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A fast estimator is proposed and applied to the problem of range identification in the presence of un-
known motion parameters. Assuming a rigid-body motion with unknown constant rotational parameters
but known translational parameters, estimation of the unknown parameters is achieved by a fast estimator,
followed by recursive least square extraction. The results are also extended to the case of an affine motion.
Simulations demonstrate the superior performance of fast estimation in comparison to an identifier-based
observer.
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1. Introduction

A variety of 3D motion estimation algorithms have been developed since 1970s, inspired by such dis-
parate applications as robot navigation, medical imaging and video conferencing. Even though
motion estimation from imagery is not a new topic, continual improvements in digital imaging, com-
puter processing capabilities and non-linear estimation theory have helped to keep the topic current.
Existing methods for 3D motion estimation include non-linear optimization formulation (Cho et al.,
2001; Diamantaraset al., 1998; Diamantaras & Strintzis,1996), linear least square algorithms
(Papadimitriouet al.,2000), extended Kalman filter (EKF;Chiusoet al.,2002;Kanoet al.,2001;Soatto
et al.,1996;Azarbayejani & Pentland,1995;Matthieset al.,1989) and perspective non-linear observers
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166 L. MA ET AL.

(Jankovic & Ghosh, 1995;Chen & Kano,2002,2004;Dixonet al.,2003;Maet al.,2005b; Karagiannis&
Astolfi 2005; Dahl et al., 2005). Perspective non-linear observers are a class of observers that
arise from a control point of view in the perspective dynamic systems framework. In general, a per-
spective dynamic system is a linear system whose output is observed up to a homogeneous line (Chen &
Kano,2002;Takahashi & Ghosh,2002;Ghosh & Martin, 2002;Ghosh & Loucks, 1995;Ghoshet al.,
1994).

Among the aforementioned algorithms, the non-linear optimization formulation generally suffers
from the initial value selection problem. The shortcoming of (total) least square algorithms, which are
singular value decomposition-based, is sensitivity to noise (Diamantaras & Strintzis,1996). Assuming
that the moving object follows certain motion dynamics, an EKF can be used to estimate the motion
parameters and positions. The EKF is a recursive approach that usually requires less computation time
for each new set of data (e.g. each new image). State estimates are computed based on all past data
and can readily extrapolate the state estimates ahead in time to aid in preprocessing the next set of
data. We note that the EKF is based on the linearization about an estimated trajectory. However, for the
vision-based motion estimation problem, the geometric structure of a perspective system will be lost if
a linearization-based approach is taken. Efforts have been made towards other non-linear observers for
perspective dynamic systems that arise in visual tracking problems. This class of non-linear observers
is referred to as perspective non-linear observers.

Perspective non-linear observers are used quite often for determining the unknown states (i.e. the
Euclidean coordinates) of a moving object with known motion parameters. For example, an identifier-
based observer (IBO) is proposed inJankovic & Ghosh(1995) to estimate a stationary point’s 3D posi-
tion using a moving camera. Another discontinuous observer, motivated by sliding mode and adaptive
methods, is developed inChen & Kano(2002) that renders the state observation error uniformly ul-
timately bounded. A state estimation algorithm with a single homogeneous observation (i.e. a single
image coordinate) is presented inMa et al. (2005b). A reduced-order non-linear observer is described
in Karagiannis & Astolfi(2005) to provide asymptotic range estimates. The observers described above
are based on a conventional planar imaging surface. InMa et al. (2005a) andGuptaet al. (2006), the
state estimation problem is discussed for a parabolic projection surface. All these results are based on
the assumption that the motion parameters are known with the objective of estimating the unknown
depth.

In this paper, we consider the case in which some of the motion parameters (the rotational param-
eters) are unknown constants. The objective is to estimate the 3D position along with the unknown
parameters. A fast estimation scheme is applied for the estimation task. The fast estimator is further
augmented with a recursive least square (RLS) algorithm to estimate the unknown parameters. Under
certain persistent excitation (PE)-type conditions, the RLS algorithm ensures the convergence of param-
eter estimation. Preliminary results were presented inMa (2007b).

One model for the relative motion of a point in the camera’s field of view is the following linear
system (Jankovic & Ghosh, 1995;Chen & Kano,2004,2002;Dixon et al.,2003;Karagiannis & Astolfi,
2005):
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wherethe matrix [ωi ] presents the rotational dynamics, the vector [bi ] corresponds to the translational
motion and [X(t), Y(t), Z(t)]> denotethe coordinates of the point in the camera frame at time
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instancet . Some other variables used throughout this paper is listed in Table1. Using a conventional
camera, the homogeneous output observations are

x1(t) = X(t)/Z(t), x2(t) = Y(t)/Z(t). (1.2)

ThecoordinateZ(t) denotes the depth from the image plane to the object feature along the optical axis.
It is assumed thatZ(t) > 0 for possible motion estimation. The assumptionZ > 0 is a reasonable
assumption referring to the physical system (Chen & Kano,2004). In general, the parametersωi canbe
time-varying functions, but in this paper we assume that [ωi ] is a constant matrix.

Figure1 illustrates one scenario of constant [ωi ], where an omnidirectional robot is moving with
constant angular velocity on a plane described by its normal vectorEn = [n1, n2, n3]>. The motion
dynamics of a feature point on the robot can be modelled by (1.1).

Let

[x1(t), x2(t), x3(t)]
> = [X(t)/Z(t), Y(t)/Z(t), 1/Z(t)]>. (1.3)

The system (1.1) with output observations (1.3) is equivalent to the following system (Jankovic &
Ghosh,1995;Chen & Kano,2002;Dixon et al.,2003):






[
ẋ1(t)

ẋ2(t)

]

=

[
b1(t)− b3(t)x1(t)

b2(t)− b3(t)x2(t)

]

x3(t)

+

[
ω2 + ω1x2(t)+ ω2x2

1(t)+ ω3x1(t)x2(t)

ω3 − ω1x1(t)+ ω2x1(t)x2(t)+ ω3x2
2(t)

]

,

ẋ3(t) = (ω2x1(t)+ ω3x2(t))x3(t)− b3(t)x
2
3(t),

(1.4)

with the output

y(t) = [x1(t), x2(t)]
>. (1.5)

Estimationof x3(t) from the visual measurements(x1(t), x2(t)) constitutesthe range identification
problem.Jankovic & Ghosh(1995),Chen & Kano(2002,2004),Dixon et al. (2003),Ma et al. (2005b)

TABLE 1 Descriptionof variables

Variable Description

[X(t),Y(t), Z(t)]> Coordinatesof a feature point in the camera frame at time instancet
[x1(t), x2(t), x3(t)]> [X(t),Y(t), 1]>/Z(t)
θθθ = [ω1, ω2, ω3]> (ω1, ω2, ω3) denotethe skew-symmetric matrix in (1.1)
ω(t) The time-varying signal to be estimated via fast estimator
ωr (t) An intermediate signal introduced to facilitate analysis
ωe(t) Estimateof ω(t) via fast estimator
Γc Updategain used in the fast estimator
C(s) C(s) = c

s+c , a low-pass filter used in the fastestimator
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168 L. MA ET AL.

FIG. 1. Illustration of constant angular velocity where the black dot traces a path on the plane defined byEn at some frequency.

andKaragiannis & Astolfi(2005) have solved this problem assuming that the motion parametersωi

andbi (t) in (1.1) are known (fori ∈ {1,2,3}). Here, we assume that the parametersωi are unknown
constants. The objective is to estimatex3(t) as well as the unknown parametersωi . This problem can be
formulated in a way that existing observers, such as those developed inJankovic & Ghosh(1995),Chen
& Kano (2002,2004),Dixon et al. (2003),Ma et al. (2005b) andKaragiannis & Astolfi(2005), can
be applied. Under certain PE-type assumptions, the approach provides an exponential convergence of
both the range and the parameter estimates (Jankovic & Ghosh,1995;Narendra & Annaswamy, 2005;
Wittenmark, 1995). A more general case of the problem consists of a 3× 3 rotational matrix instead of
the skew-symmetric matrix as in (1.1) (Dixon et al.,2003;Ma et al.,2007a).

The contribution of this paper includes two aspects. One is to present a fast estimator with detailed
proofs. The analysis of the fast estimator is further extended to characterize the performance of the fast
estimator with respect to non-zero initialization error. The other is to discuss range identification in the
presence of unknown constant rotational parameters via the fast estimator. Performance comparison of
the fast estimator with the IBO is provided. The IBO has been compared with the EKF-based method
in Jankovic & Ghosh(1995) to achieve comparable performance with the advantage of providing rigor-
ous proof.

The paper is organized as follows. Range identification in the presence of unknown motion parame-
ters via the IBO is described in Section2. A fast estimator is presented in Section3. Range identification
via the fast estimator is described in Section4. Section5 provides the simulation results. Section6 ex-
tends the analysis to general affine motion. Finally, Section7 concludes the paper.

2. Range identification via IBO

Consider the estimation problem for the perspective dynamic system (1.4), where the motion parameters
ωi (for i = 1,2,3) are assumed to be unknown constants. Letθθθ be a vector of these unknown constants
defined as

θθθ = [ω1, ω2, ω3]> . (2.1)
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Thesystem (1.4) can be rewritten as






[
ẋ1(t)

ẋ2(t)

]

= w>
s (x1(t), x2(t))

[
x3(t)

θθθ

]

,

[
ẋ3(t)

θ̇θθ

]

=






(ω2x1 + ω3x2)x3 − b3x2
3︸ ︷︷ ︸

gs(x1(t),x2(t),x3(t),ω2,ω3)

03×1




 ,

(2.2)

where

w>
s (x1, x2) =

[
b1 − b3x1 x2 1 + x2

1 x1x2

b2 − b3x2 −x1 x1x2 1 + x2
2

]

. (2.3)

Thesystem (2.2) exhibits the structure of the general non-linear system to which IBO may be applied.
To apply the IBO, the following assumptions are in order:

ASSUMPTION 2.1

1. Let xxx(t) =
[
x1(t), x2(t), x3(t), θθθ

>]> be bounded:‖xxx(t)‖ < M, M > 0 for everyt > 0. Let
Ω = {xxx(t) ∈ R6 : ‖xxx(t)‖ < M}. Further, for some fixed constantγ > 1, letΩγ = {xxx(t) ∈ R6 :
‖xxx(t)‖ < γM}.

2. Letvi (τ ) denote thei th column ofw>
s (x1(t), x2(t)) in (2.3). There are no non-trivial constants

κi (for i = 1,2,3,4) such that

4∑

i =1

κi vi (τ ) = 0, (2.4)

for all τ ∈ [t , t + μ], whereμ > 0 is a sufficiently small constant.

It is worth mentioning that the observability condition of IBO is stated in an integral form (page
65 of Jankovic & Ghosh, 1995). In the following, we show that Assumption2.1 satisfies the IBO ob-
servability condition. From Assumption2.1, there do not exist constantsκi (for i = 1, . . . , 4) with∑4

i =1 κ
2
i 6= 0 such that

∑4
i =1 κi vi (t) = 0. Therefore, for any non-zero 4× 1 vectorν with ‖ν‖ = 1,

we haveν>ws(x1, x2)w
>
s (x1, x2)ν > ε‖ν‖2 = ε. Therefore,ws(x1, x2)w

>
s (x1, x2) > εI and the IBO

observability condition is satisfied. Estimation ofx3(t), along with the unknown motion parametersθθθ ,
can thus be obtained via direct application of the IBO. The specific form of the observer when applying
the IBO to the system in (2.2) is given below.

Let

θ̂θθ(t) = [ω̂1(t), ω̂2(t), ω̂3(t)]
>. (2.5)
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170 L. MA ET AL.

Thefollowing observer can be designed for the system (2.2):






[
˙̂x1(t)
˙̂x2(t)

]

= GAm

[
x̂1(t)− x1(t)

x̂2(t)− x2(t)

]

+ w>
s (x1, x2)

[
x̂3(t)

θ̂θθ(t)

]

,

[ ˙̂x3(t)
˙̂
θθθ(t)

]

= −G2ws(x1(t), x2(t))P

[
x̂1(t)− x1(t)

x̂2(t)− x2(t)

]

+

[
gs(x1(t), x2(t), x̂3(t), ω̂2(t), ω̂3(t))

03×1

]

,

x̂xx(t+i ) = M
x̂xx(t−i )

‖x̂xx(t−i )‖
,

(2.6)

wherex̂xx(t) = [ x̂1(t), x̂2(t), x̂3(t), θ̂θθ(t)>]> denotesthe estimate ofxxx(t), G is a scalar constant andAm

is a 2× 2 Hurwitz matrix. The matrixP is the positive-definite solution of the Lyapunov equation
A>

mP + PAm = −Q, whereQ is a positive-definite symmetric matrix. The sequenceti is defined as
follows:

ti = min{t : t > ti −1 and‖x̂xx(t)‖ > γM}, t0 = 0, (2.7)

whereγ is a fixed constant. According to Theorem 2.3 inJankovic & Ghosh(1995, p. 65), there exists
a positive constantG0 suchthat choosingG > G0 ensuresthe estimation errors [x̂1(t)− x1(t), x̂2(t)−
x2(t), x̂3(t)− x3(t), θ̂>(t)− θ>]> converge to zero exponentially.

3. Fast estimator

In vision-based applications, continuous extraction of the target’s information is often unavailable due
to environmental factors, limited field of view of the camera or failure in the image processing module.
Fast estimation becomes important in these situations when the target loss cannot be avoided. In this
section, range identification in the presence of unknown motion parameters is pursued using a recently-
developed fast estimator. Preliminary results of the fast estimator were presented inMa (2007b). De-
tailed proofs and derivations are provided here. The analysis of the fast estimator is further extended to
characterize the performance of the fast estimator with respect to non-zero initialization error. The fast
estimator enables estimation of the unknown time-varying parameters in the system dynamics via large
update gain and a low-pass filter.

If the time-varying unknown signal is linearly parameterized in unknown constant parameters, the
fast estimator can be further augmented by a RLS algorithm to estimate the unknown constant pa-
rameters. Under certain PE-type conditions, the RLS algorithm ensures the convergence of parameter
estimation. Details of the RLS algorithm and the PE condition are reviewed in Appendix C.

3.1 Problem formulation

This section presents details of the fast estimator. Consider the following system dynamics:

ẋ(t) = Amx(t)+ ω(t), x(0)= x0, (3.1)
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wherex(t) ∈ Rn is the system state vector,ω(t) ∈ Rn is a vector of unknown time-varying signals or
parameters andAm is a knownn × n Hurwitz matrix. Let

ω(t) ∈ Ω, (3.2)

whereΩ is a known compact set. There exists a positive constantμω suchthat

‖ω(t)‖ 6 μω < ∞, ∀ t > 0. (3.3a)

Thesignalω(t) is further assumed to be continuously differentiable with uniformly bounded derivative:

‖ω̇(t)‖ 6 dω < ∞, ∀ t > 0, (3.3b)

wheredω is a positive constant. The estimation objective is to design a fast estimator that provides fast
estimation ofω(t).

3.2 Fast estimator

The proposed fast estimator consists of a state predictor, an update law, and a low-pass filter that extracts
the estimation information.

We consider the following state predictor:

˙̂x(t) = Amx̂(t)+ ω̂(t), x̂(0)= x0, (3.4)

whichhas the same structure as the system in (3.1). The only difference is that the unknown parameters
ω(t) are replaced by their estimatesω̂(t) that are governed by the following update law:

˙̂ω(t) = ΓcProj(ω̂(t),−Px̃(t)), ω̂(0)= ω̂0, (3.5)

where x̃(t) = x̂(t) − x(t) is the error signal between the state of the system and the state predictor,
Γc ∈ R+ is the update gain, chosen sufficiently large, andP is the solution of the algebraic equation
A>

mP + PAm = −Q, Q > 0. Definition of the projection operator is given in the Appendix.
The estimate of the unknown signal is generated by

ωe(s) = C(s)ω̂(s), ωe(0)= ω̂0, (3.6)

whereC(s) is a diagonal matrix with itsi th diagonal elementCi (s) beinga strictly proper stable transfer
function with low-pass gainCi (0)= 1. One simple choice is

Ci (s) =
c

s + c
. (3.7)

3.3 Convergence results

The main result of the fast estimator in Section3 is that it ensuresωe(t) estimatesthe unknown signal
ω(t) with the final precision bound

γc√
Γc

+ ‖1 − C(s)‖L1‖ω‖L∞ , (3.8)
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172 L. MA ET AL.

whereγc is to be given in (3.22a) and definition of theL∞ norm is reviewed in the Appendix. To
quantify the above performance bound, an intermediate signalωr (t) is introduced as

ωr (s) = C(s)ω(s), ωr (0)= ω̂0. (3.9)

Theprecision bound in (3.8) is obtained through a triangulation of the performance bound of(ωe(t) −
ωr (t)) and(ωr (t) − ω(t)), respectively. The performance bound of(ωe(t) − ωr (t)) is first presented
in Theorem3.1, followed by that of(ωr (t) − ω(t)) in (3.31). To quantify the performance bound of
(ωe(t)− ωr (t)), we need the following lemma.

LEMMA 3.1 Given the system in (3.1) and the fast estimator in (3.4–3.6), the tracking error between
the system state and the predictor state is bounded as follows:

‖x̃‖L∞ 6
√

ωm

λmin(P)Γc
, (3.10)

where

ωm = 4μ2
ω + 4μωdω

λmax(P)

λmin(Q)
. (3.11)

Proof. Consider the following candidate Lyapunov function:

V(x̃(t), ω̃(t)) = x̃>(t)Px̃(t)+ ω̃>(t)ω̃(t)/Γc, (3.12)

where

ω̃(t) , ω̂(t)− ω(t). (3.13)

It follows from (3.1) and (3.4) that

˙̃x(t) = Amx̃(t)+ ω̃(t), x̃(0)= 0. (3.14)

Using the projection-based update law from (3.5), we have the following upper bound forV̇(t):

V̇(t) 6 −x̃>(t)Qx̃(t)+ 2|ω̃>(t)ω̇(t)/Γc|. (3.15)

Theprojection algorithm ensures thatω̂(t) ∈ Ω for all t > 0, and therefore

max
t>0

(ω̃>(t)ω̃(t)/Γc) 6 4μ2
ω/Γc, ∀ t > 0. (3.16)

If at anyt

V(t) > ωm/Γc, (3.17)

thenit follows from equations (3.12), (3.16) and (3.17) that

x̃>(t)Px̃(t) > 4μωdω
λmax(P)

Γcλmin(Q)
. (3.18)
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Hence,

x̃>(t)Qx̃(t) >
λmin(Q)

λmax(P)
x̃>(t)Px̃(t) > 4μωdω/Γc.

The upper bounds in (3.3b) along with the projection-based update laws lead to the following upper
bound:

ω̃>(t)ω̇(t)

Γc
6 2

μωdω
Γc

. (3.19)

Hence,if V(t) > ωm
Γc

, it follows from equation (3.15) that

V̇(t) < 0. (3.20)

Since we have set̂x(0)= x(0), we can verify that

V(0)6 4μ2
ω/Γc < ωm/Γc,

andit follows from (3.20) thatV(t) 6
ωm

Γc
for anyt > 0. Sinceλmin(P)‖x̃(t)‖2 6 x̃>(t)Px̃(t) 6 V(t),

then

‖x̃(t)‖2 6
ωm

λmin(P)Γc
,

whichconcludes the proof. �
The performance bound betweenωe(t) andωr (t) is quantified in the following theorem.

THEOREM 3.1 Given the system in (3.1) and the fast estimator in (3.4–3.6), we have

‖ωe − ωr ‖L∞ 6
γc√
Γc
, (3.21)

where

γc = ‖C(s)H−1(s)‖L1

√
ωm

λmin(P)
, (3.22a)

H(s) = (sI− Am)
−1. (3.22b)

Proof. From equations (3.1) and (3.4), we have

sx(s)− x0 = Amx(s)+ ω(s), sx̂(s)− x0 = Amx̂(s)+ ω̂(s),

which leads to

x(s) = H(s)[ω(s)+ x0], x̂(s) = H(s)[ω̂(s)+ x0], (3.23)

andhence

x̃(s) = x̂(s)− x(s) = H(s)(ω̂(s)− ω(s)), (3.24)
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whereω(s) and ω̂(s) are the Laplace transformation ofω(t) and ω̂(t), respectively. It follows from
equations (3.6) and (3.9) that

ωe(s)− ωr (s)= C(s)(ω̂(s)− ω(s))

= C(s)H−1(s)H(s)(ω̂(s)− ω(s))

= C(s)H−1(s)x̃(s). (3.25)

SinceC(s)H−1(s) is a matrix of stable and proper transfer functions, itsL1-normexists and is bounded.
Hence, we have

‖ωe − ωr ‖L∞ 6 ‖C(s)H−1(s)‖L1‖x̃‖L∞ . (3.26)

It follows from Lemma3.1that

‖ωe − ωr ‖L∞ 6 ‖C(s)H(s)−1‖L1

√
ωm

λmax(P)Γc
,

whichalong with (3.22a) leads to (3.21). �

COROLLARY 3.1 Given the system in (3.1) and the fast estimator in (3.4–3.6), we have

lim
Γc→∞

(ωe(t)− ωr (t)) = 0, ∀ t > 0. (3.27)

We then characterize the performance bound betweenωr (t) andω(t). For simplicity, we use a first-
orderC(s) as given in (3.7). It follows from (3.9) that

ω̇r (t) = −cωr (t)+ cω(t), ωr (0)= ω̂0. (3.28)

We note thatωr (t) canbe decomposed into two components:

ωr (t) = ωr1(t)+ ωr2(t), (3.29)

whereωr1(t) andωr2(t) aredefined as follows:

ω̇r1(t) = −cωr1(t)+ cω(t), ωr1(0)= ω0, (3.30a)

ω̇r2(t) = −cωr2(t), ωr2(0)= ω̂0 − ω0. (3.30b)

It follows from (3.30a) that

‖ωr1 − ω‖L∞ = ‖1 − C(s)‖L1‖ω‖L∞ . (3.31)

Since

lim
c→∞

‖1 − C(s)‖L1 = 0, (3.32)

thenorm‖ωr1 − ω‖L∞ canbe rendered arbitrarily small by increasing the bandwidth ofC(s). Further,
ωr2(t) decaysto zero exponentially and the settling time is inverse proportional to the bandwidth of
C(s). Increasing the bandwidth ofC(s) implies thatωr2(t) decaysto zero faster. It can be observed
from equations (3.21) and (3.31) thatωe(t) estimatesω(t) with the final precision given in (3.8) when
the transients ofC(s) due to the initial condition−ω0 dieout.
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REMARK 3.1 It was proved inDippold (2009, Proposition 11, pp. 103–104) that if the Hurwitz matrix
Am in (3.1) is a diagonal matrix of the formAm = diag(am1,am2) wheream1 andam2 arenegative
constants, then for the choice ofC(s) in (3.7),

‖C(s)H−1(s)‖L1 =
∥
∥
∥

c

s + c
(sI− Am)

−1
∥
∥
∥
L1

=
1

min {|am1|, |am2|}
. (3.33)

It follows from equations (3.21) and (3.33) that

‖ωe − ωr ‖L∞ 6
1

Γc min {|am1|, |am2|}

√
ωm

λmin(P)
, (3.34)

which is independent ofc in (3.7). Thus, selection of the bandwidth ofC(s) and the update gainΓc is
independentof each other. Increasing the update gainΓc rendersthe term‖ωe − ωr ‖L∞ arbitrarily
small.Note that increasing the update gainΓc requiresfaster computation and smaller integration step.
Further, increasing the bandwidth ofC(s) ensures thatωr (t) tracksω(t) arbitrarily closely both in
transient and steady state.

The low-pass filter removes the high-frequency component in its input signal. Though this is a well-
adopted method, the proposed fast estimator that consists of the state predictor (3.4), the update law
(3.5) and the application of the low-pass filter (3.6) is novel for the following features: (1) with the
help of the low-pass filter, the proposed estimator is able to estimate the time-varying signal with a final
precision bound that can be made arbitrarily small by increasing the update gain and the bandwidth of
the low-pass filter, subject to hardware limit; (2) the proposed estimator estimates the unknown time-
varying signal with specifically characterized final precision bound given in (3.8) and (3) all derivations
are performed analytically.

3.4 Performance of fast estimation in the presence of non-zero initialization error

The performance of the fast estimator is also analysed with respect to non-zero initialization error
x̂0 − x0, associated with the following state predictor:

˙̂x(t) = Amx̂(t)+ ω̂(t), x̂(0)= x̂0 6= x0. (3.35)

LEMMA 3.2 Given the system in (3.1) and the fast estimator with the state predictor in (3.35), we have

‖x̃(t)‖ 6 κ(t), ∀ t > 0, (3.36)

where





κ(t) =

√
(V(0)− ωm/Γc)e−αt + ωm/Γc

λmin(P)
,

α =
λmin(Q)

λmax(P)
,

(3.37)

andωm is given in (3.11).
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Proof. The proof is similar to that performed for Lemma3.1. The difference is to take care of the non-
zero initialization error. Consider the same Lyapunov function in (3.12). Sincêx0 6= x0, equation (3.14)
reduces to

˙̃x(t) = Amx̃(t)+ ω̃(t), x̃(0)= x̂0 − x0. (3.38)

Theprojection algorithm ensures that equations (3.15) and (3.16) are true, along the trajectoryx̃(t) in
(3.38). Thus,

V(t) = x̃>(t)Px̃(t)+ ω̃>(t)ω̃(t)/Γc

6 x̃>(t)Px̃(t)+ 4μ2
ω/Γc

(3.39)

and

x̃>(t)Qx̃(t) >
λmin(Q)

λmax(P)
x̃>(t)Px̃(t)

>
λmin(Q)

λmax(P)
(V(t)− 4μ2

ω/Γc). (3.40)

For the derivative of the Lyapunov function, we have

V̇(t)= −x̃>(t)Qx̃(t)+ 2ω̃>(t)ω̇(t)/Γc

6−
λmin(Q)

λmax(P)
V(t)+

λmin(Q)

λmax(P)
4μ2

ω/Γc + 4μωdω/Γc

= −
λmin(Q)

λmax(P)
V(t)+

λmin(Q)

λmax(P)

ωm

Γc
, (3.41)

whereωm is given in (3.11). It follows from (3.41) that

V(t) 6 (V(0)− ωm/Γc)e
−αt + ωm/Γc, (3.42)

whereα is defined in (3.37). Sinceλmin(P)‖x̃(t)‖2 6 x̃>(t)Px̃(t) 6 V(t), then

‖x̃(t)‖2 6
(V(0)− ωm/Γc)e−αt + ωm/Γc

λmin(P)
, (3.43)

whichconcludes the proof. �

Let x̃a(t) bea signal with its Laplace transformation

x̃a(s) = H(s)(x̂0 − x0), (3.44)

where H(s) is given in (3.22b). The next theorem characterizes the performance bound of
(ωe(t)− ωr (t)).

THEOREM 3.2 Given the system in (3.1) and the fast estimator with the state predictor in (3.35), we
have

‖ωe(t)− ωr (t)‖∞ 6 ψ(t) ∗ [κ(t)+ ‖x̃a(t)‖], (3.45)
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where∗ denotesthe convolution operation and

ψ(t) = max
i =1,...,n

√√
√
√

m∑

j =1

h2
i j (t), (3.46)

wherehi j (t) is the i th row and j th column of the impulse response ofC(s)H−1(s).

Proof. The proof is similar to that performed for Theorem3.1. The difference is to take care of the
non-zero initialization error. From equations (3.1) and (3.35), we have

sx(s)− x0 = Amx(s)+ ω(s), sx̂(s)− x̂0 = Amx̂(s)+ ω̂(s),

which leads to

x(s) = H(s)[ω(s)+ x0], x̂(s) = H(s)
[
ω̂(s)+ x̂0

]
,

andhence

x̃(s) = H(s)[ω̂(s)− ω(s)] + H(s)(x̂0 − x0), (3.47)

whereH(s) is given in (3.22b). Thenωe(s)− ωr (s) becomes

ωe(s)− ωr (s)= C(s)[ω̂(s)− ω(s)] = C(s)H−1(s)[ x̃(s)− H(s)(x̂0 − x0)]

= C(s)H−1(s)[ x̃(s)− x̃a(s)], (3.48)

wherex̃a(s) is given in (3.44). Since

‖x̃(t)− x̃a(t)‖ 6 ‖x̃(t)‖ + ‖x̃a(t)‖ 6 κ(t)+ ‖x̃a(t)‖, (3.49)

where‖x̃(t)‖ 6 κ(t) is already shown in Lemma3.2, it follows from Lemma 11 inCao & Hovakimyan
(2008, p. 65) that

‖ωe(t)− ωr (t)‖∞ 6 ψ(t) ∗ [κ(t)+ ‖x̃a(t)‖],

whereκ(t) andψ(t) are given in (3.37) and (3.46), respectively. This completes the proof. �

REMARK 3.2 Notice thatκ(t) in (3.37) is an exponentially decaying signal with the ultimate bound√
ωm/[λmin(P)Γc] as given in Lemma3.1. Besides,‖x̃a(t)‖ exponentially decays to zero. Thus,(ωe(t)−

ωr (t)) will decay exponentially with the ultimate bound stated in Theorem3.1.

If the time-varying signalω(t) can be linearly parameterized in unknown constant parameters and
known non-linear functions, extraction of the unknown parameters can be achieved by the RLS algo-
rithm under a PE-type of condition. The RLS algorithm is reviewed in the Appendix.

4. Range identification via fast estimation

Denote

η(t) =
[
η1(t)
η2(t)

]
(4.1)

 at U
niversity of Florida on A

pril 11, 2012
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://imamat.oxfordjournals.org/


178 L. MA ET AL.

andwrite the first equation in (2.2) as
[

ẋ1(t)

ẋ2(t)

]

= w>
s (x1(t), x2(t))

[
x3(t)

θθθ

]

= η(t), x(0)= x0, (4.2)

whereθθθ is defined in (2.1) andw>
s (x1(t), x2(t)) is given in (2.3). That is,

[
b1 − b3x1 x2 1 + x2

1 x1x2

b2 − b3x2 −x1 x1x2 1 + x2
2

][
x3(t)

θθθ

]

= η(t). (4.3)

Letting

N1(t)= b1(t)− b3(t)x1(t),

N2(t)= b2(t)− b3(t)x2(t), (4.4)

equation(4.3) can be rewritten as

N2(t)η1(t)− N1(t)η2(t) =







N2(t)x2 + N1(t)x1

N2(t)(1 + x2
1)− N1(t)x1x2

N2(t)x1x2 − N1(t)(1 + x2
2)







>

θθθ. (4.5)

The RLS method can be used to estimateθθθ according to (7.6), withω(t) replaced byN2(t)η1(t) −
N1(t)η2(t). Onceθθθ is available, equation (4.3) becomes

[
b1 − b3x1

b2 − b3x2

]

x3 =

[
η1(t)

η2(t)

]

−

[
x2 1 + x2

1 x1x2

−x1 x1x2 1 + x2
2

]

θθθ, (4.6)

wherex3(t) canbe extracted using the pseudoinverse.
Using the fast estimator in (3.4–3.6), estimation ofη(t) in (4.2), denoted byηe(t), can be obtained

via the following steps:

• State predictor:
[ ˙̂x1(t)

˙̂x2(t)

]

= Am

[
x̃1(t)

x̃2(t)

]

+ η̂(t), x̂(0)= x0, (4.7)

wherex̃i (t) = x̂i (t)− xi (t), for i = 1,2. The above state predictor, along with the system dynamics
in (4.2), gives the error dynamics̃̇x(t) = Amx̃(t)+ η̃(t), x̃(0)= 0.

• Update law for the parameter:

˙̂η(t) = ΓcProj

(

η̂(t),−P

[
x̃1(t)

x̃2(t)

])

, η̂(0)= η̂0. (4.8)

• Applying low-pass filter:

ηe(s) = C(s)η̂(s), C(s) =
c

s + c
, ηe(0)= η̂0. (4.9)

A flow chart of state and parameter estimation of a rigid-body motion using the fast estimator is
illustrated in Fig.2. In the first step to estimateη(t), both the estimation precision and transient time can
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FIG. 2. Flow chart of applying the fast estimator for the range identification problem.

be arbitrarily reduced by increasing the bandwidth ofC(s) and largerΓc. In the second step of extracting
parameterŝωi (t) from ηe(t) using the RLS method, fast speed can be achieved by properly tuning the
RLS gains. Estimate ofx3(t), denoted bŷx3(t), can be obtained fromηe(t) andω̂i (t) via pseudoinverse.

5. Simulation results

State estimate of [x3(t), θθθ
>]> using the IBO in (2.6) and the fast estimator in (4.7–4.9) are implemented

in Matlab, where the motion dynamics are






Ẋ(t)

Ẏ(t)

Ż(t)





 =






0 −4 −0.8

4 0 −0.6

0.8 0.6 0











X(t)

Y(t)

Z(t)




+






10

3π sin(2πt)

3π sin(2πt + π/4)




 , (5.1)

with initial values

(X0,Y0, Z0) = (1,1.5,2.5), x0 = (X0/Z0,Y0/Z0, 1/Z0). (5.2)

First, we present simulation results in the ideal case with no measurement noise. The design gains for
the IBO and the fast estimator are chosen as

• IBO parameters (referring to (2.6)):

G = 10, (x̂3(0), ω̂1(0), ω̂2(0), ω̂3(0))= (0,0,0,0). (5.3)

• Fast estimator parameters (referring to equations (7.6), (4.7), (4.8) and (4.9)):

p = 100, λ= 0.99999, Γc = 2 × 104, (η̂1(0), η̂2(0))= (0,0), c = 100. (5.4)

• Common parameters:

(x̂1(0), x̂2(0))= (x1(0),x2(0)), M = 20, Am = −I2, P = 1/2 × I2, (5.5)

whereI2 denotes the 2× 2 identity matrix.

Estimate ofωi (for i = 1,2,3) when using the IBO and the fast estimator is shown in Figs3 and4,
respectively. Figure4 (b) shows an enlarged view of Fig.4 (a). State estimation error ofx3(t) is plotted
in Fig. 5 for comparison of these two methods. From Figs3 and 4, it can be observed that the fast
estimator achieves faster estimation of the motion parameters. The same is true forx3(t).

Simulation results are also presented in Figs6–8where 1% uniform noise is injected into the visual
measurements via the Matlab function randn(). The simulation parameters are the same as above. In
this case, when extractinĝx3(t), the output from the pseudoinverse is further processed using a low-
pass filter 30

s+30 to give the final state estimation. We observe that corresponding plots with or without
measurement noise are very similar.
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FIG. 3. Estimation of motion parameters via IBO (without measurement noise).

FIG. 4. Estimation of motion parameters via fast estimator (without measurement noise).

6. Further extension

In addition to the rigid-body motion in (1.1), extension to a more general motion, i.e. an affine motion,
is discussed in this section.
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FIG. 5. Comparison of state estimation errors (without measurement noise).

FIG. 6. Estimation of motion parameters via IBO (with measurement noise).
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FIG. 7. Estimation of motion parameters via fast estimator (with measurement noise).

FIG. 8. Comparison of state estimation errors (with measurement noise).

6.1 Affine motion

For a general affine motion described byDixon et al. (2003) andMa et al. (2007a)






Ẋ(t)

Ẏ(t)

Ż(t)





 =






a11 a12 a13

a21 a22 a23

a31 a32 a33











X(t)

Y(t)

Z(t)




+






b1(t)

b2(t)

b3(t)




 , (6.1)
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the rotational matrix contains nine parameters. Again, we limit the discussion to constant parameters
ai j . The system (6.1) with output observations (1.3) is equivalent to the following systemDixon et al.
(2003) andMa et al. (2007a):






[
ẋ1(t)

ẋ2(t)

]

=

[
b1(t)− b3(t)x1(t)

b2(t)− b3(t)x2(t)

]

x3(t)+

[
a13 + (a11 − a33)x1(t)+ a12x2(t)− a31x2

1(t)− a32x1(t)x2(t)

a23 + a21x1(t)+ (a22 − a33)x2(t)− a31x1(t)x2(t)− a32x2
2(t)

]

,

ẋ3(t) = −(a31x1(t)+ a32x2(t)+ a33)x3(t)− b3(t)x
2
3(t),

(6.2)

with the output given in (1.5).
Define

ϑϑϑ = [a11,a12,a13,a21,a22,a23,a31,a32]
>. (6.3)

Thesystem in (6.2) can be rewritten as





[
ẋ1(t)

ẋ2(t)

]

= w>
s (x1(t), x2(t))

[
x3(t)

ϑϑϑ

]

− a33

[
x1

x2

]

,

[
ẋ3(t)

ϑ̇ϑϑ

]

=






−(a31x1 + a32x2 + a33)x3 − b3x2
3︸ ︷︷ ︸

gs(x1,x2,x3,a3 j )

08×1




 ,

(6.4)

where

w>
s (x1, x2) =

[
b1 − b3x1 x1 x2 1 0 0 0 −x2

1 −x1x2

b2 − b3x2 0 0 0 x1 x2 1 −x1x2 −x2
2

]

. (6.5)

Assumingthat ai j for i, j = 1,2,3 (except fora33) are unknown constants, in the next we show
how x3(t) andai j canbe estimated using the fast estimator described in Section3, followed by the RLS
method. Note thata33 is assumed to be known.

REMARK 6.1 Assuming that the [ai j ] (for i, j = 1,2,3) are unknown constants, the method described
in Section4 cannot lead to extraction of the nine unknown parameters in a straightforward way. Let
θθθ9×1 bea vector of these unknown constants as

θθθ9×1 = [a11,a12,a13,a21,a22,a23,a31,a32,a33]
> . (6.6)

Thesystem (6.2) can be written in the form of (2.2) with

w>
s (x1, x2) =

[
b1 − b3x1 x1 x2 1 0 0 0 −x2

1 −x1x2 −x1

b2 − b3x2 0 0 0 x1 x2 1 −x1x2 −x2
2 −x2

]

. (6.7)

The ten column vectors ofw>
s (x1(t), x2(t)) in (6.7) are linearly dependent. For example, lettingvi

denotethe i th column ofw>
s (x1, x2), we havev10 = −v2 − v6. Thus, extraction of the nine unknown

parameters cannot be performed by the RLS method since it violates the PE condition in (7.7). It is worth
mentioning that the above restriction on the knowledge ofa33 is not imposed by the method proposed
in this paper. It is due to the nature of the estimation problem itself.
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6.2 Fast estimation

Following the logic in Section4, equation (4.2) becomes

[
ẋ1(t)
ẋ2(t)

]
= w>

s (x1(t), x2(t))

[
x3
ϑϑϑ

]

︸ ︷︷ ︸
η(t)

−a33

[
x1
x2

]
,

(6.8)

whereϑϑϑ andw>
s (x1(t), x2(t)) are given in (6.3) and (6.5), respectively. Equation (4.5) becomes

N2(t)η1(t)− N1(t)η2(t) =






N2(t) [x1, x2, 1]>

−N1(t) [x1, x2, 1]>

(N1(t)x2 − N2(t)x1) [x1, x2]>






>

︸ ︷︷ ︸
φ>(t)

ϑϑϑ, (6.9)

for the sameN1(t) andN2(t) in (4.4). The RLS method can be used to extract the unknown parameters
ϑϑϑ according to (7.6). Onceϑϑϑ is available, we have

[
b1 − b3x1

b2 − b3x2

]

x3(t) =

[
η1(t)

η2(t)

]

−

[
x1 x2 1 0 0 0 −x2

1 −x1x2

0 0 0 x1 x2 1 −x1x2 −x2
2

]

ϑϑϑ, (6.10)

wherex3(t) can be extracted using the pseudoinverse. Application of the fast estimator is similar to
those performed in Section4 and is omitted from here.

FIG. 9. Estimation of motion parameters via IBO (affine).
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FIG. 10. Estimation of motion parameters via fast estimator (affine).

FIG. 11. Comparison of state estimation errors (affine).
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6.3 Simulationresults

Estimation of [x3(t), ϑϑϑ
>]> usingthe IBO and the fast estimator are implemented in Matlab with the

following motion dynamics:







Ẋ(t)

Ẏ(t)

Ż(t)








=








0.3 −4 0.4

4 −0.2 0.4

−0.7 −0.5 0















X

Y

Z








+








2π sin(2πt)

2π cos(2πt)

0







, (6.11)

for the same initial values in (5.2). The parameters are selected to beG = 30, Γc = 2 × 107 and
c = 200.Other parameters for the IBO and the fast estimator are the same as those in equations (5.3–
5.5). Simulation results are presented in Figs9–11where the visual measurements are corrupted by 1%
noise. It can be observed that the fast estimator achieves faster estimation of the motion parameters. The
same is true forx3(t).

7. Conclusion

A fast estimator is proposed and applied to the range identification problem for both rigid-body and
affine motions in the presence of unknown constant rotational parameters. The fast estimator allows for
fast estimation of the unknown time-varying signal via large update gain and low-pass filter. Simula-
tion results show that fast convergence speed is achieved compared to existing non-linear perspective
observers. Future research will consider motion estimation with unknown rotational and translational
parameters.
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Appendix A

We recall basic definitions and facts from linear systems theory (Khalil, 2002;Zhou & Doyle,1998).

DEFINITION 7.1 For a signalξ(t) = [ξ1(t) ∙ ∙ ∙ ξn(t)]> ∈ Rn definedfor all t > 0, theL∞-normis

‖ξ‖L∞ = max
i =1,...,n

(sup
τ>0

|ξi (τ )|).

DEFINITION 7.2 The L1-norm of an asymptotically stable and proper single-input-single-output.
system is defined

‖H(s)‖L1 =
∫ ∞

0
|h(t)|dt,

whereh(t) is the impulse response ofH(s).

DEFINITION 7.3 For an asymptotically stable and properm input n output systemH(s), theL1-norm
is defined as

‖H(s)‖L1 = max
i =1,...,n




m∑

j =1

‖Hi j (s)‖L1



 ,

whereHi j (s) is the i th row and j th column entry ofH(s).

Appendix B

The projection operator is defined asPomet & Praly(1992):

DEFINITION 7.4 Consider a convex compact set with a smooth boundary given by

Ωc
Δ
= {θ ∈ Rn | f (θ) 6 c}, 06 c 6 1,

where f : Rn → R is the following smooth convex function:

f (θ) =
θ>θ − θ2

max

εθ θ2
max

, (7.1)

whereθmax is the norm bound imposed on the parameter vectorθ and εθ denotesthe convergence
tolerance of our choice. Let the true value of the parameterθ , denoted byθ∗, belong toΩ0, i.e.θ∗ ∈ Ω0.
Theprojection operator is defined as

Proj(θ,y)
Δ
=






y if f (θ) < 0,

y if f (θ) > 0 and∇ f >y 6 0,

y −
∇ f

‖∇ f ‖
︸ ︷︷ ︸

unit vector

〈
∇ f >

‖∇ f ‖
, y

〉

︸ ︷︷ ︸
projection

f (θ)
︸︷︷︸
scaling

if f (θ) > 0 and ∇ f >y > 0.
(7.2)
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Appendix C

The RLS algorithm is reviewed here. Consider a linear scalar regression model

ωk = θ>φk + ek, (7.3)

where

θ = [θ1, θ2, . . . , θn]> (7.4)

is then × 1 vector of the plant parameters, and

φk = [φk,1, φk,2, . . . , φk,n]> (7.5)

is then×1 regressor vector at time instantk, whileek is a zero-mean discrete white noise sequence with
varianceσ 2

k . When the observation of(ωk, φk) hasbeen obtained fork = 1, . . . ,N (with N > n), the
RLS estimate forθ , denoted bŷθ , can be obtained in the following discrete form (Verhaegen, 1989):






Lk =
Pk−1φk

λ+ φ>
k Pk−1φk

,

θ̂k = θ̂k−1 + Lk(ωk − φ>
k θ̂k−1),

Pk =
1

λ

(

Pk−1 −
Pk−1φkφ

>
k Pk−1

λ+ φ>
k Pk−1φk

)

,

(7.6)

whereP0 = pIp×p andλ ∈ (0,1]. Coefficientsp andλ are the design gains. Whenφk is persistently
exciting during the observation period, RLS algorithm ensures the convergence ofθ̂ (t) to θ . The con-
vergence rate of the RLS can be increased by choosing largeλ. The PE condition of the regressor vector
is defined asVerhaegen(1989).

DEFINITION 7.5 The regressor vectorφk is persistently exciting over the observation intervalk0 6 k 6
kN with an exponentially forgetting factorλ 6 1, if the following condition is satisfied:

ρ1I 6
kN∑

k=k0

φkφ
>
k λ

kN−k 6 ρ2I, (7.7)

for some positiveρ1 > 0 andρ2 > 0.
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