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A fast estimator is proposed and applied to the problem of range identification in the presence of un-
known motion parameters. Assuming a rigid-body motion with unknown constant rotational parameters
but known translational parameters, estimation of the unknown parameters is achieved by a fast estimator,
followed by recursive least square extraction. The results are also extended to the case of an affine motion.
Simulations demonstrate the superior performance of fast estimation in comparison to an identifier-based
observer.
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1. Introduction

A variety of 3D motion estimation algorithms have been developed since 1970s, inspired by such dis-
parate applications as robot navigation, medical imaging and video conferencing. Even though
motion estimation from imagery is not a new topic, continual improvements in digital imaging, com-
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puter processing capabilities and non-linear estimation theory have helped to keep the topic current.

Existing methods for 3D motion estimation include non-linear optimization formulattro et al.,
2001; Diamantaraset al., 1998; Diamantaras & Strintzis1996), linear least square algorithms
(Papadimitriotet al.,2000), extended Kalman filter (EKEhiusoet al.,2002;Kanoet al.,2001;Soatto

et al.,1996;Azarbayejani & Pentland,995;Matthieset al.,1989) and perspective non-linear observers
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(Janlovic & Ghosh 1995;Chen & Kano2002,2004;Dixon et al.,2003;Ma et al.,2005b; Karagiannis &
Astolfi 2005; Dahl et al, 2005). Perspective non-linear observers are a class of observers that
arise from a control point of view in the perspective dynamic systems framework. In general, a per-
spective dynamic system is a linear system whose output is observed up to a homogeneGhgfirg (
Kano,2002; Takahashi & Ghosh2002;Ghosh & Martin 2002;Ghosh & Loucks1995;Ghoshet al.,

1994).

Among the aforementioned algorithms, the non-linear optimization formulation generally suffers
from the initial value selection problem. The shortcoming of (total) least square algorithms, which are
singular value decomposition-based, is sensitivity to ndisanfantaras & Strintzis]996). Assuming
that the moving object follows certain motion dynamics, an EKF can be used to estimate the motion
parameters and positions. The EKF is a recursive approach that usually requires less computation time
for each new set of data (e.g. each new image). State estimates are computed based on all past data
and can readily extrapolate the state estimates ahead in time to aid in preprocessing the next set of
data. We note that the EKF is based on the linearization about an estimated trajectory. However, for the
vision-based motion estimation problem, the geometric structure of a perspective system will be lost if
a linearization-based approach is taken. Efforts have been made towards other non-linear observers for
perspective dynamic systems that arise in visual tracking problems. This class of non-linear observers
is referred to as perspective non-linear observers.

Perspective non-linear observers are used quite often for determining the unknown states (i.e. the
Euclidean coordinates) of a moving object with known motion parameters. For example, an identifier-
based observer (IBO) is proposedliankovic & Ghosh{1995) to estimate a stationary point's 3D posi-
tion using a moving camera. Another discontinuous observer, motivated by sliding mode and adaptive
methods, is developed i@hen & Kano(2002) that renders the state observation error uniformly ul-
timately bounded. A state estimation algorithm with a single homogeneous observation (i.e. a single
image coordinate) is presentedhfa et al. (2005b). A reduced-order non-linear observer is described
in Karagiannis & Astolfi(2005) to provide asymptotic range estimates. The observers described above
are based on a conventional planar imaging surfackldret al. (2005a) andsuptaet al. (2006), the
state estimation problem is discussed for a parabolic projection surface. All these results are based on
the assumption that the motion parameters are known with the objective of estimating the unknown
depth.

In this paper, we consider the case in which some of the motion parameters (the rotational param-
eters) are unknown constants. The objective is to estimate the 3D position along with the unknown
parameters. A fast estimation scheme is applied for the estimation task. The fast estimator is further
augmented with a recursive least square (RLS) algorithm to estimate the unknown parameters. Under
certain persistent excitation (PE)-type conditions, the RLS algorithm ensures the convergence of param-
eter estimation. Preliminary results were presentddar(2007b).

One model for the relative motion of a point in the camera’s field of view is the following linear
system (Jankovic & Ghosfh995;Chen & Kano2004,2002;Dixon et al.,2003;Karagiannis & Astolfi,

2005):
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X(t) 0 w1 | [X(®) ba(t)
YO |[=]-01 0 w3||Y®|+|b], (1.2)
Z(t) —wp, —wz 0 ]| Z@) bs(t)

wherethe matrix fv;] presents the rotational dynamics, the vecbp} forresponds to the translational
motion and K(t), Y(t), Z(t)]"T denotethe coordinates of the point in the camera frame at time
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instancet. Some other variables used throughout this paper is listed in Talising a conventional
camera, the homogeneous output observations are

x1(t) = X(®)/Z(1), x2(t) = Y1)/ Z(). (1.2)

ThecoordinateZ (t) denotes the depth from the image plane to the object feature along the optical axis.
It is assumed thaZ(t) > O for possible motion estimation. The assumption> 0 is a reasonable
assumption referring to the physical system (Chen & K&@®4). In general, the parametersscanbe
time-varying functions, but in this paper we assume thgl is a constant matrix.

Figure1l illustrates one scenario of constant Jowhere an omnidirectional robot is moving with
constant angular velocity on a plane described by its normal vécter [n1, ny, n3]T. The motion
dynamics of a feature point on the robot can be modelled.y) (

Let

[x1(t), X2(t), x3()]" = [X()/Z(t), Y(t)/Z(), 1/Z(1D)] . (1.3)

The system {.1) with output observationsl (3) is equivalent to the following system (Jankovic &
Ghosh,1995;Chen & Kano,2002;Dixon et al.,2003):

i |:>'<1(t)] |:bl(t) - bs(t)Xl(t)}
X2(t) by (t) — ba(t)xa(t)

|:w2 + 1X2(t) + waX2(t) + w3X1(t)X2(t)} (1.4)
+ b

w3 — w1X1(t) + w2xa (t)Xa(t) + w3x3(t)

X3(t) = (waxa(t) 4+ w3xa(t))Xa(t) — ba()x3(1),
with the output
y(t) = [xa(t), x2(D)] . (1.5)

Estimationof x3(t) from the visual measurementg;(t), x2(t)) constitutesthe range identification
problem.Jankovic & Ghosl{1995),Chen & Kano(2002,2004),Dixon et al. (2003),Ma et al. (2005b)

TAaBLE 1 Descriptionof variables

Variable Description

[X(),Y(),ZMD]T Coordinate®f a feature point in the camera frame at time instance
[xa(), x2(0), xs®] T [X (1), Y(0), 11" /Z(t)

0 = [w1, w2, cug,]T (w1, w2, w3) denotethe skew-symmetric matrix irL(1)

w(t) The time-varying signal to be estimated via fast estimator
wy (1) An intermediate signal introduced to facilitate analysis
we(t) Estimateof w(t) via fast estimator

It Updategain used in the fast estimator

C(s) C(s) = &, a low-pass filter used in the fasstimator

S+cC’
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Fic. 1. lllustration of constant angular velocity where the black dot traces a path on the plane definatsioyne frequency.

and Karagiannis & Astolfi(2005) have solved this problem assuming that the motion paramaters

andb; (t) in (1.1) are known (for € {1, 2, 3}). Here, we assume that the parametgrare unknown
constants. The objective is to estimatgt) as well as the unknown parametess This problem can be
formulated in a way that existing observers, such as those developgadkovic & Ghost{1995),Chen

& Kano (2002,2004),Dixon et al. (2003),Ma et al. (2005b) andKaragiannis & Astolfi(2005), can

be applied. Under certain PE-type assumptions, the approach provides an exponential convergence of
both the range and the parameter estimates (Jankovic & Gh®8K;Narendra & Annaswamy?2005;
Wittenmark 1995). A more general case of the problem consists oka&83otational matrix instead of

the skew-symmetric matrix as in (1.Dikon et al.,2003;Ma et al.,2007a).

The contribution of this paper includes two aspects. One is to present a fast estimator with detailed
proofs. The analysis of the fast estimator is further extended to characterize the performance of the fast
estimator with respect to non-zero initialization error. The other is to discuss range identification in the
presence of unknown constant rotational parameters via the fast estimator. Performance comparison of
the fast estimator with the IBO is provided. The IBO has been compared with the EKF-based method
in Jankovic & Ghosh{1995) to achieve comparable performance with the advantage of providing rigor-
ous proof.

The paper is organized as follows. Range identification in the presence of unknown motion parame-
ters via the IBO is described in Secti@nA fast estimator is presented in Sect®rRange identification
via the fast estimator is described in SectibrBectionb provides the simulation results. Sectioex-
tends the analysis to general affine motion. Finally, Seciooncludes the paper.

2. Range identification via IBO

Consider the estimation problem for the perspective dynamic system (1.4), where the motion parameters
wj (fori =1, 2, 3) are assumed to be unknown constantsAlee¢ a vector of these unknown constants
defined as

0 = [w1, w2, wg]T . (2.1)
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Thesystem (1.4) can be rewritten as

(a®] x3(t)
= wg (X1(1), x2(1)) ,
| Xa(t) | 0
2 (2.2)
X3(t)] (2X1 + W3X2)X3 — b3X3
P =1 gsta®).xe).x3M),00.08) | °
- - O3x1
where
b —bgxi X2 1+X%  xix
wl ) =| - T T (2.3)
° 2
by —baxy —x1  XiXo 14 X3

The system (2.2) exhibits the structure of the general non-linear system to which IBO may be applied.
To apply the IBO, the following assumptions are in order:

ASSUMPTIONZ2.1

1. Letx(t) = [Xl(t),Xz(t),X3(t),0T]T be bounded:|x(t)|| < M, M > 0 for everyt > 0. Let
Q = {x(t) e RO : |x(t)|| < M}. Further, for some fixed constant> 1, letQ, = {x(t) € R®:
IX@®)I <y M}.

2. Letwj(r) denote theth column ofwsT(xl(t), X2(t)) in (2.3). There are no non-trivial constants
ki (fori =1,2,3,4) such that

4
Zkil)i(‘[) =0, (2.4)
i=1

forall z € [t,t + u], whereu > 0 is a sufficiently small constant.

It is worth mentioning that the observability condition of IBO is stated in an integral form (page
65 of Jankovic & Ghosh1995). In the following, we show that Assumpti@ril satisfies the IBO ob-
servability condition. From Assumptiod.1, there do not exist constants (fori = 1,..., 4) with
>t xk? # Osuchthafy!_; xivi(t) = 0. Therefore, for any non-zero# 1 vectorv with |[v|| = 1,
we havev " ws(X1, X2)wd (X1, X2)v > ¢|[v[|? = &. Therefore,ws(x1, X2)wd (x1, X2) > €I and the IBO
observability condition is satisfied. Estimationxaf(t), along with the unknown motion parametés
can thus be obtained via direct application of the IBO. The specific form of the observer when applying
the IBO to the system ir2(2) is given below.

Let

6(t) = [@n (1), d(t), da(t)] . (2.5)
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Thefollowing observer can be designed for the system)
X (t R1(t) — xa (t Ra(t
)fl( . GAm )fl( ) —a® + wg (X1, X2) A3( ) ;
Xa(t) X2(t) — x2(t) o)

iS(t) )A(l(t) —X1(t)
) =-G? P
[ b } ws(X1(t), X2(1)) |:)A(2(t) B xz(t)}

2.6)
N [gs(xl(t), X2(t), X3(t), d2(t), 67)3(0)}

O3x1 ’
X(t7)

KtTH)y =M ,
X =M

whereX(t) = [R1(t), %2(t), X3(t), 8(1)T]T denoteghe estimate ok(t), G is a scalar constant ani,

is a 2 x 2 Hurwitz matrix. The matrixP is the positive-definite solution of the Lyapunov equation
ATP + PAn = —Q, whereQ is a positive-definite symmetric matrix. The sequetids defined as
follows:

t =min{t: t > ti_; and||X(t)|| > y M},to =0, (2.7)

wherey is a fixed constant. According to Theorem 2.3Jamkovic & Ghosi1995, p. 65), there exists
a positive constartbg suchthat choosings > Go ensureshe estimation errorsej (t) — x1(t), X2(t) —
Xa(t), Xa(t) — x3(t), 0T (t) —0T]T converge to zero exponentially.

3. Fast estimator

In vision-based applications, continuous extraction of the target’s information is often unavailable due
to environmental factors, limited field of view of the camera or failure in the image processing module.
Fast estimation becomes important in these situations when the target loss cannot be avoided. In this
section, range identification in the presence of unknown motion parameters is pursued using a recently-
developed fast estimator. Preliminary results of the fast estimator were preseied2007b). De-

tailed proofs and derivations are provided here. The analysis of the fast estimator is further extended to
characterize the performance of the fast estimator with respect to non-zero initialization error. The fast
estimator enables estimation of the unknown time-varying parameters in the system dynamics via large
update gain and a low-pass filter.

If the time-varying unknown signal is linearly parameterized in unknown constant parameters, the
fast estimator can be further augmented by a RLS algorithm to estimate the unknown constant pa-
rameters. Under certain PE-type conditions, the RLS algorithm ensures the convergence of parameter
estimation. Details of the RLS algorithm and the PE condition are reviewed in Appendix C.

3.1 Problem formulation

This section presents details of the fast estimator. Consider the following system dynamics:

X(t) = Amx(t) + @(t), X(0) = Xo, (3.1)
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wherex(t) € R" is the system state vectaw(t) € R" is a vector of unknown time-varying signals or
parameters anéy, is a knownn x n Hurwitz matrix. Let

o) e Q, (3.2)
whereQ is a known compact set. There exists a positive congtgrsguchthat
lo®)]l € pw <00, Vt=0. (3.3a)

Thesignalw (t) is further assumed to be continuously differentiable with uniformly bounded derivative:

lo®| < dw <00, Vt=0, (3.3b)

whered,, is a positive constant. The estimation objective is to design a fast estimator that provides fast
estimation ofw (t).

3.2 Fast estimator

The proposed fast estimator consists of a state predictor, an update law, and a low-pass filter that extract
the estimation information.
We consider the following state predictor:

X(t) = AnX(t) + &(t), X(0) = o, (3.4)

whichhas the same structure as the systen3ih)( The only difference is that the unknown parameters
w(t) are replaced by their estimatégt) that are governed by the following update law:

o) = IProj@(t), —PX(t)), &(0) = &y, (3.5)

whereX(t) = X(t) — x(t) is the error signal between the state of the system and the state predictor,
I € R* is the update gain, chosen sufficiently large, @b the solution of the algebraic equation
ALP + PAn = —Q, Q > 0. Definition of the projection operator is given in the Appendix.

The estimate of the unknown signal is generated by

we(s) = C(s)a(s), we(0) = o, (3.6)
whereC(s) is a diagonal matrix with itsth diagonal elemer€; (s) beinga strictly proper stable transfer
function with low-pass gai€; (0) = 1. One simple choice is

Ci(s) = ﬁ (3.7)

3.3 Corvergence results

The main result of the fast estimator in Sect®is that it ensurese(t) estimateghe unknown signal
w (1) with the final precision bound

Ve

Nep +11=CO)ligllolzy, (3.8)

:dny wo.y papeoumoq
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wherey. is to be given in 8.22a) and definition of th&€,, norm s reviewed in the Appendix. To
guantify the above performance bound, an intermediate sigt) is introduced as

ar (s) = C(s)w(s), r(0) = dpo. (3.9)

The precision bound in3.8) is obtained through a triangulation of the performance bouridg«tf) —

ar (1)) and(wr (t) — w(t)), respectively. The performance bound(ek(t) — wy (1)) is first presented
in Theorem3.1, followed by that of(er (t) — w(t)) in (3.31). To quantify the performance bound of
(we(t) — oy (1)), we need the following lemma.

LEMMA 3.1 Given the system in3(1) and the fast estimator i8.64—3.6), the tracking error between
the system state and the predictor state is bounded as follows:

~ ®Wm
< J—=n 3.10
X1l £ (P e (3.10)

where
Amax(P)
om = 42 + 41,y T 3.11
M e e in(Q) (341
Proof. Consider the following candidate Lyapunov function:
V), dt) = X" OPXM) + o' Hat)/ T, (3.12)
where
a(t) 2 o) — o(t). (3.13)
It follows from (3.1) and 8.4) that
X(t) = AmX(t) + &(t), %(0)=0. (3.14)
Using the projection-based update law froBr&), we have the following upper bound fét):
V() < =X (0)QX() + 21& T (Da(t)/Iel. (3.15)
Theprojection algorithm ensures thatt) € @ forallt > 0, and therefore
max(@' Oa0)/Ie) < 4pf/Te, V>0, (3.16)
If at anyt
thenit follows from equations (3.12)3(16) and 8.17) that
A P
T (H)PX(t) > 4u,d max(P) (3.18)

wfclmin(Q).
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Hence,

mln(Q)

M2 T (@) PR(t) > 4upde/Tt.
Jmax(P)

T (HQX() >

The upper bounds in3.3b) along with the projection-based update laws lead to the following upper

bound:

T(t)a)(t) Zﬂw )
Ie Ic

Henceif V(t) > 92, it follows from equation 8.15) that
V(t) <O.
Since we have s&t(0) = x(0), we can verify that
V(0) < 4uf/ T < om/ I,

andit follows from (3.20) thatv (t) < % foranyt > 0. Sincelmin(P)|IX(1)]1? < X" (1) PX(t) <
C

then
WOm

I%(t)1I? —imm(P)Fc

which concludes the proof.
The performance bound betweep(t) andwy (t) is quantified in the following theorem.
THEOREM 3.1 Given the system in3(1) and the fast estimator i8.4—3.6), we have

Ve

orllge, € —F=,
X I_,C

ye = ||C<s)H—1(s)||cl,/#r(”P),

H(s) = (s — Am) L.

lwe —

where

Proof. From equations3.1) and 8.4), we have
SX(S) — Xo = AmX(S) + w(S), SX(S) — Xg = AmX(S) + @(s),
which leads to
X(s) = H()[w(s) + X0l  X(s) = H()[@(S) + Xal,

andhence
X(8) = X(s) — X(8) = H(s)(@(s) — w(s)),

173

(3.19)

(3.20)

V),

(3.21)

(3.22a)

(3.22b)

(3.23)

(3.24)
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wherew(s) and®(s) are the Laplace transformation af(t) and (t), respectively. It follows from
equations (3.6) and3(9) that
we(S) — r (S) = C(s)(@(s) — w(s))
=CEH T OH @) ~a(9)
=C(s)HL(5)%X(s). (3.25)

SinceC(s)H ~1(s) is a matrix of stable and proper transfer functions/itsnormexists and is bounded.
Hence, we have

lwe — or 2, < ICEOHTS) g, Il £, - (3.26)

It follows from Lemma3.1that

- < ICEHE) Y, [—2m
lwe —axlz, <NICEOHE) g, e P T

which along with (3.22a) leads t@(21). O

COROLLARY 3.1 Given the system in3(1) and the fast estimator i8.4—3.6), we have

lim (@e(t) —or (1) =0, vt>0. (3.27)

We then characterize the performance bound betweén andw (t). For simplicity, we use a first-
orderC(s) as given in 8.7). It follows from @3.9) that

ar (t) = —Cor (t) + co(t), o (0) = do. (3.28)

We note thaty (t) canbe decomposed into two components:

Wy (t) = wrl(t) + wrg(t)s (329)
wherewr, (t) andwr, (t) aredefined as follows:
ar, (1) = —Car, (1) + co(t), o, (0) = wo, (3.30a)
o, (t) = —Car,(t), wr,(0) = do — wo. (3.30b)
It follows from (3.30a) that
lor, —olz, =11=CE)lzg,lolz,- (3.31)
Since
Jim 1-C(®)lz, =0, (3.32)

thenorm|lwr, — ||z, canbe rendered arbitrarily small by increasing the bandwidt@ (). Further,

wr, (t) decaysto zero exponentially and the settling time is inverse proportional to the bandwidth of

C(9). Increasing the bandwidth @(s) implies thatewy,(t) decaysto zero faster. It can be observed
from equations (3.21) an®(31) thatwe(t) estimateso(t) with the final precision given in3(8) when
the transients o€ (s) due to the initial conditior-wg die out.
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REMARK 3.1 It was proved irDippold (2009, Proposition 11, pp. 103-104) that if the Hurwitz matrix
Am in (3.1) is a diagonal matrix of the form, = diag@m,, am,) Whereany, andanm, arenegative
constants, then for the choice ©fs) in (3.7),

ICEOHT )z, = H ﬁcc (ST = Am) ™ Hcl

1

= (3.33)
min {|am|, |am; |}

It follows from equations (3.21) an®.33) that

1 Wm
Temin{lam |, [amy |} V Amin(P)’

(3.34)

|we — cor ||£OC <

whichis independent of in (3.7). Thus, selection of the bandwidth @fs) and the update gain. is
independenof each other. Increasing the update gairendersthe term|we — oz, arbitrarily
small.Note that increasing the update gdinrequiresfaster computation and smaller integration step.
Further, increasing the bandwidth 6f(s) ensures thaty (t) tracksw(t) arbitrarily closely both in
transient and steady state.

The low-pass filter removes the high-frequency component in its input signal. Though this is a well-

adopted method, the proposed fast estimator that consists of the state pré&iitotheé update law

(3.5) and the application of the low-pass filt&.g) is novel for the following features: (1) with the

help of the low-pass filter, the proposed estimator is able to estimate the time-varying signal with a final
precision bound that can be made arbitrarily small by increasing the update gain and the bandwidth of
the low-pass filter, subject to hardware limit; (2) the proposed estimator estimates the unknown time-
varying signal with specifically characterized final precision bound give8&.8) @nd (3) all derivations

are performed analytically.

3.4 Performance of fast estimation in the presence of non-zero initialization error

The performance of the fast estimator is also analysed with respect to non-zero initialization error
Xo — Xo, associated with the following state predictor:

X(t) = AmR(t) + &(t), R(0) = Ko # Xo. (3.35)
LEMMA 3.2 Given the system in (3.1) and the fast estimator with the state predict®:3b)( we have
XOI <), Vt=0, (3.36)

where

_ / (V(0) — om/Te)e + om/ e
k() =

Amin(P) ’ (3_37)
_ Amin(Q)

o= ,
Amax(P)

andwm is given in 3.11).
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Proof. The proof is similar to that performed for Lemral. The difference is to take care of the non-
zero initialization error. Consider the same Lyapunov functiorBitiZ). Sincekg # Xg, equation 8.14)
reduces to

X(t) = AnX(t) + @(t), X(0) = Ko — Xo. (3.38)

The projection algorithm ensures that equatio8sLb) and (3.16) are true, along the traject&ty) in
(3.38). Thus,

V() =X (O)PRM) + &' ()a(t)/ It
(3.39)
<KTOPK() + 43/ Te

and

lmin(Q)
/lmax( P)

/Imin(Q)
imax( P)

For the derivative of the Lyapunov function, we have

T (1) QX(t) > T (t)PX(t)

(V1) — 43/ T0). (3.40)

V() = =% (O)QX(1) 4+ 20" (Vax(t)/Ie

imin(Q) /Imin(Q)
S im0 Ga(P)

_ /lmin(Q) /Imin(Q) %
- imax(P)V(t) " Amax(P) It’

wherewn, is given in (3.11). It follows from (3.41) that

442 ) Te + Ao Oo/ I

(3.41)

V(t) < (V(0) — om/To)e ™ + om/ I, (3.42)
whereq is defined in 8.37). Sincelmin(P)[IX(t)]1% < X7 (t)PX(t) < V(t), then

(V(0) — om/T)e™ ™ + om/ I
imin(P) ’

which concludes the proof. O

X% <

(3.43)

Let X5 (t) bea signal with its Laplace transformation
Xa(s) = H(s)(Xo — Xo), (3.44)

where H(s) is given in (3.22b). The next theorem characterizes the performance bound of

(we(t) — oo (1)).

THEOREM 3.2 Given the system in3(1) and the fast estimator with the state predictor3i3%), we
have

lwe(t) — ar Olloo < w (1) * [x(t) + [Ka(®)]I], (3.45)
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wherex denoteghe convolution operation and

p() = max > ha, (3.46)
..... N

whereh;j (t) is theith row andjth column of the impulse response®ts)H ~1(s).

Proof. The proof is similar to that performed for Theore8rl. The difference is to take care of the
non-zero initialization error. From equatiorg 1) and 8.35), we have

SX(S) — X0 = AmX(S) + @(S), SX(S) — Xo = AmX(S) + @(S),
which leads to
x(s) = H(9)[w(s) + Xol, X(s) = H(s) [@(s) + %o] ,
andhence
X(s) = H(9)[a(s) — @ ()] + H(s) (%0 — Xo), (3.47)
whereH (s) is given in 3.22b). Thenwe(s) — oy (S) becomes
e(S) — @ (5) = C([A(S) — @(9)] = C(SIH TH(S[X(S) — H(S) (%0 — X0)]
=C(SHHS)[X(S) — %a(9)], (3.48)
whereXa(S) is given in 3.44). Since
IX() = Xa (Ol < IXO] + [Ka®)]] < x(t) + [Xa(®)]], (3.49)

where||X ()| < x(t) is already shown in Lemm& 2, it follows from Lemma 11 iif€ao & Hovakimyan
(2008, p. 65) that

llwe(t) — or Ol < w (1) * [x(t) + [IKa(®)]],

wherex (t) andy (t) are given in 8.37) and 8.46), respectively. This completes the proof. O

REMARK 3.2 Notice thatx(t) in (3.37) is an exponentially decaying signal with the ultimate bound

Jom/[Amin(P) ] as givenin Lemma&.1. Besides|Xa(1)|| exponentially decays to zero. Thugse(t)—
wy (1)) will decay exponentially with the ultimate bound stated in Thed@eim

If the time-varying signato (t) can be linearly parameterized in unknown constant parameters and
known non-linear functions, extraction of the unknown parameters can be achieved by the RLS algo-
rithm under a PE-type of condition. The RLS algorithm is reviewed in the Appendix.

4. Range identification via fast estimation

Denote

_ |m@®
ORI @1)
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andwrite the first equation in2.2) as

X1 (t t
[’.(1( )} = wd (D), x2(0) [X3( )} — 1. x(©) =0, 4.2)
Xa(t) 0
whered is defined in 2.1) andwwd (x1(t), X2(t)) is given in @.3). That is,
— 1 2
|:b1 e T Xl)(22:| |:X3(t)i| =n(). (4.3)
by —b3xa —x1  XiX2 14X5 6
Letting
N1(t) =ba(t) — bs(t)xa (),
No(t) = ba(t) — bs(t)x2(t), (4.4)

equation(4.3) can be rewritten as

N2 (t)x2 + N1(t)x1
No(t)71(t) — Na(t)72(t) = | Na(t)(L+x2) — Na(t)xaxe | 6. (4.5)
Na(t)x1x2 — N1(t)(L + x3)

The RLS method can be used to estimigccording to (7.6), witlw (t) replaced byNa(t)71(t) —
N1(t)#72(t). Onced is available, equation (4.3) becomes

by — bax t X2 14+x2  xx
1 — bsxg Y5 — n(t) R I X1 22 0. 4.6)
b2 — baxz n2(t) X1 XiXe  14X%5
wherexs(t) canbe extracted using the pseudoinverse.

Using the fast estimator ir8(4—3.6), estimation of(t) in (4.2), denoted bye(t), can be obtained
via the following steps:

e State predictor:
[)fl(t)} = Am [)fl(t)} + (), X(0) = xo, (4.7)
X2(t) Xa(t)

whereX; (t) = X (t) — x; (), fori = 1,2. The above state predictor, along with the system dynamics
in (4.2), gives the error dynamisgt) = AqnX(t) + 7(t), X(0) = 0.

e Update law for the parameter:
: { . Xa(t) . .
n(t) = ItProjy a(t), =P | _ . 71(0) = 7po. (4.8)
Xo(t)

e Applying low-pass filter:

1e(S) = C(9)i(S). C<s>=$, 16(0) = fio. (4.9)

A flow chart of state and parameter estimation of a rigid-body motion using the fast estimator is

illustrated in Fig 2. In the first step to estimaigt), both the estimation precision and transient time can
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Fast Estimator
(t ) £(t
m—' C(s) —~\jﬂ°() RLS \w—(t)>| Pseudo-inverse }x’—()>

FiG. 2. Flow chart of applying the fast estimator for the range identification problem.

be arbitrarily reduced by increasing the bandwidti€¢$) and larger’t. In the second step of extracting
parametersy; (t) from #e(t) using the RLS method, fast speed can be achieved by properly tuning the
RLS gains. Estimate of5(t), denoted bys(t), can be obtained frome(t) anda; (t) via pseudoinverse.

5. Simulation results

State estimate ofg(t), 8 '] using the IBO in 2.6) and the fast estimator i4.f—4.9) are implemented
in Matlab, where the motion dynamics are

X(t) 0 —4 —087[X() 10
Yt)|=| 4 0 —06]||Y® |+ 37 sin@xt) , (5.1)
Z(t) 08 06 O Z(t) 3z sin@rt + /4)

with initial values
(Xo, Yo, Zo) = (1,15,25), xo = (Xo/Zo, Yo/Zo, 1/Zo). (5.2)

First, we present simulation results in the ideal case with no measurement noise. The design gains fo
the IBO and the fast estimator are chosen as

e |IBO parameters (referring t@(6)):
G =10, (%3(0),®1(0), d2(0), ®3(0)) = (0,0,0,0). (5.3)
e Fast estimator parameters (referring to equations (46}),(@.8) and 4.9)):
p=100, 2=099999, I =2x10% (71(0),72(0))=(0,0), c = 100. (5.4)
e Common parameters:

(%1(0), %2(0)) = (x1(0),x2(0)), M =20, An=-I2, P=1/2xlIy, (5.5)
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wherel, denotes the X% 2 identity matrix.

Estimate ofw; (fori = 1,2, 3) when using the IBO and the fast estimator is shown in Bigsd4,
respectively. Figurd (b) shows an enlarged view of Fig.(a). State estimation error &§(t) is plotted
in Fig. 5 for comparison of these two methods. From F&and4, it can be observed that the fast
estimator achieves faster estimation of the motion parameters. The same is tgé)for

Simulation results are also presented in Fig8where 1% uniform noise is injected into the visual
measurements via the Matlab function randn(). The simulation parameters are the same as above. In
this case, when extractingg(t), the output from the pseudoinverse is further processed using a low-
pass filtersj—o30 to give the final state estimation. We observe that corresponding plots with or without
measurement noise are very similar.
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estimation error of o, fori=1,2,3 (via IBO)

time (sec.)

FiG. 3. Estimation of motion parameters via IBO (without measurement noise).

estimation error of o, fori=1,2,3 (via fast estimator) estimation error of w, fori=1,2,3 (via fast estimator)
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0 5 10 15 ; 4 6 8 10 12 14
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(a) Overall View (b) Enlarged View

FIG. 4. Estimation of motion parameters via fast estimator (without measurement noise).

6. Further extension

In addition to the rigid-body motion inl(1), extension to a more general motion, i.e. an affine motion,
is discussed in this section.
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estimation error of xg(t)

fast estimator
————— IBO
-1.5 1
21 J
-25 . L
5 10 15

time (sec.)

FIG. 5. Comparison of state estimation errors (without measurement noise).

estimation error of w, fori=1,2,3 (via 1BO)

10 15
time (sec.)

FIG. 6. Estimation of motion parameters via IBO (with measurement noise).
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FIG. 7. Estimation of motion parameters via fast estimator (with measurement noise).

estimation error of xa(t)

fast estimator

time (sec.)

FIG. 8. Comparison of state estimation errors (with measurement noise).

6.1 Affine motion

For a general affine motion describedbixon et al. (2003) andMa et al. (2007a)

X(t)

Y) | =

Z(t)

a;n a2 as | | X()
a1 ap axg || Y()
a1 azxx asz | | Z()

bi(t)
ba(t) |,
bs(t)

(6.1)
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the rotational matrix contains nine parameters. Again, we limit the discussion to constant parameters
ajj. The system@.1) with output observations (1.3) is equivalent to the following sydiexon et al.
(2003) andVia et al. (2007a):

X1(1) || ba(t) —ba(t)x1(t)
*o(t) | [ b2(t) — ba(t)xa(t)
aq3+ (a11 — aga)xa(t) + aroXa(t) — agix2(t) — a32X1(t)X2(t)} (6.2)

x3(t) + |: 5
a3 + ax1X1(t) + (ag2 — agz)X2(t) — agixa(t)X2(t) — as2x5(1)

X3(t) = —(agxa(t) + agxa(t) + aga)xa(t) — ba(t)x3(t),

with the output given inX.5).
Define

¥ = [aq1, a12, a13, @21, A2, A3, 831, A37] | . (6.3)

Thesystem in (6.2) can be rewritten as

X1(t) wq (X1(t), X2(t)) [X?;;t)} —ag3 [Xl:| ;

| X2(t) | X2

"%a(0)] —(ag1x1 + as2X2 + a33)X3 — bax§ (6-4)
9 = Os(X1,X2,X3,33] ) >

| - O8><1
where
T bi1—b3sxy X x» 1 0 0 O —X% —X1X2
wg (X1, X2) = e (6.5)
b2 - b3X2 0 0 0 X1 X2 1 —X1X2 —X2
Assumingthata;; fori, j = 1,2, 3 (except forags) are unknown constants, in the next we show

how xz(t) anda;j canbe estimated using the fast estimator described in Segtifullowed by the RLS
method. Note thadzs is assumed to be known.

REMARK 6.1 Assuming that thedjj] (fori, j = 1,2, 3) are unknown constants, the method described
in Section4 cannot lead to extraction of the nine unknown parameters in a straightforward way. Let
09,1 bea vector of these unknown constants as

.
09x1 = [a11, @12, @13, 21, @22, @23, 831, 832, @33 ' - (6.6)

Thesystem (6.2) can be written in the form & 2) with

b1—b3X1 Xp X2 1 O 0 O —X%

wd (X1, %2) = [ 6.7)

—X1X2  —X1
bz—ngz 0 0 0 X1 X2 1 —X1Xo —XS —X2

The ten column vectors ofod (x1(t), x2(t)) in (6.7) are linearly dependent. For example, letting
denotetheith column ofwsT (X1, X2), we havevig = —v2 — vg. Thus, extraction of the nine unknown
parameters cannot be performed by the RLS method since it violates the PE condifigi.ilt {s worth
mentioning that the above restriction on the knowledgeasgfis not imposed by the method proposed
in this paper. It is due to the nature of the estimation problem itself.
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6.2 Fast estimation

Following the logic in Sectiod, equation (4.2) becomes

X1t | _ X3 X1
|:)'(2(t):| - U);r(Xl(t), XZ(t)) |:’l9:| —ags3 |:X2:| ) (6.8)

7(t)

where? andwg(xl(t), X2(1)) are given in 6.3) and 6.5), respectively. Equatiod (5) becomes

.
Na(t) [X1, X2, 1] T

No(t)n1(t) — N1(t)z2(t) = —Na(t) [X1, X2, 1] T 9, (6.9)
(N1(t)x2 — Na(t)x1) [X1, 2] T
#T ()

for the sameN; (t) andNy(t) in (4.4). The RLS method can be used to extract the unknown parameters
4 according to (7.6). Onc8 is available, we have

|:b1 - b3X1:| Xa(t) = |:771(t):| 3 |:X1 X2 1 0 0 O _X% _X1)2(2:| 9, (6.10)

bp — baxo n2(t) 0 0 0 x1 X 1 —xix2 —X5

wherexs(t) can be extracted using the pseudoinverse. Application of the fast estimator is similar to
those performed in Sectighand is omitted from here.

estimation error of aij (via 1BO)

5 10 15
time (sec.)

FIG. 9. Estimation of motion parameters via IBO (affine).
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estimation error of 8 (via fast estimator)
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FiG. 10. Estimation of motion parameters via fast estimator (affine).

estimation error of x,(t)

fast estimator

f f — - IBO

time (sec.)

FIG. 11. Comparison of state estimation errors (affine).

185

2102 ‘TT |udy uoepliold Jo A1seAlun e /610°S[euInopioxo fewewu /01y Wwouj papeo|umoq


http://imamat.oxfordjournals.org/

186 L. MA ET AL.

6.3 Simulationresults

Estimation of ka(t), 9 ']T usingthe IBO and the fast estimator are implemented in Matlab with the
following motion dynamics:

X(t) 03 -4 047X 27 sin@xt)
Yt)|=| 4 —-02 04||Y|+|2zcos@xt)|, (6.11)
Z(t) -07 -05 0 ||z 0

for the same initial values in5(2). The parameters are selected toGe= 30, Iz = 2 x 10’ and

¢ = 200.0ther parameters for the IBO and the fast estimator are the same as those in eqbaiens (

5.5). Simulation results are presented in Fgd 1where the visual measurements are corrupted by 1%
noise. It can be observed that the fast estimator achieves faster estimation of the motion parameters. The
same is true fors(t).

7. Conclusion

A fast estimator is proposed and applied to the range identification problem for both rigid-body and
affine motions in the presence of unknown constant rotational parameters. The fast estimator allows for
fast estimation of the unknown time-varying signal via large update gain and low-pass filter. Simula-
tion results show that fast convergence speed is achieved compared to existing non-linear perspective
observers. Future research will consider motion estimation with unknown rotational and translational
parameters.
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Appendix A
We recall basic definitions and facts from linear systems thdgngl{l, 2002;Zhou & Doyle,1998).
DEFINITION 7.1 For a signal(t) = [é1(t) - - - & (t)] T € R" definedfor all t > 0, theLy-normis

I€llce, = Max (supléi(z)).
i=1,..n >0

DEFINITION 7.2 The L£i-norm of an asymptotically stable and proper single-input-single-output.

system is defined
IH® Iz, = [ Ihi

whereh(t) is the impulse response &f(s).

DEFINITION 7.3 For an asymptotically stable and propelinput n output systenH (s), the £1-norm
is defined as

IH©)le, = max. (Z IIHij (S)Ilcl> ,
1 et

whereH;j (s) is theith row andjth column entry ofH (s).

Appendix B
The projection operator is definedRemet & Praly(1992):

DEFINITION 7.4 Consider a convex compact set with a smooth boundary given by

Q2R [fO) <), 0<c<1,
wheref : R" — R is the following smooth convex function:

070 — 02

f0) =
) fﬁer%ax

: (7.1)

wherefnay is the norm bound imposed on the parameter ve6tand ¢y denotesthe convergence
tolerance of our choice. Let the true value of the parantgtéenoted by*, belong toQy, i.e.0* € Qo.
Theprojection operator is defined as

y if f(0) <0,
y if f(@)>0andVfTy<O,
. A
Proj@,y) = Vi [VET . (7.2)
- —— ([——, y) f@© if f@)>0andVf'y>DO0.
YT v <||Vf|| y>w~) ) Y
~—— ‘———scaling
unit vector  projection
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Appendix C
The RLS algorithm is reviewed here. Consider a linear scalar regression model
wK = 9T¢k + e, (7.3)
where
0 = [919 929 ) en]T (7'4)

isthen x 1 vector of the plant parameters, and

Pk = [Pr.1, P2, - o bkn] (7.5)
isthen x 1 regressor vector at time instagtwhile e is a zero-mean discrete white noise sequence with
varianceakz. When the observation dfuk, ¢x) hasbeen obtained fok = 1, ..., N (with N > n), the
RLS estimate fo#, denoted by, can be obtained in the following discrete forkethaegen1989):

L Px—16
k = T—’
A+ ¢k Pu—1¢x
O = b1+ Li(ox — ¢y Ok-1). (7.6)
1 Pe-1gky Pe-1
Po=>{Per—-—2——).
| A A+ ¢ Pe-1x

wherePy = plpxp andi e (0, 1]. Coefficientsp and 4 are the design gains. Whef is persistently

exciting during the observation period, RLS algorithm ensures the converged¢s o6 6. The con-
vergence rate of the RLS can be increased by choosinglafjge PE condition of the regressor vector
is defined as/erhaeger{1989).

DEFINITION 7.5 The regressor vectai is persistently exciting over the observation intetgak k <
kn with an exponentially forgetting factdr < 1, if the following condition is satisfied:

Kn
Pl < D7 g AN ol (7.7)
k=ko

for some positivep; > 0 andp, > 0.
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