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Robust containment control in a leader–follower network of
uncertain Euler–Lagrange systems

Justin R. Klotz*,†, Teng-Hu Cheng and Warren E. Dixon

Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA

SUMMARY

A distributed controller is developed that yields cooperative containment control of a network of autonomous
dynamical systems. The networked agents are modeled with uncertain nonlinear Euler–Lagrange dynamics
affected by an unknown time-varying exogenous disturbance. The developed continuous controller is robust
to input disturbances and uncertain dynamics such that asymptotic convergence of the follower agents’ states
to the dynamic convex hull formed by the leaders’ time-varying states is achieved. Simulation results are
provided to demonstrate the effectiveness of the developed controller. Copyright © 2016 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Cooperation of autonomous systems has been widely investigated in recent years because of its
applicability to many engineering applications. Examples include the distributed control of infras-
tructure systems, industrial process control, vehicle formation control, and social network analysis.
Instead of a single control system performing a task, multiple potentially lower-cost systems can be
coordinated to achieve a network-wide goal, such as employing a team of unmanned aerial vehicles
or autonomous underwater vehicles (AUVs) to perform surveillance, search and rescue, or haz-
ardous material recollection. Consensus is a network control strategy introduced to quantify such
a cooperative objective where the states of the networked systems are regulated to the same value
while network neighbors simultaneously tend to each others’ states during transient performance. In
consensus, network interaction is commonly modeled as being distributed, where systems only use
information from network neighbors to compute a control signal such that a global objective can be
achieved without requiring all-to-all communication; see [1–4] for some prominent examples.

Although terminology has been inconsistent in the literature, synchronization (cf. [5–8]) typically
refers to the generalization of the consensus problem by allowing the desired state of the networked
systems to be time-varying. The desired trajectory for the cooperating systems is typically specified
by a network leader, which can be a preset time-varying function or a physical system that the
‘follower’ systems interact with via sensing or communication. For example, a task that requires
an expensive sensor in a search and rescue mission can be accomplished by endowing just one
system with the expensive sensor and instructing the other systems to cooperatively interact with
the autonomous ‘leader.’ This control objective is made more practical by limiting interaction with
the leader to only a subset of the follower systems.

*Correspondence to: Justin R. Klotz, Department of Mechanical and Aerospace Engineering, University of Florida,
Gainesville, FL 32611-6250, USA.

†E-mail: jklotz@ufl.edu

Copyright © 2016 John Wiley & Sons, Ltd.



3792 J. R. KLOTZ, T. CHENG, AND W. E. DIXON

Containment control (cf. [9–18]) is a generalization of the synchronization problem that allows
for a collection of leaders. Containment control is useful in applications where a team of autonomous
vehicles is directed by multiple pilots or for networks of autonomous systems where only a subset of
the systems is equipped with expensive sensing hardware. The typical objective in the containment
control framework is to regulate the states of the networked systems to the convex hull spanned by
the leaders’ states, where the convex hull is used because it facilitates a convenient description of
the demarcation of where the follower systems should be with respect to the leaders.

Containment control is investigated in [9] and [11] for static leaders and in [10] for a combi-
nation of static and dynamic leaders. Containment controllers for dynamic leaders and followers
with linear dynamics are developed in [12–15, 19]. A controller designed for the containment of
social networks with linear opinion dynamics represented with fractional order calculus is devel-
oped in [16]. Results in [17] and [18, 20] develop a model knowledge-dependent and model-free
containment controller, respectively, for the case of dynamic leaders and Euler–Lagrange dynamics,
where Euler–Lagrange dynamics are used for the broad applicability to many engineering systems.
However, none of the previous results analyze the case where follower systems are affected by an
exogenous, unknown disturbance, which has the capability of cascading and disrupting the perfor-
mance of the entire network from a single source. Compared with the work in [18], the development
in this work demonstrates compensation of unknown input disturbances and does not require com-
munication of an acceleration signal from the leader or neighboring follower agents. Furthermore,
whereas the stability analysis in [18] is temporally divided into an estimation segment and a sub-
sequent Lyapunov-based stability analysis for showing network containment, which relies on the
assumption of boundedness of the dynamics until estimate equivalence is reached, the present work
yields asymptotic network containment throughout the entire state trajectory. A sliding-mode based
controller is developed in [20] for the compensation of exogenous disturbances in containment con-
trol of an undirected network of agents with Euler–Lagrange dynamics. However, the sliding-mode
portion of the controller in [20] makes the developed control law discontinuous, which is diffi-
cult to implement in practice. Compared with the development in [20], the controller developed in
this paper provides compensation of unknown exogenous disturbances with a continuous control
signal, which is generally much more feasible to implement. The contribution of this paper is the
development of a continuous, distributed controller that provides asymptotic containment control
in a network of dynamic leaders and followers with uncertain nonlinear Euler–Lagrange dynamics,
despite the effects of exogenous disturbances, where at least one of the followers interacts with at
least one leader and the follower network is connected. Euler–Lagrange equations of motion are
used to model the agents’ dynamics because of their ability to capture nonlinearities intrinsic to
many engineering systems, such as robotic systems and power generators (cf. [21]), and are still the
subject of active research efforts (cf. [22–24]).

2. PROBLEM FORMULATION

2.1. Preliminaries

Graph theory is used to streamline the analysis of the considered networked dynamical systems.
To facilitate the subsequent analysis, consider a network of L 2 Z>0 leader agents and F 2 Z>0
follower agents. Communication of the follower agents is described with a fixed undirected graph,
GF D ¹VF ; EF º, where VF , ¹LC 1; : : : ; LC F º is the set of follower nodes and EF � VF �VF
is the corresponding edge set. An undirected edge .i; j / (and also .j; i/) is an element of EF if
agents i; j 2 VF communicate information with each other; without loss of generality, the graph
is considered to be simple, that is, .i; i/ … EF 8i 2 VF . The follower agent neighbor set NF i ,
¹j 2 VF j .j; i/ 2 EF º is the set of follower agents that transmit information to agent i . The connec-
tions in GF are succinctly described with the adjacency matrix AF D

�
aij
�
2 RF�F , where aij > 0

if .j; i/ 2 EF and aij D 0 otherwise. The Laplacian matrix LF D
�
pij
�
2 RF�F associated

with graph GF is constructed such that pi i D
P
j2NFi aij and pij D �aij if i ¤ j . The directed

graph G D ¹VF [ VL; EF [ ELº containing both the leader and follower agents is a supergraph of
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GF constructed by appending an edge .l; i/ 2 EL to GF if leader agent l 2 VL communicates infor-
mation to follower agent i 2 VF , where VL , ¹1; : : : ; Lº is the leader node set and EL � VL � VF
is the set of leader–follower edges. The adjacency matrix A D

�
aij
�
2 R.LCF /�.LCF / for graph

G is similarly defined such that aij > 0 if .j; i/ 2 EF [ EL and aij D 0 otherwise. Let the diag-
onal leader-connectivity matrix B D

�
bij
�
2 RF�F be defined such that bi i D

P
l2VL ail and

bij D 0 for i ¤ j . The Laplacian matrix for graph G can be constructed similarly to LF and can

be represented as L D
�

0L�L 0L�F
LL LF C B

�
, where LL 2 RF�L and 0 is the zero matrix of denoted

dimensions. For brevity, let the matrix LF C B be abbreviated as LB , LF C B .

2.2. Dynamic model and properties

The dynamics of each follower agent i 2 VF are described by the nonidentical Euler–Lagrange
equations of motion

Mi .qi / Rqi C Ci .qi ; Pqi / Pqi CHi . Pqi /CGi .qi /C di D �i ; (1)

where qi 2 Rm is the generalized configuration coordinate, Mi W Rm ! Rm�m is the inertia
matrix, Ci W Rm � Rm ! Rm�m is the Coriolis/centrifugal matrix, Hi W Rm ! Rm represents
friction, Gi W Rm ! Rm represents gravitational effects, �i 2 Rm represents the vector of control
inputs, and di W R>0 ! Rm is a time-varying nonlinear exogenous disturbance. Functional depen-
dency will be omitted in the remainder of the paper where the meaning is clear from context.
The following assumption is characteristic of physical systems with dynamics described by Euler–
Lagrange equations of motion and is used to provide bounds on the effects of the inertia matrix of
the dynamics of each system (cf. [11, 18, 25]).

Assumption 1
For each follower agent i 2 VF , the inertia matrix Mi is symmetric, positive-definite, and satisfies
the inequalitymi k�k

2 6 �TMi� 6 Qmi k�k2 8� 2 Rm, where k�k represents the standard Euclidean
norm, mi 2 R>0 is a known constant, and Qmi W Rm ! R>0 is a bounded function such that
mi 6 Qmi .qi / 6 Nmi 8qi 2 Rm, where Nmi 2 R>0 is a known constant.

The following assumptions concern the smoothness of the agents’ dynamics. For example,
marine craft hydrodynamics and exogenous disturbances (e.g., waves) are often modeled as smooth
(cf. [26]).

Assumption 2 ([25])
For each follower agent i 2 VF , the functions Mi ; Ci ;Hi ; Gi are second-order differentiable such
that the second time derivative is bounded, provided q.k/i 2 L1, k D 0; : : : ; 3.

Assumption 3 ([27])
For each follower agent i 2 VF , the time-varying disturbance term is sufficiently smooth such that
it and its first two time derivatives, di ; Pdi ; Rdi , are bounded by known constants.

The following assumption specifies the smoothness and boundedness of the leader trajectories.
For example, in a UAV surveillance mission, the monitored area is naturally bounded.

Assumption 4
Each time-varying leader configuration coordinate, ql W R>0 ! Rm .l 2 VL/, is sufficiently smooth
such that ql 2 C2; additionally, each leader configuration coordinate and its first two time derivatives
are bounded such that ql ; Pql ; Rql 2 L1.

The following assumption is necessary for the leaders’ states to be able to affect the trajectories
of the follower agents.

Assumption 5
For each follower agent i 2 VF , there exists a directed path from a leader l 2 VL to i .
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Note that by Assumptions 5 and [9, Lemma 4.1], the matrix LB is positive-definite. For
convenience, the follower agents’ dynamics are stacked as

M RQF C C PQF CH CG C d D �; (2)

where

M ,diag ¹MLC1; : : : ;MLCF º 2 RFm�Fm

QF ,
�
qTLC1; : : : ; q

T
LCF

�T
2 RFm

C ,diag ¹CLC1; : : : ; CLCF º 2 RFm�Fm

H ,
�
HT
LC1; : : : ; H

T
LCF

�T
2 RFm

G ,
�
GTLC1; : : : ; G

T
LCF

�T
2 RFm

d ,
�
dTLC1; : : : ; d

T
LCF

�T
2 RFm

� ,
�
�TLC1; : : : ; �

T
LCF

�T
2 RFm:

3. CONTROL OBJECTIVE

The objective is to design a continuous controller for the follower agent dynamics in (1) that drives
the states of all follower agents to the (possibly time-varying) convex hull spanned by the leader
agents’ states despite exogenous nonlinear input disturbances and modeling uncertainties. Further-
more, only the configuration coordinate and its first time derivative are assumed to be measurable
for the leader and follower agents. An error signal, e1;i 2 Rm .i 2 VF /, is developed to quantify
the neighborhood tracking error as

e1;i ,
X

j2VF[VL

aij
�
qi � qj

�
; (3)

which includes the state difference between neighboring follower agents and neighboring leader
agents. Note that there is no restriction on an edge weight aij for an existing connection
.i; j / 2 E other than the weight is positive and aij D aj i 8i; j 2 VF . Therefore, the control
can emphasize a connection .j; i/ by increasing aij if it is desired for agent i 2 VF to maintain
close similarity to agent j 2 VF [ VL . An auxiliary tracking error, e2;i 2 Rm, is designed as

e2;i , Pe1;i C ˛1;ie1;i ;

where ˛1;i 2 R>0 is a constant gain. By stacking the follower agents’ error signals e1;i and e2;i

as E1 ,
h
eT1;LC1; : : : ; e

T
1;LCF

iT
2 RFm and E2 ,

h
eT2;LC1; : : : ; e

T
2;LCF

iT
2 RFm, the network

error dynamics can be written as

E1 D .LB ˝ Im/QF C .LL ˝ Im/QL; (4)

E2 D PE1 C�1E1; (5)

where ˝ represents the Kronecker product, I is the identity matrix of denoted dimensions, QL ,�
qT1 ; : : : ; q

T
L

�T
2 RLm is the stack of leader agent states, and�1 , diag ¹˛1;LC1; : : : ; ˛1;LCF º˝

Im 2 RFm�Fm is a diagonal matrix of gains. An auxiliary error signal, R 2 RFm, is designed as

R , .LB ˝ Im/�1
�
PE2 C�2E2

�
; (6)
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where the matrix LB ˝ Im is invertible because LB is invertible and �2 ,
diag ¹˛2;LC1; : : : ; ˛2;LCF º˝Im 2 RFm�Fm is a diagonal matrix containing the gains ˛2;i 2 R>0.
The auxiliary error signal R is not used in the subsequently designed controller because it depends
on the second derivative of the configuration coordinate and is only introduced to facilitate an
expression for the closed-loop error system.

Similar to [15], the error system in (3) is designed such that kE1k ! 0 implies that the Euclidean
distance from qi to the convex hull formed by the leader agents also asymptotically converges
to zero for all i 2 VF . This implication is stated in the following lemma, which is used in the
subsequent development.

Lemma 1
If Assumption 5 is satisfied, then kE1k ! 0 implies that d .qi ;Conv ¹ql j l 2 VLº/! 0 8i 2 VF ,
where Conv¹�º denotes the convex hull of the set of points in its argument and the distance d .p; S/
between a point p and a set S is defined as infs2S kp � sk for all p 2 Rn and S � Rn.

Proof
See the Appendix. �

4. CONTROLLER DEVELOPMENT

An open-loop error system is designed by pre-multiplying the auxiliary tracking error R in (6) by
M and using (2), (4), and (5) as

MR D � � d C S1 C S2; (7)

where the functions S1 2 RFm and S2 2 RFm are defined as

S1 ,M .QF / .LB ˝ Im/
�1
�
.�1 C�2/E2 ��

2
1E1

�
� C

�
QF ; PQF

�
PQF �H

�
PQF

�
�G .QF /

CM .QF /
�
L�1B LL ˝ Im

�
RQL CH

���
L�1B LL

�
˝ Im

�
PQL

�
CG

���
L�1B LL

�
˝ Im

�
QL

�
C C

���
L�1B LL

�
˝ Im

�
QL;

��
L�1B LL

�
˝ Im

�
PQL

� ��
L�1B LL

�
˝ Im

�
PQL

�M
���
L�1B LL

�
˝ Im

�
QL

� �
L�1B LL ˝ Im

�
RQL;

S2 , � C
���
L�1B LL

�
˝ Im

�
QL;

��
L�1B LL

�
˝ Im

�
PQL

�
�
��
L�1B LL

�
˝ Im

�
PQL �H

���
L�1B LL

�
˝ Im

�
PQL

�
�G

���
L�1B LL

�
˝ Im

�
QL

�
CM

���
L�1B LL

�
˝ Im

�
QL

� �
L�1B LL ˝ Im

�
RQL:

Terms in (7) are organized so that, after a mean value theorem-based approach (cf. [28, Lemma 5]),
kS1k can be upper-bounded by a function of the errors signals E1; E2; R and kS2k can be
upper-bounded by a constant. Note that the term M .QF / .LB ˝ Im/

�1
�
.�1 C�2/E2 ��

2
1E1

�
can be upper-bounded by a function of the error signals using a mean value theorem-
based approach after adding and subtracting the term M

���
L�1B LL

�
˝ Im

�
QL

�
.LB ˝ Im/

�1

�
�
.�1 C�2/E2 ��

2
1E1

�
within S1.

The developed robust distributed controller for follower agent i 2 VF is designed as

�i D
X
j2NFi

aij
��
ks;j C Im

�
e2;j � .ks;i C Im/ e2;i

�
� bi i .ks;i C Im/ e2;i C �i ; (8)

where the function‡ �i W ˘
jNFi jC1
jD1 Rm ! Rm is the generalized solution to the differential equation

‡In this context,˘ denotes the Cartesian product.
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P�i ,
X
j2NFi

aij
��
ks;j C Im

�
˛2;j e2;j � .ks;i C Im/ ˛2;ie2;i

�
C

X
j2NFi

aij
�
�jSgn

�
e2;j

�
� �iSgn .e2;i /

�
� .ks;i C Im/ bi i˛2;ie2;i � bi i�iSgn .e2;i /

(9)

with �i .0/ D �i0 2 Rm as a user-specified initial condition, where ks;i 2 Rm�m is a con-
stant positive-definite gain matrix, �i 2 Rm�m is a constant diagonal positive-definite gain
matrix, the function Sgn.�/ is defined for all � D

�
�1; : : : ; �v

�T
2 Rv as Sgn.�/ ,�

sgn .�1/ ; : : : ; sgn .�v/
�T

, and j � j denotes set cardinality for a set argument. Note that the con-
troller in (8) is continuous, only relies on the configuration coordinate and its first derivative, and is
distributed in communication: agent i requires its own error signal and the error signals of neighbors
j 2 NF i . The use of neighbors’ error signals in the control law provides cooperation among the fol-
lower agents. Assuming that a neighbor’s state can be sensed, then only one-hop communication is
necessary to compute the control authority in (8). In (8) and (9), the terms multiplied by the gain ks;i
provide proportional and derivative feedback and the signum-based terms multiplied by the gain �i
provide robust feedback that is used to reject the unknown time-varying disturbances, as shown in
the following stability analysis. Similar to how sliding-mode-based controllers use the signum func-
tion to compensate for exogenous disturbances, the developed approach uses the signum function
in the derivative of the controller to compensate for exogenous disturbances, provided that they are
sufficiently smooth (Assumption 3). Note that a strategy involving additive gradient-based control
terms, such as that in [29], can be used if collision avoidance is necessary for the control objective.

After taking the time-derivative of (7), the closed-loop error system is

M PR D� .LB ˝ Im/ .Ks C IFm/
�
PE2 C�2E2

�
� .LB ˝ Im/ ˇSgn .E2/C QN C .LB ˝ Im/Nd

� .LB ˝ Im/E2 �
1

2
PMR;

(10)

where the first two terms are contributions from the derivative of the stack of follower
agents’ control inputs P� D .LB ˝ Im/ .Ks C IFm/

�
PE2 C�2E2

�
� .LB ˝ Im/ ˇSgn .E2/;

Ks , diag .ks;LC1; : : : ; ks;LCF / 2 RFm�Fm is a block-diagonal gain matrix and ˇ ,
diag .�LC1; : : : ; �LCF / 2 RFm�Fm is a diagonal gain matrix; and the unknown auxiliary functions
QN W ˘7

jD1R
Fm ! RFm and Nd W R>0 ! RFm are defined as

QN , PS1 C .LB ˝ Im/E2 �
1

2
PMR; (11)

Nd ,
�
L�1B ˝ Im

� �
Pd C PS2

	
: (12)

Terms in QN are segregated such that after taking advantage of the expressions QF D�
L�1B ˝ Im

�
E1�

�
L�1B ˝ Im

�
.LL ˝ Im/QL, PE1 D E2��1E1, and PE2 D .LB ˝ Im/R��2E2,

Assumptions 2 and 4, and a mean value theorem-based approach (cf. [28, Lemma 5]), (11) can be
upper-bounded by 

 QN

 6 � .kZk/ kZk ; (13)

where Z 2 R3Fm is the composite error vector defined as Z ,
�
ET1 ET2 RT

�T
and � W R>0 !

R>0 is a strictly increasing, radially unbounded function. Moreover, other terms in (10) are segre-
gated in the function Nd such that it and its first derivative can be upper-bounded such that, for all
k 2 ¹1; : : : ; Fmº,

sup
t2Œ0;1/

jNd jk 6 ıa;k;

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:3791–3805
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sup
t2Œ0;1/

ˇ̌
PNd
ˇ̌
k
6 ıb;k;

after using Assumptions 3 and 4, where j � jk denotes the absolute value of the kth component
of the vector argument and ıa;k; ıb;k 2 R>0 are constant bounds. In the subsequent stabil-
ity analysis, the terms in Nd and PNd are compensated by using the signum feedback terms in
(9). For clarity in the following section, let the vectors �a;i ; �b;i 2 Rm be defined such that
�a;i ,

�
ıa;m.i�1/C1 : : : ; ıa;m.i�1/Cm

�T
and �b;i ,

�
ıb;m.i�1/C1 : : : ; ıb;m.i�1/Cm

�T
, which

represent the contribution of the disturbance terms for each agent.

5. STABILITY ANALYSIS

An auxiliary function P W RFm � RFm � R>0 ! R is included in the subsequently defined
candidate Lyapunov function so that sufficient gain conditions may be obtained for the compensa-
tion of the bounded disturbance terms in Nd . Let P be defined as the generalized solution to the
differential equation

PP D �
�
PE2 C�2E2

�T
.Nd � ˇSgn .E2// ;

P.0/ D

FmX
kD1

ˇk;k jE2.0/jk �E
T
2 .0/Nd .0/;

(14)

where ˇk;k denotes the kth diagonal entry of the diagonal gain matrix ˇ. Provided the sufficient gain
condition in (18) is satisfied, then P > 0 for all t 2 Œ0;1/ [8].

Remark 1
Because the closed-loop error system in (10) and the derivative of the signal P in (14) are dis-
continuous, the existence of Filippov solutions in the given differential equations is addressed
before the Lyapunov-based stability analysis is presented. Consider the composite vector 	 ,�
ZT ; �TLC1; : : : ; �

T
LCF ;

p
P
�T
2 R4FmC1, composed of the stacked error signals, the signal

contributing discontinuities to the derivative of the developed controller, and the aforementioned
auxiliary signal P . Existence of Filippov solutions for the closed-loop dynamical system P	 D
K Œh1
 .	; t/ can be established, where h1 W R4FmC1 � R>0 ! R4FmC1 is a function defined as
the right-hand side of P	 and K Œh1
 .%; t/ , \ı>0 \�.Sm/D0 co h1 .Bı.%/ n Sm; t /, where ı 2 R,
\�.Sm/D0 denotes the intersection over the sets Sm of Lebesgue measure zero, co denotes convex
closure, and Bı.%/ ,

®
� 2 R4FmC1 j k% � �k < ı

¯
, where �; % 2 R4FmC1 are used as dummy

variables [30–32].

Let the auxiliary gain constant ˆ 2 R be defined as

ˆ , min

²
min
i2VF

˛1;i �
1

2
; min
i2VF

˛2;i �
1

2
; �min

�
L2B

�³
;

where �min.�/ denotes the minimum eigenvalue. A continuously differentiable, positive-definite
candidate Lyapunov function VL W D! R is defined as

VL .y; t/ ,
1

2
ET1 E1 C

1

2
ET2 E2 C

1

2
RTM.t/RC P; (15)

where the composite vector y 2 R3FmC1 is defined as y ,
�
ZT
p
P
�T

, D is defined as the open
and connected set

D ,
°
� 2 R3FmC1 j k�k < inf

�
��1

°�h
2
p
ˆ�min ..LB ˝ Im/Ks .LB ˝ Im//

	
;1

	±	±
;
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and ��1¹�º denotes the inverse mapping of a set argument. To facilitate the description of the semi-
global property of the following Lyapunov-based stability analysis, the set of stabilizing initial
conditions SD � D is defined as

SD ,
²
� 2 D j k�k <

s
�1

�2
inf
�
��1

°�h
2
p
ˆ�min ..LB ˝ Im/Ks .LB ˝ Im//

	
;1

	±	³
:

Because of the construction of VL in (15), VL satisfies the inequalities

�1 kyk
2 6 VL .y; t/ 6 �2 kyk2 8t 2 Œ0;1/ ; (16)

where �1; �2 2 R>0 are constants defined as �1 , 1
2

min
®
1;minj2VF mj

¯
and �2 ,

max
®
1; 1
2

maxj2VF Nmj
¯

via Assumption 1. The following theorem describes the performance of
the networked dynamical systems through the use of the Lyapunov function candidate in (15).

Theorem 1
For every follower agent i 2 VF , the distributed controller in (8) guarantees that all signals are
bounded under closed-loop control and that containment control is semi-globally achieved in the
sense that d .qi ;Conv ¹ql j l 2 VLº/! 0 as t !1, provided that the gains ks;i , for all i 2 VF , are
selected sufficiently large such that the initial condition y.0/ lies within the set of stabilizing initial
conditions SD, and the gains ˛1;i , ˛2;i , �i are selected according to the sufficient conditions

˛1;i >
1

2
; ˛2;i >

1

2
; (17)

�min .�i / > k�a;ik1 C
1

˛2;i



�b;i

1 (18)

for all i 2 VF , where k�k1 denotes the infinity norm.

Proof
Using Filippov’s framework, a Filippov solution can be established for the closed-loop system Py D
h2 .y; t/, where h2 W R3FmC1�R>0 ! R3FmC1 denotes the right-hand side of the derivative of the
closed-loop error signals and PP . Accordingly, the time derivative of (15) exists almost everywhere
(a:e:) on the time domain Œ0;1/ and PVL

a:e:
2 PQVL, where

PQVL D \�2@VL.y;t/�
TK

h
PET1
PET2
PRT 1

2
P�

1
2 PP 1

iT
; (19)

where @VL is the generalized gradient of VL and the entry 1 in (19) accommodates for the expression
of M as time-dependent in (15). Because VL .y; t/ is continuously differentiable,

PQVL � rVLK
h
PET1
PET2
PRT 1

2
P�

1
2 PP 1

iT
; (20)

where rVL ,
h
ET1 ET2 RTM 2P

1
2
1
2
RT PM.t/R

i
. After using the calculus for KŒ�
 from [30]

and substituting expressions from (5), (6), (10) and (14), (20) may be written as

PQVL �E
T
1 .E2 ��1E1/CE

T
2 ..LB ˝ Im/R ��2E2/

CRT
�
� .LB ˝ Im/ .Ks C IFm/

�
PE2 C�2E2

�
� .LB ˝ Im/ ˇK ŒSgn .E2/
C QN C LBNd

� .LB ˝ Im/E2 �
1

2
PMR

�
C
1

2
RT PMR �

�
PE2 C�2E2

�T
.Nd � ˇK ŒSgn .E2/
/ ;

(21)
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where K ŒSgn .E2/
k D 1 if E2k > 0, K ŒSgn .E2/
k D �1 if E2k < 0, K ŒSgn .E2/
k 2 Œ�1; 1
 if
E2k D 0, and here the subscript k denotes the kth vector entry [30]. The set in (21) reduces to a
scalar because the right-hand side is continuous a:e: because of the structure of the error signals;
that is, the right-hand side is continuous except for the Lebesgue negligible set of time instances
in which RT .LB ˝ Im/ ˇK ŒSgn .E2/
 � RT .LB ˝ Im/ ˇK ŒSgn .E2/
 ¤ ¹0º§. After cancel-
ing common terms, using the Raleigh–Ritz theorem and triangle inequality, recalling that LB is
positive-definite and symmetric, and using the bounding strategy in (13), the scalar value PVL can be
upper-bounded a:e: as

PVL
a:e:
6 1
2
kE1k

2 C
1

2
kE2k

2 � �min .�1/ kE1k
2 � �min .�2/ kE2k

2 C kRk � .kZk/ kZk

�RT .LB ˝ Im/Ks .LB ˝ Im/R �R
T .LB ˝ Im/

2R:

(22)

Using the definition of the auxiliary gain constant ˆ, which is positive given the sufficient gain
conditions in (17) and the positive-definite property of LB (note that the product .LB ˝ Im/

2 is
positive-definite because LB is positive-definite and symmetric), (22) is rewritten as

PVL
a:e:
6 �ˆ kZk2 � �min ..LB ˝ Im/Ks .LB ˝ Im// kRk

2 C kRk � .kZk/ kZk ;

where the product .LB ˝ Im/Ks .LB ˝ Im/ is positive-definite becauseKs is positive-definite and
LB is positive-definite and symmetric. After completing the squares, PVL is again upper-bounded
a:e: by

PVL
a:e:
6 �

�
ˆ �

�2 .kZk/

4�min ..LB ˝ Im/Ks .LB ˝ Im//

�
kZk2 :

Provided the gains ks;i are selected such that the respective minimum eigenvalues are sufficiently
large such that y.0/ 2 SD, there exists a constant c 2 R>0 such that

PVL
a:e:
6 �c kZk2 (23)

for all y 2 D. Thus, the inequalities in (16) and (23) show that VL 2 L1 and, therefore,E1; E2; R 2
L1. A simple analysis of the closed-loop error system shows that the remaining signals are also
bounded. Furthermore, from (23), [32, Corollary 1] can be used to show c kZk2 ! 0 as t !1 for
all y.0/ 2 SD. Because the vector Z contains the vector E1, kE1k ! 0 as t ! 1. By Lemma 1,
d .qi ;Conv ¹ql j l 2 VLº/! 0 8i 2 VF , that is, each follower agent’s state converges to the convex
hull spanned by the leaders’ states.

Note that the controller in (8) is distributed in communication; however, because the stabilizing
set of initial conditions SD depends on the graph-dependent matrix LB , the gains ks;i must be
selected in a centralized manner before execution of the control. However, the set SD can be made
arbitrarily large to include any initial condition y.0/ by increasing the minimum eigenvalues of the
gains ks;i to increase the minimum eigenvalue of the matrix .LB ˝ Im/Ks .LB ˝ Im/. �

6. SIMULATION

To demonstrate the robustness of the developed approach in performing containment control of fol-
lower agents with respect to a set of leader agents, numerical simulations are performed for a group
of AUVs conducting surveillance. Each follower agent is modeled as a conventional, slender-bodied,

§Because of the construction of R in (6), the set of time instances ‚ ,
®
t 2 R>0 j RT .LB ˝ Im/ ˇK ŒSgn .E2/�

�RT .LB ˝ Im/ ˇK ŒSgn .E2/� ¤ ¹0º
¯

can be represented by the union ‚ D [kD1;:::;Fm‚k , where ‚k ,®
t 2 R>0 j E2k D 0^Rk ¤ 0

¯
. Because the signal E2 W R>0 ! RFm is continuously differentiable, it can

be shown that ‚k is Lebesgue measure zero [28]. Because a finite union of Lebesgue measure zero sets is Lebesgue
measure zero,‚ is Lebesgue measure zero. Hence,‚ is Lebesgue negligible.
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fully actuated AUV with nonlinear dynamics as described in [33] (see [26] for more information on
AUV dynamics). The state of each AUV is composed of surge (x), sway (y), heave (´), roll (),
pitch (�), and yaw ( ). Actuation of the AUV is modeled by three independent forces acting at the
center of mass of the vehicle and three independent moments, which can be produced with a given
thruster configuration and an appropriate thruster mapping algorithm, such as that described in [34].

Four leader agents are used to direct five follower agents such that the follower agents’ states
converge to the convex hull formed by the leaders’ time-varying states, which have initial positions
shown in Table I, identical initial velocities of Œ0:2m/s, 0m/s; 0:05m/s; 0 rad/s; 0 rad/s;�0:1 rad/s
T ,
and identical accelerations of Œ�0:02 sin .0:1t/ ;�0:02 cos .0:1t/ ; 0
T m/s2 in surge, sway, and
heave, respectively, such that the leaders form an inclined rectangle that translates in a helical
trajectory. The follower AUVs have initial positions shown in Table II and identical initial veloc-
ities of Œ2m/s; 0m/s; 0m/s; 0 rad/s; 0 rad/s; 0 rad/s
T . All leader and follower agents have initial
roll, pitch, and yaw of 0 rad. The network topology is shown in Figure 1, where aij D 1 if
.j; i/ 2 EF [ EL and aij D 0 otherwise. As in [35], the external disturbances for the fol-
lower AUVs are modeled as Œui sin .0:5t/ ; 0:5vi sin .0:25t/†; 0:2wi rand
T N in surge, sway, and
heave, respectively, and 0 Nm in roll, pitch, and yaw, where ui ; vi ; wi 2 R represent the linear
velocities in surge, sway, and heave, respectively, of the i th follower agent and rand 2 RŒ�1;1�
is a uniformly distributed random number generator. Identical gains for each follower agent i are
selected as ks;i D diag .150; 150; 150; 1; 5; 70/, �i D diag .50; 50; 50; 0:1; 0:2; 0:2/, ˛1;i D 0:2,
and ˛2;i D 0:1.

Table I. Leader initial positions in
surge (x), sway (y), and heave (´).

Leader x (m) y (m) ´ (m)

1 �0:5 0.5 0
2 �0:5 �0:5 0

3 0.5 �0:5 1�

4 0.5 0.5 1�

Table II. Follower initial positions in
surge (x), sway (y), and heave (´).

Follower x (m) y (m) ´ (m)

1 0 0.6 0.1
2 0.1 0.2 0.05
3 0.8 �0:2 0
4 �0:8 0.1 0.1
5 0.2 0.7 0.05

Figure 1. Network topology of leader (‘L’) and follower (‘F’) autonomous underwater vehicles.

†Correction added on 22 March 2016, after first online publication: “2.5” corrected to “0.25”.
‡Correction added on 22 March 2016, after first online publication: “0” corrected to “1”.
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Figure 2. [Top view] Follower autonomous underwater vehicle trajectories in the surge (x) and sway (y)
dimensions. At the labeled time instances, the black outline represents the projection of the leaders’ convex
hull onto surge and sway, black squares represent the follower positions, and circles within the leader outline

represent the equilibrium trajectories of the followers.
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Figure 3. [Front view] Follower autonomous underwater vehicle trajectories in the surge (x) and heave (´)
dimensions. At the labeled time instances, the black outline represents the projection of the leaders’ convex
hull onto surge and heave, black squares represent the follower positions, and circles within the leader outline

represent the equilibrium trajectories of the followers.

The agents’ trajectories are shown in Figures 2 and 3. At the labeled time instances, the black
outline represents the projection of the leaders’ convex hull onto the labeled dimensions, the black
squares represent the follower agent positions, and the circles within the leader outline represent
the equilibrium trajectories of the follower agents (which is a function of the network topology
and leader trajectories, i.e., when kE1k � 0). The containment errors, that is, each dimension of
the error signal e1;i , are shown in Figure 4 for each agent, where ej1;i indicates the j th dimension
of the vector e1;i . In agreement with the analysis of the developed controller, Figures 2–4 indicate
that the follower agents cooperatively become contained within the leader convex hull and converge
to the containment equilibrium trajectories, despite the effects of model uncertainty and unknown
time-varying exogenous disturbances. The Euclidean norms of the overall AUV force and moment
actuation, shown in Figure 5, demonstrate that reasonable actuation levels are used.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2016; 26:3791–3805
DOI: 10.1002/rnc



3802 J. R. KLOTZ, T. CHENG, AND W. E. DIXON

-5

0

5
AUV 1 AUV 2 AUV 3 AUV 4 AUV 5

-2

0

2

-1

0

1

-0.5

0

0.5

-0.5

0

0.5

Time (s)
0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40 45

-0.2

0

0.2

Figure 4. Containment errors of the follower autonomous underwater vehicles in surge, sway, heave, roll,
pitch, and yaw.
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Figure 5. Euclidean norms of the follower autonomous underwater vehicle control efforts.
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7. CONCLUSION

A distributed controller was developed for the cooperative containment control of autonomous net-
worked follower agents with a set of network leaders, which is a generalization of the popular single
leader–follower network. The developed continuous controller provides robustness to input distur-
bances and uncertain, nonlinear Euler–Lagrange dynamics such that the state of each follower agent
asymptotically converges to the convex hull spanned by the leaders’ time-varying states for an arbi-
trary number of leaders. Some notable assumptions are that the agents’ dynamics and disturbances
are smooth, the graph containing the follower agents is connected, and at least one follower agent
is connected to at least one leader. Simulation results are provided to demonstrate the disturbance
rejection capability of the developed controller. Future work may include extension of the given
stability analysis to show stability of the networked system when using the controller in (8) for a
general digraph, such as in [18]; the limitation of the current analysis is that it requires the matrix
LB to be positive-definite, which is not necessarily the case for a follower agent network topology
that is directed. Future research on cooperative containment control may also include the develop-
ment of a distributed controller that is subject to the effects of practical communication, such as
communication delays and packet dropouts (cf. [36–39]).

APPENDIX

Proof of Lemma 1
Because the eigenvalues of LB are positive by Assumptions 5 and [9, Lemma 4.1], the diago-
nal entries are positive, and the off-diagonal entries are nonpositive, all entries of the matrix L�1B
are nonnegative [40, Theorem 2.3]. Because of the structure of the Laplacian matrix L, we have
that L1FCL D 0FCL, which implies LB1F C LL1L D 0L, where 1 is a column vector of
ones with the denoted dimension. Because LB is invertible, 1F D �L�1B LL1L, which implies
that row sums of �L�1B LL add to one, where each entry of the matrix �L�1B LL is nonnegative
because L�1B has only nonnegative entries and LL has only nonpositive entries. Thus, the prod-

uct �
��
L�1B LL

�
˝ Im

�
QL can be represented as

�
qT
d1
; : : : ; qT

dF

�T
D �

��
L�1B LL

�
˝ Im

�
QL 2

RFm, where qdi 2 Rm such that qdi D
P
l2¹1;:::;Lº

�
�L�1B LL

�
il
ql 8i 2 ¹1; : : : ; F º, where

Œ�
ij denotes the matrix entry of the i th row and j th column,
P
l2¹1;:::;Lº

�
�L�1B LL

�
il
D 1

8i 2 ¹1; : : : ; F º, and
�
�L�1B LL

�
il
> 0 8i 2 ¹1; : : : ; F º ;8l 2 ¹1; : : : ; Lº by the aforemen-

tioned conclusions. Because the convex hull for the set S , ¹ql j l 2 VLº is defined as Conv¹Sº ,®P
l2VL ˛lql j .8l W R 3 ˛l > 0/ ^

P
l2VL ˛l D 1

¯
[41], we have that qdi 2 Conv ¹ql j l 2 VLº

8i 2 ¹1; : : : ; F º; in other words, the vectors stacked in the product �
��
L�1B LL

�
˝ Im

�
QL are

within the convex hull formed with the leader agents’ states. Suppose that kE1k ! 0. Then


.LB ˝ Im/�1E1


 ! 0, which implies that


QF C

��
L�1B LL

�
˝ Im

�
QL



 ! 0 by (4), and

thus, QF D
�
qTLC1; : : : ; q

T
LCF

�T
! �

��
L�1B LL

�
˝ Im

�
QL D

�
qT
d1
; : : : ; qT

dF

�T
. Hence,

d .qi ;Conv ¹ql j l 2 VLº/! 0 8i 2 VF . �
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