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TRACKING CONTROLFORROBOT
MANIPULATORS WITHKINEMATIC AND
DYNAMICUNCERTAINTY*
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Abstract

The control objective in many robot manipulattor applications is to
command the end-effector motion to achieve a \desired response. To
achieve this objective, mapping is required to relate the joint/link
control inputs to the desired Cartesian positiom and orientation. If
there are uncertainties or singularities in the magpping, then degraded
performance or unpredictable responses by tthe manipulator are
possible. To address these issues, an adaptive taracking controller for
robot manipulators with uncertainty in the kimematic and dynamic
models is developed in this paper. The controllier is developed based
on the unit quaternion representation so that simgularities associated
with three parameter representations are avemded. Experimental
results for a planar application of the Barrett whiole arm manipulator
(WAM) are provided to illustrate the performamce of the developed

controller.
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1. Introduction

The control objective in many robot mamipulator applica-
tions is to command the end-effector mwotion to achieve a
desired response. The control inputs are applied to the
manipulator joints and the desired position and orienta-
tion are typically encoded in terms of a Cartesian coor-
dinate frame attached to the robot end-effector, with re-
spect to the base frame (that is, the se-called task-space
variables). Hence, a mapping (that s, the solution of
the inverse kinematics) is required to cenvert the desired
task-space trajectory into a form that can be utilized by
the joint space controller. If there are uncertainties or
singularities in the mapping, then degraded performance
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or unpredictable responses by the manipulator can result.
Several parametrizations exist to describe orientation an-
gles in the task-space to joint-space mapping, including
three-parameter representations {Euler angles, Rodrigues
parameters) and the four-parameter representation given
by the unit quaternion. Three-parameter representations
always exhibit singular orientations (the orientation Jaco-
bian matrix in the kinematic equation is singular for some
orientations), while the unit quaternion represents the end-
effector orientation without singularities. The emphasis in
this paper is to develop a tracking controller that by utiliz-
ing the singularity free unit quaternion compensates for un-
certainty throughout the kinematic and dynamic models.
Some previous task-space control formulations, based on
the unit quaternion can, be found in [2-6]. A quaternion-
based, resolved acceleration controller was presented in [3]
and quaternion-based, resolved rate and resolved acceler-
ation task-space controllers were proposed in [6]. Output
feedback task-space controllers, using quaternion feedback,
were presented in {4] for the regulation problem and in
(2] for the tracking problem. Model-based and adaptive,
asymptotic full-state feedback controllers and an output
feedback controller based on a model-based observer were
developed in [5] using the quaternion parametrization.

A common assumption in most previous robot con-
trollers (including all of the aforementioned quaternion-
based, task-space control formulations) is that the robot
kinematics and manipulator Jacobian are assumed to be
perfectly known. From a review of literature, few con-
trollers have been developed that target uncertainty in the
manipulator forward kinematics and Jacobian. For ex-
ample, in [7-12], several researchers approximate Jacobian
feedback controllers, that exploit a static, best-guess esti-
mate of the manipulator Jacobian, to achieve task-space
regulation objectives, despite parametric uncertainty in
the manipulator Jacobian. In [13], a task-space adaptive
controller, for set point control of robots with uncertain-
ties in the gravity regressor matrix and kinematics, was
developed. In [14], an adaptive regulation controller, for
robot manipulators with uncertainty in the kinematic and

*A preliminary version of this paper appeared in the proceed-
ings of the IEEE Conference on Decision and Control, Seville,

Spain, 2005 [1].



dynamic models, was developed. The result in {14] also
accounted for actuator saturation, as the maximum com-
manded torque could be a priori determined, due to the
use of saturated feedback terms in the controller. Re-
cently, in {15], an adaptive regulation controller for rigid-
link, electrically driven robot manipulators, with uncer-
tainty in kinematics, manipulator dynamics, and actuator
dynamics, was developed.

All of the aforementioned controllers that account for
kinematic uncertainty are based on the three-parameter,
Euler angle representation. Moreover, all of the previous
results only target the set-point regulation problem. The
only results that target the more general tracking control
problem for manipulators with uncertain kinematics are
given in [16-18]. These results, however, are also based
on the Euler angle representation and, with the exception
of [17], they all require the measurement of the task-space
velocity. In [17], a filtered derivative of the task-space posi-
tion is used to generate an approximation of the task-space
velocity signal. Hence, motivated by previous work, in
this paper an adaptive tracking controller is developed for
robot manipulators with uncertainty in the kinematic and
dynamic models. The controller is developed based on the
unit quaternion representation, so that singularities asso-
ciated with three parameter representations are avoided.
In addition, the developed controller does not require the
measurement of the task-space velocity. The stability of
the controller is proven through a Lyapunov based stability
analysis. Experimental results for a planar application of
the Barrett whole arm manipulator (WAM) are provided
to illustrate the performance of the developed controller.

2. Robot Dynamic and Kinematic Models

A six-link, rigid, revolute robot manipulator can be de-
scribed by the following dynamic model [19]

M(8)8 + Vi (0,0)0+ G(8) + Fy6 =1 (1)

In (1), O(t) RS is the joint position!, M(8)c R6*6
represents the inertia matrix, Vi,(6,6) € R6*® is the
centripetal-Coriolis matrix, G(8) € RS is the gravity vector,
F; € R%%6 is a constant diagonal matrix, which represents
the viscous friction coefficients, and 7(t) € R® represents
the input torque vector. The dynamic model given in (1)
has the following properties [19], which are utilized in the
subsequent control design and analysis.

Property 1 The inertia matriz is symmeltric and
positive-definite and satisfies the following inequalities

my l|z|)® < 2TM @)z <my||zl|>°  VzeR® (2)

where my, my € R are positive constants and ||-|| denotes
the standard Euclidean norm.

1 it is assumed that the actuated manipulator joint is rigidly
connected to the links, so that the link-space and joint-space
are equivalent. Hence, the words joint and link can be used
interchangeably.
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Property 2 The inertia and centripetal-Coriolis -

matrices satisfy the following skew-symmetric relation.-
ship:

zT <-;-M(a) — Viu(6, 9‘)) =0 VzeR® (3)

Property 3 The centripetal-Coriolis matriz satis-
fies the following skew-symmetric relationship:

Vn(0,2)y = V{8, y)z  Vz,ye R (4)

Property 4 The norm of the centripetal-Coriolis

matriz and the norm of the friction matriz can be upper
bounded as follows:

V(0 2)llie < Cellzll V2 eR®, NIFAl < ¢ (5)

where (., (; €R are positive constants and || - |ice de-
notes the induced-infinity norm of a matriz.

Property 5 Parametric uncertainty in M(6),
Vin(8,8), G(6) and F, is linearly parametrizable.

Let £ and B be orthogonal coordinate frames attached
to the manipulator’s end-effector and fixed base, respec-
tively. The position and orientation of £ relative to B can
be represented through the following forward kinematic
model [4]:

p| _ [m® -
q hq(e)

In (6), hp(-) : R® > R® denotes an uncertain func-
tion that maps 8(t) to the measurable? task-space posi-
tion coordinates of the end-effector, denoted by p(.) € R3.
hq(:) : R® - R* denotes an uncertain function that maps
6(t) to the measurable® unit quaternion and is denoted
by q(t)e€R* The unit quaternion vector, denoted by
q(t) = [go(t), g (1)}, with g,(t) € R and g, (t) € R? [20, 21],
provides a global, mon-singular parametrization of the end-
effector orientation and is subject to the constraint ¢'q =1.
Several algorithms exist to determine the orientation of
£ relative to B from a rotation matrix that is a func-
tion of 8(t). Conwversely, a rotation matrix, denoted by
R(q) € SO(3), can be determined from a given q(¢) by the
formula [4]:

R(q) = (92 — a7 qu) I3 + 2quq? + 2¢,q. (7)

where I3 is the 3 x 3 identity matrix and the notation a*,
Va={ay, ag, (lg]T denotes the following skew-symmetric
matrix:

0 —Qa3 az
a2 la; 0 —q (8)
—Qaz ap 0

2 The task-space position of £ relative to B is assumed to be
measurable, as im [7-18]. For example, a camera system or
laser tracking cowuld be utilized.

3 The task-space orientation of £ relative to B is alse assumed
to be measurable through the use of a camera system.



The time derivative of ()
expression?:

is given by the following

(9)

<
&~

where J,(6) : R® — R3S and J,(6) : R® — R**6 denote the
uncertain position and orientation Jacobian matrices, re-
spectively, defined as .J,(0) = dh,,/90 and Jo(0) =0k, /00.
To facilitate the subsequent development, (9) is expressed
as follows:

. . ;
Pl = J16)6 where J(0) = 7| ero

w B*J,

(10)

The expression in (10) is obtained by exploiting the
fact that g(t) is related to the angular velocity of the end-
effector, denoted by w(t) € R?, via the following differential
equation:

w=8B7j (11)
where the known Jacobian-like matrix, B(q) : R% — R4X3,
. is defined as follows:

T —ry
B=-: 7
quB—qs(

(12)

Remark 1 The dynamic and kinematic terms for
a general revolute robot manapulator, denoted by M@),
Vin(8, 8), G(8), and J(0), are assumed to depend on
0(t) only as arguments of trigonometric functions and,
hence, remain bounded for alli possible 0(t). During the
control development, the assmmption will be made that,
if p(t) € Lo, then 0(t)€ Loo. (Note that q(t) is always
bounded, as ¢Tq=1).

Property 6 The kinematic system in (10) can be
linearly parametrized as follows:
JO =W, (13)

where Wj(ﬂ,é)ERGX"I deneites a regression matriz,

which consists of known and measurable signals, and
®; € R™ denotes a vector of my unknown constants.

Property 7 There exist wpper and lower bounds for
the parameter ®j, such that J@®, ;) is always invertible.
We will assume that the bounds for each parameter can
be calculated as follows:

jS < ¢ < by (14)

4To simplify the notation, the arguments of some functions in
the equations are omitted. Howsever, all functions are explicitly
defined in the text.
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where ¢;; € R denotes the ith component of p; eR™ and
Qﬁ, $;; € R denotes the ith components of _¢_>J_, o; e R™,
which are defined as follows:

;=10 050

@- = [5]-1, Eﬂ,

! gb-J'ﬂl]T

Bl "
P I

3. Problem Statement

The objective is to design the control input, 7(t), to en-
sure end-effector position and orientation tracking for the
robot model given by (1) and (10), despite any parametric
uncertainty in the kinematic and dynamic models. We will
assume that the only measurable signals are the joint po-
sition, joint velocity, and end-effector position. To mathe-
matically quantify this objective, the desired position and
orientation of the robot end-effector is defined by a desired
orthogonal coordinate frame, £;. The vector pa(t) € R3 de-
notes the position of the origin of &£, relative to the origin
of B, while the rotation matrix from &4 to B is denoted by
R4(t) € SO(3).

The end-effector position tracking error, e,(t) € R3, is

defined as:

€p =Pd— P (16)
where py(t), pa(t), and fq(t) are assumed to be known,
bounded functions of time. The orientation of £4, rela-
tive to B, is specified in terms of a desired unit quater-
nion, qq(t) =[goa(t), ¢1,(t)]T € R4, with go4(t)€R and
9vd(t) €R®. Then, as with (7), the rotation matrix from &,
to B can be calculated from the desired unit quaternion,
q4(t), as follows:

Ra(qa) = (454 — Guagua) s + 2uadiy + 2¢oaq’,  (17)
where it is assumed that Rq, Ry, By € Lo. Asin (11}, the
time derivative of ga(t) is related to the desired angular
velocity of the end-effector (the angular velocity of &,
relative to B), denoted by wy(t) € R3, through the known
kinematic equation:

da = B(ga)wa (18)

To quantify the difference between the actual and
desired end-effector orientations, we define the rotation
matrix R € S50(3), from £ to &, as follows:

R2RTR= (€2~ eTe, ) I3 + 2e,el + 2eqe) (19)
where eg(t) £ (e (t), el (t)]T € R* represents the unit
quaternion tracking error that satisfies the constraint:

T, _ .2, T, _
€,q =€, te e, =1

T (20)

The quaternion tracking error, e,(t), can be explicitly
calculated from ¢(t) and gq4(t), via quaternion algebra, by



noticing that the quaternion equivalent of R= RTR is the
following quaternion product [6, 21]:

eq = 445 (21)

where g3(t) 2 [goa(t), —Z,(t)]” € R* is the unit quaternion
representing the rotation matrix, RY(qq). After using
quaternion algebra, the quaternion tracking error can be
derived as follows (see [6] and Theorem 5.3 of [21]):

€o _ Godod + qzqu (22)

€y JodQs — QoQvd + 45 Gud

Based on (11), (18), and (22), the unit quaternion
error system can be formulated as follows [22]:

1
éo - 593‘3
=11 (23)
€y 5(6013 —eX)w

The angular velocity of £ with respect to &y, with
coordinates in &g, denoted by &(t) € R?, can be calculated
from (19) as follows [23]:

@ = RT(w ~ wq) (24)

The end-effector tracking errors are then written using
(10), (16), and (24) as:

NI (25)

W —~Wq
where A € R6%6 is defined as:

—~I3 0
A= 3 3x3 (26)

O3x3 RY

where 033 represents a 3 x 3 matrix of zeros. Based on the
above definitions, the tracking objective, defined in terms
of the end-effector position and unit quaternion error, is to
design the control input, 7(¢), such that:
les(t)] = 0 and les(t)[f 0 as t—o0  (27)
The orientation tracking objective given in (27) can
also be stated in terms of e,(t). Specifically, (20) implies
that:
0<|les(t)] £1 and  0< e () <1 (28)
for all time and, if e, (t)]] — 0 as t — oo, then e,(t) — 1 as
t—o0. Thus, if fe,(t)|| =0 as t — oo, then (19), along
with the previous statement, can be used to conclude

that R(t) — I3 as t —oco. Hence, the orientation tracking
objective can be achieved.
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4, Tracking Error System Development

To facilitate the development of the open-loop error system,
an auxiliary variable, n(t) € R®, is defined as follows: ’

de + klep

n=(AJ)! +6 (29)

-Rgud + koe,

where ki, ks € R®*® are positive, constant, diagonal ma-
trices and J(0,¢;) € R®*% is an estimated manipulator
Jagobi%}n matrix. Afj;er qdding and subtracting the terms
AJ(8,¢;)6(t) and AJ (8, ¢;)n(t) to (25), and utilizing (26),
the following kinematic error system can be developed:

ép k‘1€p - ~
=- + A(Jn + W;¢;) (30)
w kgev

where W;(-) € R®*™  which was introduced in (13), and
the parameter estimation error term ¢;(t) € R™ is defined
as:

b;=0,—d; (31)

The adaptive estimate qAbj(t) € R™ | introduced in (31),
is designed as follows:

é; = proj{y} (32)

where the auxiliary term, y € R™!, is defined as:

] ,
y=DWIAT |7 (33)
e'll

where 'y e R™1*™ js a constant positive diagonal matrix
and the function proj{y} is defined as:

( .
s if 950 > ¢,
Vi if (iji = jS and y; >0
] 0 ifg;,=¢. andy <0
proj{y} & o (34)
: 0 if¢ji:¢ji and y; > 0
yi if éﬂ = aﬁ and y; <0
(¥ if 95 < aﬂ
¢, < 6;i(0) < 0y (35)

where y; denotes the ith component of y and d;ji(t) denotes
the 7th component of ¢; (t). (Note that the above projection
algorithm ensures that Q}, §$j(t) Saj and, hence, using
Property 7, we can observe that the estimated manipulator
Jacobian matrix, J(, &1-), will always be non-singular. For
further details of the projection algorithm the reader is
referred [24]).




To obtain the: closed loop error system for n(t), we
first take the time derivative of (29) to obtain the following
expression:

d A
= —{H{AJ)!
di —wad + koe,

Da + klep

7 +6  (36)

After pre-mulitiplying (36) by M (6), substituting (1)
into the resulting expression for M(6)6(t), and utilizing
(29), the following; simplified expression can be obtained:

Mg =-Vpn+74+Wyo, (37)

where W, (pa,Pa, B4, 94, Wd, W, P, q, 0,6) € RE*™2 s 3 re-
gression matrix off known and measurable quantities and
¢y €R™ is a vecteor of ny unknown constant parameters.
The product W,(-})¢,, introduced in (37), is defined as:

d

. 0+ kre
Wy6, = M= {(A)™! b Eiep

—ngd + kqey,
N ] Pa + klep

+ W (A)7!
—ngd + koe,

—G(9) - F 0 (38)

Based on (37),. and the subsequent stability analysis,
the control input, 77(t), is designed as:

T=—W,$, — ko — (AJ)T |7 (39)

€y

where k, €R5%S ig; a constant, positive, diagonal matrix
and ¢y(t) € R™ deenotes an adaptive estimate, which is
generated by the faflowing differential expression:

¢y = T2W, 7 (40)

where 'y € R"2*™2 s a positive, constant, diagonal matrix.
After substituting ((39) into (37), the following closed-loop
error system is obtained:

~ ~ (&
M7 =— mh -+ Wy(by —k.n— (AJ)T ? (41)

€y
where the adaptive  estimation error is defined as:
d_’y = ¢y~ (ij (42)

Remark 2 Baised on the definition of the quater-
nion error system in (23), the kinematic error system
in (30), and the regression matriz in (38), we can con-
clude that W,(-) dloes not require the measurement of
the task-space velwcity. Further, from the definition of
ep(t), e,(t), and n(g), it is clear that the control input
torque, 7(t), does mot require measurement of the task
space velocity.
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5. Stability Analysis

Theorem 1 Given the robotic system described by (1),
the control input (39), along with the adaptive laws de-
fined in (32) and (40), guarantee asymptotic regulation
of the end-effector position error and the unit quater-
nion error, in the sense that ||ey(t)|| >0 as t — oo and
leo(t)] =0 ast— oo, thus completing the position and
orientation tracking objective.

Proof Let V(t) € R denote the following non-negative
scalar function:

1 1
V.= EeZe,, +(1—ep)® +ele, + EUTJW??
1-p 4= 1-p 1+
+ §¢JTFI 1, + §¢§F2 'y (43)

After taking the time derivative of (43) and utilizing
(23), (31), and (42), the following expression is obtained:

V= ele, + (1 - eo) (el @) + el (eols — €)@

1 . T 1A
+ 50" M+ 0T M~ §]T5', ~ §1T1 15 (44)

Upon further simplification of equation (44), by can-
celling common terms, and substituting for M7 from (41),
the following expression for V() can be obtained:

‘ é
V= [er eI |71 = 0Tken — 7 Vo
w

- n €
+nT Wy, —nT(AS)T | P
€y
1 . ~ 4R ~ 9%
n"Mn—¢IT'4; — 91 T3,  (45)

T3

After using Property 3, substituting from (30), (32),
and (40), and cancelling terms, V(¢) can be expressed as:

. klep ~
V=[elel'] |- +AW;¢;
P k2€v
—n"ken — ¢ T proj{y} (46)

Substituting for y from (33) and using the definition of
the projection function, (34), the expression for V(¢) can
be upper bounded as follows:

V < Amin{ki}lepl? = Amin{k2} [leoll?
“Amin{ke}nl® (47)

where Ay, is the minimum Eigenvalue of the matrix.
The expressions in (43) and (47) can be used to
prove that e,(t), e,(t), n(t), ¢;(t), ¢,(t) € Lo and that
ep(t), eu(t), n(t) € Lo, Using (16), and the assumption
that py(t) € Loo, it is clear that p(t) € Loo. From (31)
and (42) it can be concluded that ¢;(t), ¢y(t) € Lo.
Utilizing Property 7, the definition of n(t) in (29),




and the fact that ep(t), e,(t), n(t) € L, we can show
that 6(t)€ Loo. Moreover, (9), (16), and the fact that
J(0) € L, can be used to show that p(t), é,(t) € Loo.
From (20), (23), (25), and (28) we can show that eg(t),
€o(t), €,(t) € Loo. From the definition of W;(-) and W, (-)
in (13) and (38), respectively, and the preceding argu-
ments, it is clear that W,(-), W;(-) € L. Utilizing (32),

(33), (34), and (40), we can show that ¢;(t), ¢,(t) € Leo.
The definition of 7(t) in (39) can be used to show that
7(t) € Loo. Hence, 8(t), 8(t), 6(t) € Loo. From (36) we can
conclude that 7(t) € Loo. As €p(t), €,(t), 7(t) € Lo and
ep(t), ey(t), n(t) € Lo, Barbalat’s Lemma (25] can be used
to show that |le,(¢)]] —0, |lex(t)}]| =0 and |n(t)|| -0 as
t— oo.

6. Experimental Results

The developed controller was implemented on the Barrett
whole arm manipulator (WAM). The WAM is a seven
degrees of freedom (d.o.f.), highly dexterous, and Iback-
drivable robotic manipulator. The objective of the experi-
ment is to verify the performance of the developed adaptive
controller. So, to simplify the controller implementagion,
five joints of the robot were locked at fixed angles and the
remaining links of the manipulator were used as a two d.o.f.
planar robot manipulator (refer to Fig. 1). The dynamics
of the robot in this planar configuration can be expressed
as [23]:

My Mo | |6,
T = .
Ma; Moo 92_
Vinit Vimiz| |61
+ .
_Vm21 Vin22 _91
- 1T h
+ far .1 (48)
| 0 faz| {61]

Figure 1. Barrett whole arm manipulator.
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The elements of the inertia and centripetal-Coriolis
matrices are defined as follows:

My = mllfl + mal?, + mal? + 2mylylen cos(fy)

M, = m2l32 + malyle2 cos(6a)

My = My Mo = myl%,
V11 = —malile sin(6,)02 (49)
Vi = —malilen sin(02)(91 + 02)

Va1 = malileasin(62)0)  Vipaz =0

where m;, my € R denotes the mass of the links, {;, [, e R
denotes the length of the links, and I.;, [.o € R denotes
the distance to the centre of mass. The terms fy, foo € R
n (48) denote the uncertain friction coefficients of the
manipulator. The vector of uncertain constant dynamic
parameters ¢, € R' was found to be:

By = [dy1,. .., by1a]T (50)

where

_ 2 _ 2 _ 2
Gyr =malily, @y = milals), dys = myls,

_ 2 _ 2 _ 2
Gya = malilyy,  dys = malaldy, Py = mual’y,

— 3 — 2 _ 2
¢y7 - m2117 ¢y8 - m2ll’ ¢y9 - mb2lllc21

dy10 = malilalea, dy11 = malily, Py12 = malylea,

dy13 = far, Py14 = faz.

The control algorithm was written in “C++” and
hosted on an AMD Athlon 1.2GHz PC operating under
QNX 6.2.1. Data logging and on-line gain tuning were
performed using Qmotor 3.0 control software {26]. Data
acquisition and control implementation were performed at
a frequency of 1.0kHz, using the ServoToGo 1/0 board.
Joint positions were measured using the optical encoders
located at the motor shaft of each axis. Jaint velocity
measurements were obtained using a filtered, backwards
difference algorithm. :

Remark 3 The kinematics of the robotic system
are assumed to be unknown. The task-space variable
is assumed to be measured using an externad sensor (a
camera system or laser tracking could be msed). To
simplify the experiment, the task-space measurements
were simulated by using the known kinematics of the
robot (that is, we artificially generated the task-space
position measurements using the known forward kine-
matics). This kinematic information was used only
to artificially generate the task-space signaids and was
not used to generate any other signals in the control
algorithm.

The approximated Jacobian matrix, used im the control
implementation, is defined as follows:

X 0,8y — 13812 —158
JP:A11A212A212 (51)
LC+1C 1Ok




where jp cR?*2, [1, and [2 are estimates for the link
lengthss Sy = simn(6,), Sy = sin(6, + 6,), C; = cos(6,}, and
Ci2 = wos(f; + 62).  The parameter vector, (;ASJ' eR?, is
defined! as:

é; = [lilo)T (52)

and thee estimates were initialized to I (0)=0.42 [m] and
15(0) =0.22 [m].

Thee true link lengths are {; = 0.558 [m] and I, = 0.291
[m]. Wee initialized the link length estimates to 75 percent
of the zrue value. In cases where there was no information
availablle about the link lengths, a best-guess could be used
as an imitial estimate of the link lengths.

A circular desired trajectory was selected for the end-
effector:, which was defined as follows:

0.55 + 0.2 cos(2t)
Pd = (53)
0.25 + 0.2sin(2¢)

Thee initial position of the joints were 0:(0)=3.3°
and 6,(f0) =45.1°, which corresponds to z(0)=0.75 [m],
y(0) =@.25 [m] in the task-space. The control gains that
yielded the best tracking performance were as follows:

ki = aliag{2.5,2.0}, k, = diag{80, 40}, Ty = diag{8,1}
I'; = dliag{20, 45,10,500, 1, 3, 8,15, 20, 5, 500,25, 20,20}
(54)

Remmark 4 In this planar two degree of freedom
examplee, there was no rotational error, eu(t); as such
the gaim ks is not used.

Fig.. 2 shows the actual and desired circular end-
effector ttrajectories for the last revolution. Fig. 3 shows the

= Actual
~— Desired

0.35

t

o3l

i
Eoasp
a2t
0.15 -

0.1 -

0.08 k. - N

a3 04 0.5 06 07 0.8
[m]

Figure 2.. Actual and desired end-effector trajectory (only

the last revolution is shown).

end-effector position tracking error. It shows that, within
approximately 10 seconds, the tracking error converged to
+2 [mm]. From Fig. 2 and Fig. 3 it can clearly be
seen that the position tracking error for the end-effector
is very small. Fig. 4 shows the kinematic parameter
estimates, that is, the link length estimates éj(t) defined
in (52). It is interesting to note that, although there is
no guarantee of the parameter estimates convergence to
their true values, the link length estimates shown in Fig. 4
quite closely approach their true values. F ig. 5 shows the
dynamic parameter estimates: the estimates, ¢, (¢), for the
uncertain dynamic parameters defined in (50). From Figs.
3, 4, and 5, it is clear that the tracking error converges
as the kinematic and dynamic parameters converge. Fig.

~ 6 shows the control input torques to the two links of the

Barrett WAM.

X Axis

Y Axis

40 60 80 100
Time [sec]

Figure 3. End-effector position tracking error.
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Figure 4. Estimates of the link lengths.
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Figure 5. Estimates of the uncertain dynamic parameters defined in (50).

7. Conclusion

Link 1

A task-space, adaptive tracking controller for robot max
nipulators, with uncertainty in both the kinematic and
the dynamic models, was proposed. The controlier yieldls
asymptotic regulation of the end-effector positiom and orii-
entation tracking errors. The advantages of the propose«d
controller are that singularities associated with the threwe
parameter representation are avoided and, unlike with pre-
vious work in this area, the controller does not require
the measurement of the task-space velocity. The experii-
ment carried out on a planar, two link configuration of thie
Barrett WAM validates the performance of the proposed
controller.
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