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A group of wheeled robots with nonholonomic constraints is
considered to rendezvous at a common specified setpoint with a
desired orientation while maintaining network connectivity and
ensuring collision avoidance within the robots. Given communica-
tion and sensing constraints for each robot, only a subset of the
robots are aware or informed of the global destination, and the
remaining robots must move within the network connectivity
constraint so that the informed robots (IRs) can guide the group to
the goal. The mobile robots are also required to avoid collisions
with each other outside a neighborhood of the common rendezvous
point. To achieve the rendezvous control objective, decentralized
time-varying controllers are developed based on a navigation
function framework to steer the robots to perform rendezvous
while preserving network connectivity and ensuring collision
avoidance. Only local sensing feedback, which includes position
feedback from immediate neighbors and absolute orientation mea-
surement, is used to navigate the robots and enables radio silence
during navigation. Simulation results demonstrate the perform-
ance of the developed approach. [DOI: 10.1115/1.4034745]

1 Introduction

Distributed cooperative control of networked multi-agent
systems has attracted considerable interest. One particular cooper-
ative control problem is the rendezvous problem, where a number
of agents arrive at a predefined destination simultaneously, ideally
using limited information from the environment and team mem-
bers. Some example applications of the rendezvous problem are
cooperative strike and cooperative jamming in Refs. [1–3]. In the
cooperative strike scenario, multiple strikes are executed on a
target simultaneously by firing from different locations. In cooper-
ative jamming of a wireless communication network with eaves-
droppers, noisy signals are transmitted to jam the eavesdroppers at
the same time when the source transmits the message signal.
Spacecraft docking, air-to-air refueling, and the interception of an
incoming missile can also be considered as rendezvous problems.
In these applications, coordination and collaboration are crucial to
performance, and agents are required to communicate and coordi-
nate their movements with others to achieve rendezvous.

Earlier results on rendezvous problems are reported in
Refs. [4–6]. Convergence to a common point for a group of auton-
omous mobile agents is studied in Ref. [4]. In Refs. [5,6],
synchronized and unsynchronized strategies are developed to
drive mobile agents to a single unspecified location by using only
position feedback from its sensing regions. A common assumption
in Refs. [4–6] is that the network remains connected during the
motion evolution, allowing constant interaction between agents.
However, the assumption of network connectivity is not always
practical. Typically, each agent can only make decisions based on
the local information from immediate neighbors within a certain
region due to sensing and communication constraints. Since com-
munication/sensing links generally depend on the distance
between agents, agent motion may cause the underlying network
to disconnect. If the network disconnects, certain agents may no
longer be able to communicate and coordinate their motion, lead-
ing to a failure of cooperative tasks.

Recent results such as Refs. [7–13] have focused on maintain-
ing network connectivity when performing rendezvous tasks. A
circumcenter algorithm is proposed in Ref. [7] to avoid the loss of
existing links between agents. In Refs. [8–11], a potential field-
based distributed approach is developed to prevent partitioning in
the underlying graph by using local information from each agent’s
immediate neighbors. The results in Ref. [12] provide a
connectivity-preserving protocol for rendezvous of a discrete-time
multi-agent system, and a hybrid dynamic rendezvous protocol is
designed in Ref. [13] to address finite-time rendezvous problems
while preserving network connectivity. However, most of the
aforementioned works only consider linear motion models.
Although agents with nonholonomic kinematics are considered in
Ref. [8], like other results such as Refs. [4–6] and [13], the agents
can only converge to a destination determined by the initial
deployment. A dipolar navigation function was proposed, and a
discontinuous time-invariant controller was developed for a multi-
robot system in Ref. [14] to perform nonholonomic navigation for
networked robots. The dipolar navigation function is a particular
class of potential functions, which is developed from Refs. [15]
and [16] such that the negative gradient field does not have local
minima, and the closed-loop navigation function guarantees con-
vergence to the global minimum. The result in Ref. [14] was then
extended to navigate a nonholonomic system in three dimensions
in Ref. [17]. Other recent results focused on nonholonomic sys-
tems with various cooperative tasks such as formation control are
reported in Refs. [18–21]. However, network connectivity is not
considered in Refs. [14] and [17–21].

The rendezvous problem for mobile robots with nonholonomic
constraints is studied in this work, and the objective is to reach a
common specified setpoint with a desired orientation. Only a
small subset of robots (i.e., informed agents) are assumed to be
equipped with advanced sensors (e.g., global positioning system)
and provided with global knowledge of the destination, while the
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remaining robots (i.e., followers) only have a range sensor (e.g.,
sonar, laser, or radar), which provides local feedback of the rela-
tive trajectory of other robots within a limited sensing region.
Since the follower robots (FRs) are not aware of the global posi-
tion of the destination, they have to stay connected with the
informed agents when performing rendezvous. To avoid collision
among robots, the workspace is divided into a collision-free
region and a rendezvous region. Particularly, the robots are
required to avoid collisions with other robots outside a neighbor-
hood of the common goal. Based on our preliminary efforts in
Refs. [22–24], a decentralized time-varying controller, using only
local sensing feedback from its immediate neighbors, is designed
to stabilize the robots at the specified destination while preserving
network connectivity and ensuring collision avoidance. The devel-
oped decentralized controller only uses local sensing information,
and no interagent communication is required (i.e.,
communication-free global decentralized group behavior).
Although network connectivity is maintained so that the radio
communication is available when required for various tasks, com-
munication is not required for navigation. Using the navigation
function framework, the multirobot system is guaranteed to ren-
dezvous at a common destination with a desired orientation with-
out being trapped by local minima from almost all the initial
conditions, excluding a set of measure zero. Compared to Ref.
[24] where the formation control for a group of agents with fully
actuated dynamics is investigated, networked mobile robots with
nonholonomic constraints are considered in this work. Unlike our
centralized result in Ref. [22] or our preliminary result in Ref.
[23] in which all the robots are required to know the goal destina-
tion and only undirected interaction between robots are consid-
ered, the current result models the interaction among robots as a
digraph, and only requires a subset of the robots (i.e., one or
more) to have knowledge of the global position of the destination
and the desired orientation. This advancement reduces required
resources and sensor loads on the remaining robots. Within this
setting, the informed subset of robots can perform a task-level
controller, while the remaining robots just execute a local
interaction-based strategy. Moreover, the developed controller
allows the robots to rendezvous at any desired destination, versus
an unspecified destination determined by their initial deployment
as in Refs. [4–6,8], and [13]. The result can also be extended by
replacing the objective function in the navigation function to
accommodate different tasks, such as formation control, flocking,
and other applications.

2 Problem Formulation

Consider N-networked mobile robots operating in a workspace
F , where F is a bounded disk area with radius Rw. Each robot in
F moves according to the following nonholonomic kinematics:

_qi ¼
cos hi 0

sin hi 0

0 1

2
4

3
5 viðtÞ

xiðtÞ

� �
; i ¼ 1;…;N (1)

where qiðtÞ¢½ pT
i ðtÞ hiðtÞ �T 2 R3 denotes the states of robot i,

with piðtÞ¢½ xiðtÞ yiðtÞ �T 2 R2 denoting the position of robot i,
and hiðtÞ 2 ð�p;p� denoting the robot orientation with respect to
the global coordinate frame in F . In (1), vi(t), xiðtÞ 2 R are the
control inputs that represent the linear and angular velocity of
robot i, respectively.

The subsequent development is based on the assumption that
all robots have equal actuation capabilities, and each robot has
sensing and communication limitations encoded by a disk area
with radius R, which indicates that the two moving robots can
sense and communicate within a distance of R. We also assume
that only a subset of the robots, called informed robots, are pro-
vided with the knowledge of the destination, while the other
robots can only use local state feedback (i.e., position feedback
from immediate neighbors and absolute orientation measurement).

Furthermore, while multiple informed robots may be used for ren-
dezvous, the analysis and results of this work are focused on a sin-
gle informed robot. The techniques proposed in this work could
be extended to the case of multiple informed robots by using con-
tainment control, as explained in Remark 1. The interaction
among the robots is modeled as a directed graph GðtÞ ¼ ðV; EðtÞÞ,
where the node set V ¼ f1;…;Ng represents the group of robots,
and the edge set EðtÞ denotes time-varying edges. The set of
informed robots and followers are denoted as VL and VF, respec-
tively, such that VL [ VF ¼ V and VL \ VF ¼1. Let VL ¼ f1g
and VF ¼ f2;…;Ng. A directed edge ðj; iÞ 2 E in GðtÞ exists

between node i and j if their relative distance dij¢jjpi � pjjj 2
Rþ is less than R. The directed edge (j, i) indicates that node i is
able to access the states (i.e., position and orientation) of node j
through local sensing, but not vice versa. Accordingly, node j is a
neighbor of node i (also called the parent of node i), and the
neighbor set of node i is denoted as N i ¼ fjjðj; iÞ 2 Eg, which
includes the nodes that can be sensed. A directed spanning tree is
a directed graph, where every node has one parent except for one
node, called the root, and the root node has directed paths to every
other node in the graph. Since the follower robots are not aware of
the destination, they have to stay connected with the informed
robot either directly or indirectly through concatenated paths,
such that the knowledge of the destination can be delivered to all
the nodes through the connected network. Hence, to complete the
desired tasks, maintaining connectivity of the underlying graph is
necessary.

Collision avoidance among robots has not been considered
for rendezvous problems in the existing literature (e.g., see
Refs. [5–10]), since it conflicts with the objective of meeting at a
common goal. To enable collision avoidance in this work, the
workspace F is divided into a collision-free region Xc and a
rendezvous region Xr, such that Xc [ Xr ¼ F . The rendezvous
region Xr is a bounded disk area with radius Rr centered at
the common destination p*, while the remaining area in F is the
collision-free region Xc. Assume that the workspace F and the
rendezvous region Xr satisfy that Rw�Rr. The classical rendez-
vous problem enables the robots to rendezvous at p* with a
desired orientation h* in Xr. We additionally constraint this model
by requiring collision avoidance among robots outside the neigh-
borhood of common p* (i.e., Xc). The main contribution of this
work is to derive a set of distributed controllers using only local
information (i.e., position feedback from immediate neighbors
and the absolute orientation measurement) to perform rendezvous,
ensure network connectivity, and avoid collisions. To achieve
these goals, the following assumptions are required in the subse-
quent development.

ASSUMPTION 1. The initial graph Gð0Þ has a directed spanning
tree with the informed node as the root.

ASSUMPTION 2. The destination p* and desired orientation h*
are achievable, which implies that p* and h* do not coincide with
some unstable equilibria (i.e., saddle points).

3 Control Design

3.1 Dipolar Navigation Function. Artificial potential field-
based methods that use attractive and repulsive potentials have
been widely used to control multirobot systems. Due to the exis-
tence of local minima when attractive and repulsive forces are
combined, robots can be trapped by local minima and are not
guaranteed to reach the global minimum of the potential field. A
navigation function is a particular category of potential functions
where the potential field does not have local minima and the nega-
tive gradient vector field of the potential field guarantees almost
global convergence to a desired destination, along with (guaran-
teed) collision avoidance, if the initial conditions do not lie within
the sets of measure zero. The navigation function introduced in
Refs. [15,16] ensures global convergence of the closed-loop sys-
tem; however, the approach is not suitable for nonholonomic
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systems, since the feedback law generated from the gradient of
the navigation function can lead to undesirable behaviors, which
may be overcome by extending the original navigation function to
a dipolar navigation function in Refs. [25,26]. The flow lines cre-
ated in the dipolar potential field resemble a dipole, so that the
flow lines are all tangent to the desired orientation at the origin
and utilized by the vehicle to achieve the desired orientation. An
example of the dipolar navigation is shown in Fig. 1, where the
potential field has a unique minimum at the destination (i.e.,
p*¼ [0, 0]T and h*¼ 0), and achieves the maxima at the work-
space boundary of Rw¼ 5. Note that the surface x¼ 0 divides the
workspace into two parts and forces all the flow lines to approach
the destination parallel to the y-axis.

Inspired by the work in Refs. [25,26], the control strategy here
is to develop a dipolar navigation function for the informed robot,
which creates a feasible nonholonomic trajectory for the nonholo-
nomic robot and guarantees the achievement of the specified des-
tination with a desired orientation, while other follower robots
aim to achieve consensus with the informed robot and maintain
network connectivity by using only local interaction with neigh-
boring robots. Following this idea, the dipolar navigation function
is designed for the informed node i 2 VL as ud

i ðtÞ : F ! ½0; 1Þ

ud
i ¼

cd

ca
d þ Hd � bd

� �1=a
(2)

where a 2 Rþ is a tuning parameter. The goal function cdðtÞ :
R2 ! Rþ in Eq. (2) encodes the control objective of achieving
the desired destination, which is specified by the distance from
piðtÞ 2 R2 to the destination p� 2 R2, and is designed as

cd ¼ jjpiðtÞ � p�jj2

The factor HdðtÞ 2 Rþ in Eq. (2) creates a repulsive potential to
align the trajectory of node i at the destination with the desired
orientation. The repulsive potential factor is designed as

Hd ¼ enh þ ððpi � p�ÞT � ndÞ2 (3)

where enh is a small positive constant, and nd

¼ ½ cos ðh�Þ sin ðh�Þ �T 2 R2. A small disk area with radius
d1<R centered at node i is denoted as a collision region. To

prevent a potential collision between node i and the workspace

boundary, the function bd : R2 ! ð0; 1Þ in Eq. (2) is designed as

bd ¼
1

1þ e
� 2

d1
log 1��

�ð Þ di0�1
2
d1ð Þ (4)

where 0<� � 1 is a positive constant, and di0¢Rw � jjpijj 2 R
is the relative distance of node i to the workspace boundary.

Since cd and bd in Eq. (2) are guaranteed to not be zero simulta-
neously by Assumption 2, the navigation function candidate in
Eq. (2) achieves its minimum of 0 when cd¼ 0 and its maximum
when bd! 0. Our previous work in Ref. [24] proves that the orig-

inal navigation function with the form of ui ¼ ðci=ððca
i þ biÞ1=aÞÞ

is a qualified navigation function. It is also shown in Ref. [14] that
the navigation properties are not affected by the modification to a
dipolar navigation with the design of Eq. (3), as long as the work-
space is bounded, Hd in Eq. (2) can be bounded in the workspace,
and enh is a small positive constant. As a result, the decentralized

navigation function ud
i proposed in Eq. (2) can be proven to be a

qualified navigation function by following a similar procedure in
Refs. [14] and [24]. From the properties of the navigation func-
tion, it is known that almost all initial positions (except for a set
of measure zero points) asymptotically approach the desired
destination.

To achieve consensus with the informed node while
ensuring network connectivity and collision avoidance, a local
interaction rule is designed for each follower node i 2 VF as
uf

i ðtÞ : F ! ½0; 1Þ

uf
i ¼

ci

ca
i þ bið Þ1=a

(5)

where a 2 Rþ is a tuning parameter. The goal function ciðtÞ :
R2 ! Rþ in Eq. (5) encodes the control objective of achieving
consensus on the position between node i and neighboring nodes
j 2 N i, which is designed as

ci ¼
X
j2N i

jjpiðtÞ � pjðtÞjj2 (6)

Assume each node i has a collision region defined as a small
disk with radius d1<R, and an escape region defined as the
outer ring of the sensing area centered at the node with radius r,
R – d2< r<R, where d2 2 Rþ is a predetermined buffer distance.
Any node j 2 N i inside the collision region has the potential to
collide with node i, and each edge formed by node i and j 2 N i in
the escape region has the potential to break connectivity. To
ensure collision avoidance and network connectivity, the con-
straint function bi : R2N ! ð0; 1Þ in Eq. (5) is designed as

bi ¼
Y

j2N i
bijBij (7)

by only accounting for nodes within its sensing area. Particularly,
bijðpi; pjÞ : R2 ! ð0; 1Þ in Eq. (7) is a continuously differentiable
sigmoid function, designed as

bij ¼
1

1þ e
� 2

d2
log 1��

�ð Þ R�1
2
d2�dijð Þ (8)

where 0<� � 1 is a positive constant. The designed bij ensures
connectivity of nodes i and its neighboring nodes j 2 N i (i.e.,
nodes j 2 N i will never leave the sensing and communication
zone of node i if node j is initially connected to node i).

Since collision avoidance among robots are only required in Xc,
Bijðpi; pjÞ : R2 ! ð0; 1Þ in Eq. (7) is designed as

Bij ¼
1

1þ e
� 2

d1
log 1��

�ð Þ dij�1
2
d1ð Þ (9)

Fig. 1 An example of a dipolar navigation function with a work-
space of Rw 5 5 and destination located at the origin with a
desired orientation h* 5 0. In the dipolar potential field, the des-
tination is modeled as the unique minimum, while the work-
space boundary is modeled as the maximum. The surface x 5 0
divides the workspace into two parts and forces all the flow
lines approaching the origin with the desired orientation, so
that the robots can be driven to the origin with h* 5 0 by follow-
ing the flow lines.
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which indicates that the collision avoidance is activated if the
robots are in Xc, i.e., node i is repulsed from other nodes to pre-
vent a collision in Xc. If the robots are in Xr, the collision avoid-
ance is deactivated by removing Bij from bi in Eq. (7). Since Xr is
defined by the distance to the destination and only the leader in
the group is informed about the destination, the collision avoid-
ance scheme designed in Eq. (9) is deactivated only when the
leader is close enough to the destination in Xr.

2

If the leader is close enough to the destination, bi in Eq. (5) for
8i 2 VF switches from bi ¼

Q
j2N i

bijBij to bi ¼
Q

j2N i
bij, and col-

lision avoidance among robots is not considered any more. The
constraint function in Eq. (7) is designed to vanish whenever node
i intersects with one of the constraints in the environment, (i.e., if
node i touches another node in Xc, or separates from adjacent
nodes j 2 N i by distance of Rc). Since ci and bi in Eq. (5) will not

be zero simultaneously from their definitions, it is clear that uf
i

achieves its minimum of 0 if ci¼ 0 (i.e., consensus is reached

between node i and its immediate neighbors), and uf
i approaches

its maximum of one if bi! 0 (i.e., either the network connectivity
or collision constraint is met).

3.2 Control Development. For brevity, ui is used to
represent the potential function designed for each node i, where
particularly ui ¼ ud

i in Eq. (2) if i 2 VL, and ui ¼ uf
i in Eq. (5) if

i 2 VF. The desired orientation for any robot i 2 V, denoted by
hdi(t), is defined as a function of the negative gradient of the
decentralized function ui as

hdi¢arctan2 � @ui

@yi
; � @ui

@xi

� �
(10)

where the mapping arctan2ð�Þ : R2 ! R denotes the four quad-
rant inverse tangent function, and hdi(t) is confined to the region
of (–p, p]. By defining hdijp� ¼ arctan2ð0; 0Þ ¼ hijp� , hdi remains

continuous along any approaching direction to the goal position.
Based on the definition of hdi in Eq. (10)

riui ¼ �kriuik½ cos ðhdiÞ sin ðhdiÞ �T (11)

where riui ¼
@ui

@xi

@ui

@yi

� �T

denotes the partial derivative of ui

with respect to pi, and kriuik denotes the Euclidean norm of
riui. The difference between the current orientation and the
desired orientation for robot i at each time instant is defined as

~hiðtÞ ¼ hiðtÞ � hdiðtÞ (12)

where hdi(t) is generated from the decentralized navigation func-
tion ui and (10). Based on the open-loop system in Eq. (1), the
controller for each robot (i.e., the linear and angular velocity of
robot i) is designed as

vi ¼ kv;ikriuik cos ~hi (13)

xi ¼ �kw;i
~hi þ _hdi (14)

where kv;i; kw;i 2 Rþ denote the control gains for robot i. The
term _hdi in Eq. (14) is determined as

_hdi ¼ kv;i cosð~hiÞ
sin ðhdiÞ
�cos ðhdiÞ

� �T

r2
i ui

cos ðhiÞ
sin ðhiÞ

� �
(15)

where r2
i ui denotes the Hessian matrix of ui with respect to pi.

Note that the computation of riui;
~hi, and _hdi only requires local

position feedback and does not depend on the communication
with any neighbors, which highlights the decentralized nature of
the controllers in Eqs. (13) and (14). Although the switch of bi

will result in a discontinuity of the controller in Eqs. (13) and (14)
when the leader enters Xr from Xc, the controller remains
continuous within Xr and Xc, respectively. Substituting Eq. (13)
into Eq. (1) and using the fact that ½ cos hi sin hi �riui

¼ �kriuik cos ~hi from Eq. (11), the closed-loop system for robot
i can be obtained as

_pi ¼ �kv;iriui; i 2 V (16)

4 Connectivity and Convergence Analysis

4.1 Connectivity Analysis

THEOREM 1. The controller in Eqs. (13) and (14) ensures that the
initially connected spanning tree structure is preserved when per-
forming rendezvous for nodes with kinematics given by Eq. (1), as
well as collision avoidance among robots in Xc.

Proof. The spanning tree structure in Assumption 1 ensures that
there exists a path from the informed node to every follower node
in Gð0Þ. To show every existing edge in the directed spanning tree
in Gð0Þ is preserved, consider a follower i 2 VF located at a posi-
tion p0 2 F that causes bi approaches 0, which will be true when
either only one node j is about to disconnect from node i or when
multiple nodes are about to disconnect with node i simultane-
ously. If bi approaches zero, the navigation function ui designed
in Eq. (5) will achieve its maximum value. Driven by the negative
gradient of ui in Eq. (16), no open set of initial conditions can be
attracted to the maxima of the navigation function [16]. Therefore,
every edge in G is maintained and the directed spanning tree struc-
ture is preserved for all time.

Similar to the proof of the preservation of each link, if two
nodes i and j are about to collide in Xc, that is Bijðpi; pjÞ ! 0
from Eq. (9), then, the potential function ui in Eq. (5) will reach
its maximum. Based on the properties of a navigation function
driven by the vector field in Eq. (16), the system will not achieve
its maximum. Hence, collision among nodes is avoided. �

4.2 Convergence Analysis

LEMMA 1 [27,28]. Let G be a directed graph of order n and L �
Rn�n be the associated (nonsymmetric) Laplacian matrix. Con-
sider a linear system _xðtÞ ¼ �LðtÞxðtÞ, where
xðtÞ ¼ ½x1;…; xn�T 2 Rn. If the time-varying matrix LðtÞ 2 Rn�n is
a piecewise continuous function of time with bounded elements,
and G has a directed spanning tree for all t	 0, then consensus is
exponentially achieved, i.e., x1 ¼ � � � ¼ xn.

THEOREM 2. Provided that G has a spanning tree with
the informed node as the root, the controller in Eqs. (13) and
(14) ensures that all robots in Xr with kinematics given by
Eq. (1) converge to a common point with a desired

orientation, in the sense that jjpiðtÞ � p�jj ! 0 and j~hiðtÞj ! 0
as t!1; 8i 2 V.

Proof. For the follower robots i 2 VF, the term riui in Eq. (16)
is computed from Eq. (5) as

riui ¼
abirici � ciribi

a ca
i þ bið Þ

1
aþ1

(17)

whererici andribi are bounded in the workspace F from Eqs. (6)
and (7), andrici andribi in Eq. (17) can be determined as

2Since every existing link will be proven to be preserved in the subsequent
analysis, the network will remain connected with invariant topology G, which
implies that the distance between any two nodes is upper bounded by the graph
diameter dG 2 Rþ . For the same set of nodes, the graph diameter dG varies from the
underlying graph G. For instance, for the worst case that all nodes are connected one
by one as a line topology, the diameter dG is upper bounded by R(N – 1). If all nodes
are connected as a complete graph, the diameter dG is upper bounded by R only.
Assuming that the graph diameter dG is known for the initial topology, the leader is
required to deactivate the collision avoidance when its distance to the destination is
less than Rr � dG to ensure all followers are in Xr when the collision avoidance
scheme is deactivated.
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rici ¼ 2
X
j2N i

ðpi � pjÞ (18)

and

ribi ¼
X
j2N i

@bij

@dij

� � �bij

kpi � pjk
pi � pjð Þ (19)

respectively, where �bij¢
Q

l2N i;l6¼jbil. In (19), ð@bij=@dijÞ is

@bij

@dij
¼ �

2

d2

log
1� e

e

� �
e
� 2

d2
log 1�e

eð Þ R�1
2
d2�dijð Þ

1þ e
� 2

d2
log 1�e

eð Þ R�1
2
d2�dijð Þ

� 	2
(20)

which is negative, since d2, ð2=d2Þlog ðð1� eÞ=eÞ, and

e
� 2

d2
log 1�e

eð Þ R�1
2
d2�dijð Þ are all positive terms. Substituting Eqs. (18)

and (19) into Eq. (17), riui is rewritten as

riui ¼
X
j2N i

mijðpi � pjÞ (21)

where

mij ¼
2abi �

@bij

@dij

� � �bij

kpi � pjk
ci

a ca
i þ bið Þ

1
aþ1

(22)

is non-negative, based on the definitions of ci, bi, a, �bij, and
ð@bij=@dijÞ in Eq. (20). Using Eqs. (16) and (21) yields the closed-
loop system for each node i as

_piðtÞ ¼ �kv;iriud
i ; i 2 VL

_piðtÞ ¼ �
X
j2N i

kv;imijðpi � pjÞ; i 2 VF

8><
>: (23)

which can be rewritten in a compact form as

_pðtÞ ¼ �ðpðtÞ 
 I2ÞpðtÞ þ Fd (24)

where pðtÞ ¼ ½ pT
1 ; …; pT

N �
T 2 R2N denotes the stacked vector

of pi, Fd ¼ ½�kv;irT
i ud

i ; 0; …; 0 �T 2 R2N for i¼ 1 (recall

that VL ¼ f1g from Sec. 2), I2 is a 2� 2 identity matrix, and the

elements of pðtÞ 2 RN�N are defined as

pikðtÞ ¼

X
j2N i

kv;imij; i ¼ k

�kv;imik; k 2 N i; i 6¼ k

0; k 62 N i; i 6¼ k

8>>><
>>>:

(25)

Using the fact that mij is non-negative from Eq. (22), and kv,i is a
positive constant gain in Eq. (13), the off-diagonal elements of
p(t) are negative or zero, and its row sums are zero. Hence, p(t) is
a Laplacian matrix. Since the informed node acts as the root in the
spanning tree structure in G, the first row of p(t) is comprised of
all zeros, which indicates that the motion of the informed node is
not dependent upon the motion of the followers. From Lemma 1
and the properties of the dipolar navigation function in Eq. (2),
the first term in Eq. (24) indicates consensus3 that p1 ¼ � � � ¼ pN ,
and the second term implies that p1 ! p*, and hence,
pi ! p�; 8i 2 V.

Note that the properties of the developed dipolar navigation
function in Eq. (2) ensure that the informed node achieves the
specified destination with the desired orientation. If the informed
node always tracks its desired orientation hdi and all the followers
move along with the informed node, the group will achieve the

destination with desired orientation. To show that j~hij ! 0, we

take the time derivative of ~hiðtÞ in Eq. (12) and use Eq. (1) to
develop the open-loop orientation tracking error system as
~h�i ¼ xi � _hdi. Using Eq. (14), the closed-loop orientation track-
ing error is

_~hi ¼ �kw
~hi (26)

which has the exponentially decaying solution ~hiðtÞ
¼ ~hið0Þe�kwt. �

Remark 1. The previous analysis is based on the simplification
that only one informed node is considered. The result can be gen-
eralized to multiple informed nodes by using containment control
theory. Containment control is a particular class of consensus
problems in which all nodes are grouped into followers and lead-
ers, and the followers, under the influence of leaders through local
information exchange, converge to a desired region (i.e., a convex
hull) formed by the leaders’ states. Some recent results are
reported in Refs. [30–33] for containment control. In our recent
work in Ref. [34], a decentralized method is developed to influ-
ence followers in a social network to reach a common desired
state (i.e., within a convex hull spanned by the leaders), while
maintaining interaction among the followers and leaders. As a
special case of Ref. [34], if each leader is assigned the same desti-
nation, the convex hull formed by leaders will shrink to the com-
mon destination, and the followers will converge to this desired
destination. Therefore, following a similar approach in Refs. [34]
and [35], all nodes can be proven to converge to the common des-
tination, if the multiple informed nodes are considered.

Remark 2. The switch of the controllers (13) and (14) from
Xc to Xr will not affect the stability of the system. Theorem 3.2
in Ref. [36] states that a switched nonlinear system is stable if
the associated Lyapunov-like function Vi in each region Xi is
nonincreasing, and Vi is also nonincreasing when switching

occurs. It is proven that
PN

i ui is a qualified Lyapunov function
in Ref. [24], and following a similar approach as Ref. [24],PN

i ui is nonincreasing in Xc and Xr, respectively. To show that

the Lyapunov function
PN

i ui is nonincreasing when switching

occurs, note that the denominator of uf
i in Eq. (5) is nondecreas-

ing when switching from Xc to Xr due to the fact that Bij �

(0, 1), which results in a nonincreasing uf
i . By invoking Theo-

rem 3.2 in Ref. [36], the system remains stable when the switch
occurs from Xc to Xr.

5 Simulation

Numerical simulation results are provided to demonstrate the
performance of the controller developed in Eqs. (13) and (14) in a
scenario in which a group of six mobile robots are navigated to

the common destination p� ¼ ½ 0 0 �T with the desired orientation
h*¼ 0. The workspace F is a disk area centered at the origin with
radius Rw¼ 50 m. The rendezvous region is defined as a disk area
centered at the origin with radius Rr¼ 5.5 m and the rest of the
area in F is the collision-free region. The limited communication
and sensing zone for each robot is assumed as R¼ 2 m and
d1¼ d2¼ 0.4 m. The tuning parameter a in Eq. (2) is selected to
be a¼ 1.2. The control gains are selected as kw,i¼ kv,i¼ 1.1 for
8i 2 f1;…; 6g, and the parameters are set as e¼ 0.01 and
enh¼ 0.1. The group of mobile robots is arbitrarily deployed in F
and forms a connected network, where the dots denote the fol-
lower robots and the square denotes the informed node, as shown
in Fig. 2. As discussed in Assumption 1, the initial graph formed
by the mobile robots is assumed to contain a spanning tree, where

3The convergence rate and convergence time of consensus are investigated in
Refs. [27–29]. In the current work, the closed-loop system in Eq. (24) is indeed a
consensus algorithm, where each follower achieves consensus with the leader’s state
by updating its state based on neighboring agents’ states. Hence, the worst-case
convergence time can be estimated by following similar development in
Refs. [27–29].
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the informed node acts as the root in the spanning tree. Since the
informed node is the only node aware of the desired destination
p* and orientation h*, the underlying spanning tree enables infor-
mation delivery from the informed node to all followers via
directed paths.

The control laws in Eqs. (13) and (14) yield the simulation
results shown in Figs. 2–4. Figure 2 shows the trajectory for each
robot, where the associated arrows indicate the initial or final ori-
entation. The position and orientation error are shown in Fig. 4,
which indicates that all robots converge to the common destina-
tion with desired orientation. The spike at t¼ 34 s in the orienta-
tion error in Fig. 4 is caused by the switch of the control to
deactivate the collision avoidance. The inter-robot distance is
plotted in Fig. 3 to demonstrate the collision avoidance among
robots and connectivity of existing links. In Fig. 3, the inter-robot
distance decreases significantly for the first few seconds. Since the
robots are moving in the collision free region initially, where col-
lision avoidance is activated, the inter-robot distance stops to
decrease when two robots are close to each other. Once the robots
enter the rendezvous region, where collision avoidance is deacti-
vated, the inter-robot distance decreases again to perform the
desired rendezvous. Note that inter-robot distance is maintained
less than the radius R¼ 2 m through out the simulation, which
indicates that connectivity of the underlying graph is preserved.

6 Conclusion

A decentralized dipolar navigation function-based time-varying
controller is developed to navigate a network of mobile robots to
a common destination with a desired orientation while ensuring
network connectivity and collision avoidance, using only local
sensing information from one-hop neighbors. A distinguishing
feature of the developed decentralized approach is that no inter-
agent communication is required to complete the network consen-
sus objective. Another distinguishing feature is that the more
general problem of directed networks is considered, where only
one robot is informed of the global objective while other robots
coordinate their motions to perform the cooperative task by using
local information feedback from immediate neighbors. Since the
convergence rate of the network generally depends on the roles of
nodes (i.e., informed nodes or followers) and their interactions,
additional work will focus on improving the convergence rate of
the network based on leader selection and network topology
design. Future research will also investigate distributed rendez-
vous over time-varying graphs.
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