix of appropriate dimensions.

Finally, we shall select the tuning laws for Ŵ1 and Ŵ2 for the actors in Equations 17 and 18 as

̇̂W1 = −α3
{
(Ŵ1 − vec(P̂1))

}
, (21)

and

̇̂W2 = −α4
{
(Ŵ2 − vec(P̂2))

}
. (22)

Hence, we are ready to define the following approximation errors:

vec(P̃1) = vec(P1) − vec(P̂1),

vec(P̃2) = vec(P2) − vec(P̂2),

W̃1 = vec(P1) − Ŵ1,

and
W̃2 = vec(P2) − Ŵ2.



292 VAMVOUDAKIS ET AL.

The estimation error dynamics can then be written as

vec( ̇̃P1) = − α1σ
(1 + σTσ)2

(
σTvec(P̃1)

)
, (23)

vec( ̇̃P2) = − α1σ
(1 + σTσ)2

(
σTvec(P̃2) + 𝑦T

(
AT 𝜕ϕ(x)

𝜕x

T
vec(P1 − P̃1) + Q1x

))
, (24)

̇̃W1 = α3(−W̃1 + vec(P̃1)), (25)

and

̇̃W2 = α4(−W̃2 + vec(P̃2)). (26)

A pseudocode that describes the proposed learning algorithm has the following form.

Remark 5. One can ensure that the signal σ̄ is PE over the interval [t, t+TPE] by adding exploration noise in the control
inputs. The exploration noise should be sinusoids of 1

2
n(n+ 1) different frequencies according to the work of Ioannou

and Fidan.36 This can be relaxed by using concurrent learning37 or experience replay.38

The following fact will simplify the expressions of the main theorem that follows.

Fact 1. The input matrices of Equation 1 are bounded as39,40

||B1|| < b̄1, ||B2|| < b̄2,

the desired matrices P1,P2, and P3 are bounded as

||P1|| < ρ̄1, ||P2|| < ρ̄2, ||P3|| < ρ̄3,

and finally, the basis functions (eg, sigmoids and radial basis functions) have bounded gradients

𝜕ϕ(x)
𝜕x

< μ.

The main theorem is now given. This shall provide the tuning laws for the actor and critic approximators for the leader
and follower. The resulting tuning laws will be used to prove the convergence of the 2-player game algorithm in real time
to the open-loop Stackelberg equilibrium solution, while also guaranteeing closed-loop stability.

Theorem 1. Suppose that the assumptions and the statements of Lemma 1 hold and that the game is played for a long
enough horizon. Consider the system given by Equation 1 and let the controller dynamics be given by Equation 9, the
critic approximators be given as Equations 15 and 16, the follower control input be given by Equation 17 and the leader
be given by Equation 18. Let the tuning for the follower critic be given by Equation 19 and for the leader by Equation 20
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and assume that the signal σ̄ is PE. Given the follower actor in Equation 21 and the leader actor in Equation 22, then
after picking the tuning gains and the user-defined matrices according to the following inequalities:

λ (Q1 + Q2) >
1
2
(
2ρ̄1b̄2

1μ ‖‖R−1
11
‖‖ + ρ̄2b̄2

2μ ‖‖R−1
22
‖‖ + ρ̄1b̄2

2μ ‖‖R−1
22
‖‖ + ρ̄3b̄2

1μ ‖‖R−1
11
‖‖) , (27)

α1 > 2α3 + 2
(
ρ̄3b̄2

1μ ‖‖R−T
11 R21R−1

11
‖‖) + 2

(
ρ̄2b̄2

2μ ‖‖R−1
22
‖‖) , (28)

α2 >
(
ρ̄3b̄2

1μ ‖‖R−1
11
‖‖) + (

ρ̄1b̄2
1μ ‖‖R−1

11
‖‖ + α4

2

)
, (29)

α3 >
(
ρ̄1b̄2

1μ ‖‖R−1
11
‖‖) , (30)

α4 >
(
ρ̄1b̄2

2μ ‖‖R−1
22
‖‖) , (31)

one has an asymptotically stable equilibrium point for the closed-loop system.

Proof. To prove stability, we shall start with the Lyapunov function  ∶ Rn × Rn × Rn(n+1)∕2 × Rn(n+1)∕2 × Rn(n+1)∕2 ×
Rn(n+1)∕2 ×Rn → R

 = F∗
1 (x) + F∗

2 (x) +
1
2
(
vec(P̃1)

)T (
vec(P̃1)

)
+ 1

2
(
vec(P̃2)

)T (
vec(P̃2)

)
+ 1

2
W̃ T

1 W̃1 +
1
2

W̃ T
2 W̃2 +

1
2
𝑦T𝑦, t ⩾ 0, (32)

where F∗
1 (x) and F∗

2 (x) are given by Equations 13 and 14. The time derivative of Equation 32 after computing the
derivative of F∗

1 (x) and F∗
2 (x) along the closed-loop trajectories with û1 and û2 yields

̇ =
𝜕F∗

1

𝜕x

T

(Ax + B1û1 + B2û2) +
𝜕F∗

2

𝜕x

T

(Ax + B1û1 + B2û2) +
(
vec(P̃1)

)T
(

vec( ̇̃P1)
)

+
(
vec(P̃2)

)T
(

vec( ̇̃P2)
)
+ W̃ T

1
̇̃W1 + W̃ T

2
̇̃W2 + 𝑦T �̇�. (33)

After substituting Equations 23 to 26 and Equation 9 (with û1 and F̂2) in Equation 33 yields

̇ =
𝜕F∗

1

𝜕x

T

(Ax + B1û1 + B2û2) +
𝜕F∗

2

𝜕x

T

(Ax + B1û1 + B2û2) −
(
vec(P̃1)

)T α1σ
(1 + σTσ)2

(
σTvec(P̃1)

)
−
(
vec(P̃2)

)T α2σ
(1 + σTσ)2

(
σTvec(P̃2) + 𝑦T

(
AT 𝜕ϕ(x)

𝜕x

T
vec(P1 − P̃1) + Q1x

))
− W̃ T

1 α3(W̃1 − vec(P̃1))

− W̃ T
2 α4(W̃2 − vec(P̃2)) + 𝑦T

(
A𝑦 + B1R−T

11 R21û1 + B1R−T
11 BT

1
𝜕ϕ(x)
𝜕x

T
vec(P2 − P̃2)

)
. (34)

Since y = P3x, we can rewrite Equation 34 as

̇ =
𝜕F∗

1

𝜕x

T

(Ax + B1û1 + B2û2) +
𝜕F∗

2

𝜕x

T

(Ax + B1û1 + B2û2) −
(
vec(P̃1)

)T α1σ
(1 + σTσ)2

(
σTvec(P̃1)

)
−
(
vec(P̃2)

)T α2σ
(1 + σTσ)2

(
σTvec(P̃2)

)
−
(
vec(P̃2)

)T α2σ
(1 + σTσ)2

(
xTPT

3

(
AT 𝜕ϕ(x)

𝜕x

T
vec(P1 − P̃1) + Q1x

))
− W̃ T

1 α3(W̃1 − vec(P̃1)) − W̃ T
2 α4(W̃2 − vec(P̃2))

+ xTPT
3

(
AP3x + B1R−T

11 R21û1 + B1R−T
11 BT

1
𝜕ϕ(x)
𝜕x

T
vec(P2 − P̃2)

)
, t ⩾ 0.

To facilitate the subsequent analysis, let

T1 ∶=
𝜕F∗

1

𝜕x

T

(Ax + B1û1 + B2û2) +
𝜕F∗

2

𝜕x

T

(Ax + B1û1 + B2û2)

−
(
vec(P̃2)

)T α2σ
(1 + σTσ)2

(
xTPT

3

(
AT 𝜕ϕ(x)

𝜕x

T
vec(P1 − P̃1) + Q1x

))
. (35)
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Substituting
(
vec(P̃2)

)Tσ = 𝜕F∗
2

𝜕x

T
(Ax + B1û1 + B2û2) −

𝜕F̂2
𝜕x

T
(Ax + B1û1 + B2û2) and the Riccati equations (10) and

(11) to Equation 35 yields

T1 = − xTQ1x − xTQ2x − xTP1B1R−1
11 BT

1 P1x − xTP1B2R−1
22 BT

2 P2x

− xTP2B1R−1
11 BT

1 P1x − xTP2B2R−1
22 BT

2 P2x − xTP1B1R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T
W̃1 − xTP1B2R−1

22 BT
2
𝜕ϕ(x)
𝜕x

T
W̃2

− xTPT
1 B1R−T

11 BT
1
𝜕ϕ(x)
𝜕x

T
vec(P̃2) − xTPT

2 B2R−1
22 BT

2
𝜕ϕ(x)
𝜕x

T
vec(P̃1), (36)

since Q1 and Q2 ⪰ 0 are symmetric matrices. The term in Equation 36 can be upper bounded using Young's
inequality as

T1 ⩽ −
(
λ(Q1 + Q2 + P1B1R−1

11 BT
1 P1 + P1B2R−1

22 BT
2 P2 + P2B1R−1

11 BT
1 P1 + P2B2R−1

22 BT
2 P2)

) ||x||2
+ 1

2

‖‖‖‖‖2P1B1R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T
+ PT

2 B2R−1
22 BT

2
𝜕ϕ(x)
𝜕x

T
+ P1B2R−1

22 BT
2
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ||x||2
+ 1

2

‖‖‖‖‖P1B1R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ||W̃1||2 + 1
2

‖‖‖‖‖P1B2R−1
22 BT

2
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ||W̃2||2
+ 1

2

‖‖‖‖‖P1B1R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ‖‖vec(P̃2)‖‖2 + 1
2

‖‖‖‖‖PT
2 B2R−1

22 BT
2
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ‖‖vec(P̃1)‖‖2
. (37)

We also introduce the auxiliary terms

T2 ∶= −
(
vec(P̃1)

)T α1σ
(1 + σTσ)2

(
σTvec(P̃1)

)
−
(
vec(P̃2)

)T α2σ
(1 + σTσ)2

(
σTvec(P̃2)

)
− W̃ T

1 α3(W̃1 − vec(P̃1)) − W̃ T
2 α4(W̃2 − vec(P̃2)), (38)

and

T3 ∶= xTPT
3

(
AP3x + B1R−T

11 R21û1 + B1R−T
11 BT

1
𝜕ϕ(x)
𝜕x

T
vec(P2 − P̃2)

)
. (39)

The term in Equation 38 can be upper bounded using Young's inequality as

T2 ⩽ −α1

4
‖‖‖(vec(P̃1)

)‖‖‖2
− α2

2
‖‖‖(vec(P̃2)

)‖‖‖2
− α3

2
||W̃1||2 − α4

2
||W̃2||2 + α3

2
‖‖vec(P̃1)‖‖2 + α4

2
‖‖vec(P̃2)‖‖2

. (40)

From Equation 12, the expression in Equation 39 can be written as

T3 = −xTPT
3 B1R−T

11 R21R−1
11 BT

1 P1x − xTPT
3 B1R−T

11 BT
1 P2x

− xTPT
3 B1R−T

11 BT
1
𝜕ϕ(x)
𝜕x

T
vec(P̃2) − xTPT

3 B1R−T
11 R21R−1

11 BT
1
𝜕ϕ(x)
𝜕x

T
vec(P̃1). (41)

After using Young's inequality, Equation 41 can be upper bounded as

T3 ⩽ −
(
λ(PT

3 B1R−T
11 R21R−1

11 BT
1 P1 + PT

3 B1R−T
11 BT

1 P2)
) ||x||2

+ 1
2

‖‖‖‖‖PT
3 B1R−T

11 BT
1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ||x||2 + 1
2

‖‖‖‖‖PT
3 B1R−T

11 BT
1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ‖‖vec(P̃2)‖‖2

+ 1
2

‖‖‖‖‖PT
3 B1R−T

11 R21R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ||x||2 + 1
2

‖‖‖‖‖PT
3 B1R−T

11 R21R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ‖‖vec(P̃1)‖‖2
. (42)
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Based on Equations 37, 40, and 42, expression (33) can be upper bounded as

̇ ⩽ T1 + T2 + T3 ⩽ −λ(Q1 + Q2)||x||2
+ 1

2

‖‖‖‖‖2P1B1R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T
+ PT

2 B2R−1
22 BT

2
𝜕ϕ(x)
𝜕x

T
+ P1B2R−1

22 BT
2
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ||x||2
+ 1

2

‖‖‖‖‖P1B1R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ||W̃1||2 + 1
2

‖‖‖‖‖P1B2R−1
22 BT

2
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ||W̃2||2
+ 1

2

‖‖‖‖‖P1B1R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ‖‖vec(P̃2)‖‖2 + 1
2

‖‖‖‖‖PT
2 B2R−1

22 BT
2
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ‖‖vec(P̃1)‖‖2

− α1

4
‖‖‖(vec(P̃1)

)‖‖‖2
− α2

2
‖‖‖(vec(P̃2)

)‖‖‖2

− α3

2
||W̃1||2 − α4

2
||W̃2||2 + α3

2
‖‖vec(P̃1)‖‖2 + α4

2
‖‖vec(P̃2)‖‖2

+ 1
2

‖‖‖‖‖PT
3 B1R−T

11 BT
1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ||x||2 + 1
2

‖‖‖‖‖PT
3 B1R−T

11 BT
1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ‖‖vec(P̃2)‖‖2

+ 1
2

‖‖‖‖‖PT
3 B1R−T

11 R21R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ||x||2 + 1
2

‖‖‖‖‖PT
3 B1R−T

11 R21R−1
11 BT

1
𝜕ϕ(x)
𝜕x

T‖‖‖‖‖ ‖‖vec(P̃1)‖‖2
.

After grouping and taking into consideration Fact 1, we have

̇ ⩽ −
(
λ(Q1 + Q2) −

1
2
(
2ρ̄1b̄2

1μ ‖‖R−1
11
‖‖ + ρ̄2b̄2

2μ ‖‖R−1
22
‖‖ + ρ̄1b̄2

2μ ‖‖R−1
22
‖‖ + ρ̄3b̄2

1μ ‖‖R−1
11
‖‖)) ||x||2

−
(α1

4
− α3

2
− 1

2
(
ρ̄3b̄2

1μ ‖‖R−T
11 R21R−1

11
‖‖) − 1

2
(
ρ̄2b̄2

2μ ‖‖R−1
22
‖‖)) ‖‖‖(vec(P̃1)

)‖‖‖2

−
(α2

2
− 1

2
(
ρ̄3b̄2

1μ ‖‖R−1
11
‖‖) − 1

2

(
ρ̄1b̄2

1μ ‖‖R−1
11
‖‖ − α4

2

))‖‖‖(vec(P̃2)
)‖‖‖2

−
(α3

2
− 1

2
(
ρ̄1b̄2

1μ ‖‖R−1
11
‖‖)) ||W̃1||2 − (α4

2
− 1

2
(
ρ̄1b̄2

2μ ‖‖R−1
22
‖‖)) ||W̃2||2,

and hence, the result of the theorem follows by taking into consideration Equations 27 to 31.

Remark 6. The sufficient conditions for asymptotic stability given in Equations 27 to 31 can be satisfied by selecting
appropriately the user-defined matrices and the tuning gains. Specifically, Equation 27 can be simplified by taking
into consideration Fact 1. Regarding the tuning gains conditions, as noted in the work of Ioannou and Fidan,36 large
adaptive gains can cause high-frequency oscillations in the control signal and reduced tolerance to time delays that
will destabilize the system. There are not any systematic approaches to pick a satisfactory adaptation gain; hence, trial
and error, intuition, or Monte Carlo simulations can serve as guidelines.

Remark 7. From Equations 28 to 31, α1 > α2 > α4 ≥ α3. This relationship results from the fact that the follower needs
to tune her approximating structure fast enough to catch up with the leader.

Corollary 1. Suppose that the assumptions and the conclusions of Theorem 1 hold. Then, the policies û1 and û2 given
by Equations 17 and 18 form a Stackelberg equilibrium.

Proof. According to Theorem 1, x → 0, vec(P̃1) → 0, vec(P̃2) → 0, W̃1 → 0, and W̃2 → 0 and after taking into
consideration the pairs Equations 5 and 17 and Equations 8 and 18, respectively, we have that û1 → u∗

1 and û2 → u∗
2

from which the result follows according to Definition 1.

5 SIMULATION

A simulation example is provided to show that the game can be solved online by learning in real time using the
method of this paper. Persistence of excitation is needed to guarantee convergence to the Stackelberg solution. In these
simulations, exponentially decreasing probing noise is added to the control inputs to ensure PE until convergence is
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FIGURE 1 Trajectory of the closed-loop system states [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Parameters of the critic of the follower [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Parameters of the critic of the leader [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 4 Parameters of the actor of the follower [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Parameters of the actor of the leader [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Trajectory of the controller dynamics of the follower [Colour figure can be viewed at wileyonlinelibrary.com]

obtained. The aim of this example is to illustrate the online algorithm with an example that was simulated in the work
of Basar and Olsder10 to find the closed-loop Stackelberg solution. In our simulation instead, we shall find the open-loop
Stackelberg equilibrium.

Consider the system that is of the form in Equation 1

ẋ =
[

0 0
0 −1

]
x +

[
2
1

]
u1 +

[
1
1

]
u2,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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with user-defined matrices in the cost functionals given by

Q1 =
[

1 0
0 1

]
,Q2 =

[
1 −1
−1 5

]
,R11 = R22 = R21 = 1,R12 = 2.

For our example, we select the tuning gains as α1 = 10, α2 = 9, α3 = 1, and α4 = 1. By using Algorithm 2 (and Theorem 1),

the critic parameters converged to P̂1 =
[

0.4512 −0.0478
0.2189 0.9532

]
, P̂2 =

[
0.8867 −1.2378
1.3101 1.3451

]
, and P̂3 =

[
2.0457 0.7339
0.9094 0.6760

]
. Such

solutions of the follower and the leader verify Equations 10 to 12.
Evolution of the system states and the convergence to zero is shown in Figure 1. Figures 2 and 3 show the convergence

of the follower and leader critics. The evolution of the follower and leader actors is shown in Figures 4 and 5. Finally,
Figure 6 shows the evolution of the controller states, ie, y.

6 CONCLUSION AND FUTURE WORK

This paper proposed a new learning algorithm for Stackelberg games and hierarchical control problems. To introduce
and implement the hierarchical structure to the coupled optimization problem, we adjoin the controller dynamics of the
follower to the leader by using an extra Lagrange multiplied. The learning algorithm is implemented as a 2-critic/2-actor
approximator structure. We finally prove asymptotic stability of the equilibrium point of the overall closed-loop system
by using a Lyapunov stability analysis. Simulation results illustrate the effectiveness of the proposed approach and the
convergence to the open-loop Stackelberg equilibrium. Future work will concentrate on extending the results to more
general classes of Stackelberg games with completely unknown systems and multiple decision makers.
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