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A dynamic neural network (DNN) observer-based output
feedback controller for uncertain nonlinear systems with bounded
disturbances is developed. The DNN-based observer works in
conjunction with a dynamic filter for state estimation using only
output measurements during online operation. A sliding mode
term is included in the DNN structure to robustly account for
exogenous disturbances and reconstruction errors. Weight update
laws for the DNN, based on estimation errors, tracking errors,
and the filter output are developed, which guarantee asymptotic
regulation of the state estimation error. A combination of a DNN
feedforward term, along with the estimated state feedback and
sliding mode terms yield an asymptotic tracking result. The devel-
oped output feedback (OFB) method yields asymptotic tracking
and asymptotic estimation of unmeasurable states for a class of
uncertain nonlinear systems with bounded disturbances. A two-
link robot manipulator is used to investigate the performance of
the proposed control approach. [DOI: 10.1115/1.4035871]

1 Introduction

The problem of output feedback (OFB) tracking control for
nonlinear dynamic systems has been a topic of considerable inter-
est over the past several decades. Motivation arises from the fact
that full access to system states is sometimes impossible in many
practical systems. An obvious method to estimate the unmeasura-
ble states is using ad hoc numerical differentiation. The simplicity
of this technique makes it particularly useful for implementation.
However, if output measurements are noisy, such numerical
techniques will amplify the high frequency content which may
produce undesired oscillations or even system instability. Other

solutions can be classified as observer-based or filter-based
techniques that utilize the output information for estimating
unmeasurable states. While observers estimate the output deriva-
tive by approximating the system dynamics, filters approximate
the behavior of a differentiator over a range of frequencies.
Hence, observer designs need partial or exact model knowledge of
the system dynamics, whereas filters can provide a model-free
means of estimating unmeasurable states.

Output feedback controllers using model-based observers were
developed in Refs. [1–4], based on the assumption of exact model
knowledge. OFB control for systems with parametric uncertainties
have been developed in Refs. [5–7]. However, a limitation of such
previous adaptive OFB control approaches is that only linear-in-
the-parameters (LP) uncertainties are considered. As a result, if
uncertainties in the system do not satisfy the LP condition or if
the system is affected by disturbances, the results will reduce to a
uniformly ultimately bounded result.

Neural network (NN) and fuzzy logic are employed to compen-
sate adaptively for the uncertainties to relax the LP condition as in
Refs. [8–14]; however, both estimation and tracking errors are
only guaranteed to be bounded due to the existence of reconstruc-
tion errors. A semiglobal asymptotic OFB tracking result for
second-order dynamic systems, under the condition that uncertain
dynamics are first-order differentiable, was developed in Ref. [15]
using a novel filter design. All of the uncertain nonlinearities in
Ref. [15] are damped out by a sliding mode term, so the discontin-
uous controller requires high-gain. However, it is not clear how to
simply add a NN-based feedforward estimation of the nonlinear-
ities in results such as Ref. [15] to mitigate the high-gain condi-
tion, because of the need to inject nonlinear functions of the
unmeasurable state. The approach used in this paper avoids this
issue by exploiting the recurrent nature of a dynamic neural net-
work (DNN) structure to inject terms that cancel cross terms in
the stability analysis associated with the unmeasurable state.

In this paper and the preliminary work in Ref. [16], a DNN-based
observer-controller is proposed for uncertain nonlinear systems
affected by bounded disturbances, to achieve a two-fold result:
asymptotic estimation of the unmeasurable states and asymptotic
tracking control. The uncertain dynamics are assumed to be first-
order differentiable. The universal approximation property of DNNs
is utilized to approximate the uncertain nonlinear system. A modi-
fied version of the filter introduced in Ref. [15] is used to estimate
the output derivative. A combination of a NN feedforward term,
along with estimated state feedback and sliding mode terms are
designed for the controller. The DNN observer adapts online for
nonlinear uncertainties and should heuristically perform better than
a robust feedback observer. Weight update laws for the DNN based
on the estimation error, tracking error, and filter output are pro-
posed. Asymptotic regulation of the estimation error and asymptotic
tracking are achieved. Experiments on a two-link robot manipulator
show the effectiveness of the developed method compared with a
proportional–integral–derivative (PID) controller and the approach
in Ref. [15].

2 System Model and Objectives

Consider a control-affine second-order Euler–Lagrangelike
nonlinear system of the form

€x ¼ f ðx; _xÞ þ GðxÞuþ d (1)

where x 2 Rn is the measurable output with a finite-initial condi-
tion xð0Þ ¼ x0; u 2 Rn is the control input, f : R2n ! Rn and
G : Rn ! Rn�n are continuous functions, and dðtÞ 2 Rn is an
exogenous disturbance. The following assumptions about the sys-
tem in Eq. (1) will be utilized in the subsequent development.

ASSUMPTION 1. The time derivatives of the system output _x; €x
are not measurable.

ASSUMPTION 2. The unknown function f is C1, and the function G
is known, invertible, and the matrix inverse G�1 is bounded.
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ASSUMPTION 3. The nonlinear disturbance d and its first time
derivative are bounded (i.e., d; _d 2 L1Þ:

The universal approximation property of multilayer NNs
(MLNN) states that given any continuous function F : S! Rn,
where S is a compact set, there exist ideal weights such that the
output of the NN, F̂ approximates F to an arbitrary accuracy
[17,18]. Hence, the unknown function f in Eq. (1) can be replaced
by a MLNN, and the system can be represented as

€x ¼ WTrðVT
1 xþ VT

2 _xÞ þ eðx; _xÞ þ Guþ d (2)

where W 2 RNþ1�n; V1;V2 2 Rn�N are unknown ideal constant
weight matrices of the MLNN having N hidden layer neurons,

r¢rðVT
1 xþ VT

2 _xÞ : R2n ! RNþ1 is the activation function
(sigmoid, hyperbolic tangent, etc.), and e 2 Rn is a function
reconstruction error. The following assumptions will be used in
the DNN-based observer and controller development and stability
analysis.

ASSUMPTION 4. The ideal NN weights are bounded by known
positive constants [19], i.e., jjWjj � W ; jjV1jj � V1; jjV2jj � V2.

ASSUMPTION 5. The activation function r and its partial
derivatives r0; r00 are bounded [19]. This assumption is satisfied
for typical activation functions (e.g., sigmoid, hyperbolic tangent).

ASSUMPTION 6. The function reconstruction error and its first
time derivative are bounded [19], as jjejj � e1; jj_ejj � e2; where
e1; e2 are known positive constants.

A contribution of this paper is the development of a robust
DNN-based observer such that the estimated states asymptotically
converge to the real states of the system (1), and a discontinuous
controller enables the system state to asymptotically track a
desired time-varying trajectory xd 2 Rn, despite uncertainties and
disturbances in the system. To quantify these objectives, an esti-
mation error ~x 2 Rn and a tracking error e 2 Rn are defined as

~x¢x� x̂; e¢x� xd (3)

where x̂ 2 Rn is the state of the DNN observer which is intro-
duced in the subsequent development. The desired trajectory xd

and its derivatives x
ðiÞ
d (i ¼ 1; 2Þ; are assumed to exist and be

bounded. To compensate for the lack of direct measurements of _x,
a filtered estimation error, res 2 Rn, and a filtered tracking error,
rtr 2 Rn, are defined as

res¢ _~x þ a~x þ g; rtr¢ _e þ aeþ g (4)

where a 2 R is a positive constant gain, and g 2 Rn is an output
of the dynamic filter

g ¼ p� ðk þ aÞ~x
_p ¼ �ðk þ 2aÞp� � þ ððk þ aÞ2 þ 1Þ~x þ e

_� ¼ p� a� � ðk þ aÞ~x; pð0Þ ¼ ðk þ aÞ~xð0Þ; �ð0Þ ¼ 0

(5)

where � 2 Rn is another output of the filter, p 2 Rn is used as an
internal filter variable, and k 2 R is a positive constant control
gain. The filtered estimation error res and the filtered tracking
error rtr are not measurable since the expressions in Eq. (4) depend
on _x:

Remark 1. The basic structure of the second-order dynamic fil-
ter in Eq. (5) was first proposed in Eq. [15]. The filter in Eq. (5)
admits the estimation error ~x and the tracking error e as its inputs
and produces two signal outputs � and g. An interesting point is
that there is a virtual filter inside the introduced filter, where g is
the filtered signal of � since g and � are related as g ¼ _� þ a�.
The auxiliary signal p is utilized to only generate the signal g
without involving the unmeasurable state _x. Hence, the filter can
be physically implemented since it depends only on the estimation
error ~x and the tracking error e which are measurable.

3 Dynamic Neural Network-Based Robust Observer

The following MLDNN architecture is proposed to observe the
system in Eq. (1)

€̂x ¼ Ŵ
T
r̂ þ Gu� ðk þ 3aÞgþ b1sgnð~x þ �Þ (6)

where ½x̂T _̂x
T�T 2 R2n are the states of the DNN observer,

Ŵ 2 RNþ1�n, V̂1; V̂2 2 Rn�N are the weight estimates,

r̂¢rðV̂T

1 x̂ þ V̂
T

2
_̂xÞ : R2n ! RNþ1, and b1 2 R is a positive con-

stant control gain.
Remark 2. The term ðk þ 3aÞg in the DNN observer in Eq. (6)

is a cross-term which is canceled in the stability analysis. The
sliding mode term sgnð~x þ �Þ is added to the observer structure
to provide robustness against NN reconstruction errors and

external disturbances. The NN term Ŵ
T
r̂ receives feedback of the

observer states x̂; _̂x as inputs; hence the observer exploits a DNN
structure. Motivation for the DNN-based observer design is that
the DNN is proven to approximate nonlinear dynamic systems
with any degree of accuracy [17,20], and the DNN includes
state feedback yielding computational advantages over a static
feedforward NN [21].

The weight update laws for the DNN in (6) are developed based
on the subsequent stability analysis as

_̂W ¼ Cwproj½r̂dð~x þ eþ 2�ÞT�
_̂V 1 ¼ Cv1proj½xdð~x þ eþ 2�ÞTŴ

T
r̂0d�

_̂V 2 ¼ Cv2proj½ _xdð~x þ eþ 2�ÞTŴ
T
r̂0d�

(7)

where Cw 2 RðNþ1Þ�ðNþ1Þ; Cv1;Cv2 2 Rn�n; are constant sym-
metric positive-definite adaptation gains, the terms r̂d; r̂

0
d are

defined as r̂d¢rðV̂ T

1 xd þ V̂
T

2 _xdÞ; r̂ 0d¢drð1Þ=d1j
1¼V̂

T

1 xdþV̂
T

2 _xd
, and

projð�Þ is a smooth projection operator [22,23] used to guarantee

that the weight estimates Ŵ ; V̂1; V̂ 2 remain bounded.
To facilitate the subsequent analysis, Eqs. (4) and (5) can be

used to express the time derivative of g as

_g ¼ �ðk þ aÞres � agþ ~x þ e� � (8)

The closed-loop dynamics of the filtered estimation error in
Eq. (4) can be determined by using Eqs. (2)–(4), (6), and (8) as

_res ¼ WTr� Ŵ
T
r̂ þ eþ d þ ðk þ 3aÞg� b1sgnð~x þ �Þ

þ aðres � a~x � gÞ � ðk þ aÞres � agþ ~x þ e� � (9)

Adding and subtracting WTrd þWTr̂d þ Ŵ
T
r̂d , where rd¢r

ðVT
1 xd þ VT

2 _xdÞ, the expression in Eq. (9) can be rewritten as

_res ¼ ~N1 þ N � kres � b1sgnð~x þ �Þ þ ðk þ aÞg� ~x (10)

where the auxiliary term ~N1 2 Rn is defined as

~N1¢WTðr� rdÞ � Ŵ
Tðr̂ � r̂dÞ � ða2 � 2Þ~x � � þ e (11)

and N 2 Rn is segregated into two parts as

N¢ND þ NB (12)

In Eq. (12), ND; NB 2 Rn are defined as

ND¢eþ d; NB¢NB1
þ NB2

(13)
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In Eq. (13), NB1
; NB2

2 Rn are defined as

NB1
¢WTOð ~V T

1 xd þ ~V
T

2 _xdÞ2 þ ~W
T
r̂ 0dð ~V

T

1 xd þ ~V
T

2 _xdÞ

NB2
¢ ~W

T
r̂d þ Ŵ

T
r̂0dð ~V

T

1 xd þ ~V
T

2 _xdÞ
(14)

where ~W¢W � Ŵ 2 RNþ1�n; ~V 1¢V1 � V̂ 1 2 Rn�N ; ~V2¢V2

�V̂2 2 Rn�N are the estimate mismatches for the ideal NN

weights, and Oð ~VT

1 xd þ ~V
T

2 _xdÞ2 2 RNþ1 is the higher-order term
in the Taylor series of the vector functions rd in the neighborhood

of V̂
T

1 xd þ V̂
T

2 _xd as

rd ¼ r̂d þ r̂ 0dð ~V
T

1 xd þ ~V
T

2 _xdÞ þ Oð ~V
T

1 xd þ ~V
T

2 _xdÞ2 (15)

Motivation for segregating the terms in Eqs. (10), (12), and (13) is
derived from the fact that different terms have different bounds.
The term ~N1 includes all terms which can be upper bounded by
states, whereas N includes all terms which can be upper bounded
by constants. The difference between the terms ND and NB in
Eq. (12) is that the first time derivative of ND is upper-bounded by
a constant, whereas the term _NB is state dependent. The term NB

is further segregated as Eq. (13) to aid in the weight update law
design for the DNN in Eq. (7). In the subsequent stability analysis,
the term NB1

is canceled by the error feedback and the sliding
mode term, while the term NB2

is partially compensated for by the
weight update laws and partially canceled by the error feedback
and the sliding mode term.

Using Eqs. (3), (4), and Assumptions 4; 5; the projð�Þ algorithm
in Eq. (7) and the mean value theorem [24], the auxiliary function
~N1 in Eq. (11) can be upper-bounded as

jj ~N1jj � f1jjzjj (16)

where f1 2 R is a computable positive constant, and z 2 R6n is
defined as

z¢½~xT eT rT
es rT

tr �
T gT�T (17)

Based on Assumptions 3–6, the Taylor series expansion in
Eq. (15), and the weight update laws in Eq. (7), the following
bounds can be developed:

jjNDjj � f2; jjNB1
jj � f3; jjNB2

jj � f4

jj _NDjj � f5; jj _NBjj � f6 þ f7jjzjj
(18)

where fi 2 R; i ¼ 2; 3;…; 7; are computable positive constants.

4 Robust Adaptive Tracking Controller

The control objective is to force the system state to asymptoti-
cally track the desired trajectory xd, despite uncertainties and
disturbances in the system. Quantitatively, the objective is to reg-
ulate the filtered tracking controller rtr to zero. Using Eqs. (2)–(4)
and (8), the open-loop dynamics of the tracking error in Eq. (4)
are expressed as

_r tr ¼ WTrþ Guþ eþ d � €xd þ aðrtr � ae� gÞ
�ðk þ aÞres � agþ ~x þ e� � (19)

The control input u is designed as a composition of the
DNN term, the estimated states x̂; _̂x, and the sliding mode term as

u ¼ G�1½€xd � Ŵ
T
r̂d � ðk þ aÞð _̂e þ aêÞ � b2sgnðeþ �Þ� (20)

where b2 2 R is a positive constant control gain, and the tracking
error estimate ê 2 Rn is defined as ê¢x̂ � xd: Based on the fact
that the estimated states are measurable, the tracking error esti-
mate ê and its derivative _̂e are measurable; moreover, rtr is related
to res as

rtr ¼ res þ _̂e þ aê (21)

Adding and subtracting WTrd þWTr̂d and using Eqs. (19)–(21),
the closed-loop error system becomes

_r tr ¼ ~N2 þ N � krtr � b2sgnðeþ �Þ � e (22)

where the auxiliary function ~N2 2 Rn is defined as

~N2¢WTðr� rdÞ � ða2 � 2Þe� � þ ~x � 2ag (23)

and the function N is introduced in Eq. (12). Similarly, using
Eqs. (3), (4), Assumptions 4; 5; the projð�Þ algorithm in Eq. (7),
and mean value theorem [24], the auxiliary function ~N2 in
Eq. (23) can be upper-bounded as

jj ~N2jj � f8jjzjj (24)

where f8 2 R is a computable positive constant.
To facilitate the subsequent stability analysis, let y 2 R6nþ2 be

defined as y¢½zT
ffiffiffi
P
p ffiffiffiffi

Q
p
�T where the auxiliary function

P 2 R is the Filippov solution to the differential equation

_P¢L

P0 ¼ b1

Xn

j¼1

j~xjð0Þ þ �jð0Þj þ b2

Xn

j¼1

jejð0Þ þ �jð0Þj

� ð~xð0Þ þ eð0Þ þ 2�ð0ÞÞTNð0Þ (25)

where the subscript j ¼ 1; 2; ::; n denotes the jth element of ~xð0Þ,
e(0), or �ð0Þ, and the auxiliary term L 2 R is defined as

L¢� rT
esðND þ NB1

� b1sgnð~x þ �ÞÞ
� rT

trðND þ NB1
� b2sgnðeþ �ÞÞ

� ð _~x þ _e þ 2 _�ÞTNB2
þ b3jjzjj2 (26)

where b1; b2 are introduced in Eqs. (6) and (20), and b3 2 R is a
positive constant. The control gains bi; i ¼ 1; 2; 3 are selected
according to the sufficient conditions

b1;b2 > max f2 þ f3 þ f4; f2 þ f3 þ
f5

a
þ f6

a

� �
(27)

b3 > 2f7

where fi, i ¼ 1; 2;…; 7 are introduced in Eqs. (16) and (18).
Provided the sufficient conditions in Eq. (27) are satisfied, the
following inequality can be obtained P � 0 (see Ref. [25]). The
auxiliary function Q 2 R is defined as

Q¢
a
2

tr ~W
T
C�1

w
~W

� �
þ tr ~V

T

1 C�1
v1

~V1

� �
þ tr ~V

T

2 C�1
v2

~V2

� �h i
(28)

where trð�Þ denotes the trace of a matrix. Since the gains
Cw;Cv1;Cv2 are symmetric, positive-definite matrices, Q � 0:

5 Lyapunov Stability Analysis for Dynamic Neural

Network-Based Observation and Control

THEOREM 1. The DNN-based observer and controller proposed
in Eqs. (6) and (20), respectively, along with the weight update
laws in Eq. (7) ensure asymptotic estimation and tracking in sense
that

jj _~xjj ! 0 as t!1; and jjejj ! 0 as t!1

provided the gain conditions in Eq. (27) are satisfied, and the con-
trol gains a and k ¼ k1 þ k2 introduced in Eqs. (4) and (5) are
selected as
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k¢min a; k1ð Þ > f2
1 þ f2

8

4k2

þ b3 (29)

where f1; f8; b3 are introduced in Eqs. (16), (24), and (26),
respectively.

Proof. Consider the Lyapunov candidate function VL : D ! R;
which is a Lipschitz continuous positive definite function
defined as

VL¢
1

2
~xT~x þ 1

2
eTeþ 1

2
�T� þ 1

2
gTgþ 1

2
rT

esres þ
1

2
rT

trrtr þ Pþ Q

(30)

which satisfies the following inequalities:

1

2
jjyjj2 � VL � jjyjj2 (31)

Let _y ¼ h represent the closed-loop differential equations in

Eqs. (4)–(7), (8), (10), (22), and (25), where h 2 R6nþ2 denotes
the right-hand side of the closed-loop error signals. Using
Filippov’s theory of differential inclusions [26–29], the existence
of solutions can be established for _y 2 K½h�ðyÞ, where

K½h�¢\d>0 \lM¼0 cohðBðy; dÞ �MÞ; where \lM¼0 denotes the
intersection of all sets M of Lebesgue measure zero, co denotes

convex closure, and Bðy; dÞ ¼ fw 2 R6nþ2jjjy� wjj < dg: The
generalized time derivative of Eq. (30) exists almost everywhere

(a.e.), i.e., for almost all t 2 ½t0; tf �, and _VL2a:e: _~VL, where
_~V L ¼ \n2@VLðyÞ n

TK½W�T; @VL is the generalized gradient of VL

[30], and W¢½ _~xT
_eT _�T _gT _rT

es _rT
trð1=2ÞP�ð1=2Þ _Pð1=2ÞQ�ð1=2Þ _Q�.

Since VL is continuously differentiable, _~V L can be simplified
as [31]

_~V L ¼ rVTKWT ¼ ~xT eT �T gT rT
es rT

tr 2P
1
2 2Q

1
2

h i
KWT

Using the calculus for K½�� from Ref. [32] (Theorem 1; Properties
2, 5, 7), and substituting the dynamics from Eqs. (4), (5), (8), (10),

(22), (25), (26), and (28) ; _~VL can be rewritten as

_~V L � ~xTðres � a~x � gÞ þ eTðrtr � ae� gÞ
þ gT½�ðk þ aÞres � agþ ~x þ e� ��
þ �Tðg� a�Þ þ rT

esfðk þ aÞg� ~xg
þ rT

esf ~N1 þ N � kres � b1K½sgnð~x þ �Þ�g
þ rT

trf ~N2 þ N � krtr � b2K½sgnðeþ �Þ� � eg
� rT

esfND þ NB1
� b1K½sgnð~x þ �Þ�g

� rT
trfND þ NB1

� b2K½sgnðeþ �Þ�g þ b3jjzjj2

� ð _~x þ _e þ 2 _�ÞTNB2
� atrð ~W

T
C�1

w
_̂WÞ

� atrð ~V
T

1 C�1
v1

_̂V1Þ � atrð ~V T

2 C�1
v2

_̂V 2Þ (32)

Using the fact that K½sgnð~x þ �Þ� ¼ SGNð~x þ �Þ [32], such that
SGNð~xi þ �iÞ ¼ 1 if ð~xi þ �iÞ > 0; ½�1; 1� if ð~xi þ �iÞ ¼ 0; and
�1 if ð~xi þ �iÞ < 0 (the subscript i denotes the ith element), the set
in Eq. (32) reduces to the scalar inequality, since the right-hand
side is continuous a.e., i.e., the right-hand side is continuous except

for the Lebesgue measure zero set of times when1 rT
esSGNð~x þ �Þ

�rT
esSGNð~x þ �Þ ¼ 0. The fact that rT

trSGNðeþ �Þ � rT
tr SGN

ðeþ �Þ ¼ 0 can be achieved similarly. Substituting the weight
update laws in Eq. (7) and canceling common terms yields

_~VL �
a:e:
�a~xT~x � aeTe� a�T� � agTg� krT

esres

� krT
trrtr þ rT

es
~N1 þ rT

tr
~N2 þ b3jjzjj2 (33)

Using Eqs. (16) and (24), substituting k ¼ k1 þ k2; and complet-
ing the squares, the expression in Eq. (33) can be further
bounded as

_~VL �
a:e:
�ajj~xjj2 � ajjejj2 � ajj�jj2 � ajjgjj2 � k1jjresjj2

� k1jjrtrjj2 þ
f2

1 þ f2
8

4k2

þ b3

 !
jjzjj2

�
a:e:
� k� f2

1 þ f2
8

4k2

� b3

 !
jjzjj2 �

a:e:
�cjjzjj2 (34)

for some positive constant c, and k is defined in Eq. (29). The
inequalities in Eqs. (31) and (34) show that VL 2 L1; hence,
~x; e; �; g; res; rtr; P, and Q 2 L1. Using Eq. (4), it can be shown
that _~x; _e 2 L1: Based on the assumption that xd; _xd 2 L1; and
e; _e 2 L1; x; _x 2 L1 by Eq. (3); moreover, using Eq. (3) and
~x; _~x 2 L1; x̂; _̂x 2 L1: Based on Assumptions 2 and 5, the pro-
jection algorithm in Eq. (7), the boundedness of the sgn and r
functions, and xd; _xd; x̂; _̂x 2 L1, the control input u is bounded
from Eq. (20). Similarly, _�; _g; _res; _r tr 2 L1 by using Eqs. (5),
(8), (9), (22); hence _z 2 L1; using Eq. (17); hence, z is uniformly
continuous. From Eq. (34), Ref. [33, Corollary 1] can be invoked
to show that cjjzjj2 ! 0 as t!1: Using the definition of z in
Eq. (17), it can be shown that jj~xjj; jjejj; jjresjj; jjrtrjj; jj�jj; jjgjj
! 0 as t!1: Using Eq. (4), and standard linear analysis, it can
be further shown that jj _~xjj ! 0 as t!1: �

6 Experiment Results

The performance of the output feedback control method is
tested on a two-link robot manipulator, where two aluminum
links are mounted on a 240 N�m (first link) and a 20 N�m (second
link) switched reluctance motor. The motor resolvers provide
rotor position measurements with a resolution of 614,400 pulses/
revolution. Data acquisition and control implementation were per-
formed in real-time using QNX at a frequency of 1.0 kHz. The
two-link revolute robot is modeled with the following dynamics:

M€x þ Vm _x þ Fþ sd ¼ u (35)

where x ¼ ½ x1 x2 �T are the angular positions (rad), _x ¼
½ _x1 _x2 �T are the angular velocities ðrad=sÞ of the two links,

respectively, M 2 R2�2 is the inertia matrix, Vm 2 R2�2 denotes

the centripetal-Coriolis matrix, F 2 R2 denotes friction, and

sd 2 R2 is the external disturbance. The system in Eq. (35) can be

rewritten as €x ¼ f þ Guþ d; where f and G are defined as f¢�
M�1ðVm _x þ FÞ; GðxÞ¢M�1: The desired trajectory for each link
of the manipulator is given as (in degrees) x1d ¼ 30 sinð1:5tÞ
ð1� expð�0:01t3ÞÞ; x2d ¼ 30 sinð2:0tÞð1� expð�0:05t3ÞÞ: The
control gains are chosen as k ¼ diagð25; 90Þ; a ¼ diagð22; 30Þ,
b1 ¼ b2 ¼ 0:2; and Cw ¼ 0:2I8�8; Cv1 ¼ Cv2 ¼ 0:2I2�2, where
In�n denotes an identity matrix of appropriate dimensions. The
NNs was implemented with seven hidden layer neurons, and the
neural network weights are initialized as uniformly distributed
random numbers in the interval ½0:1; 0:3�. The initial conditions of

the system and the observer were selected as x ¼ _x ¼ ½0 0�T, and

x̂ ¼ _̂x ¼ ½0 0�T, respectively.
The Lyapunov-based analysis provides conservative sufficient

gain conditions. The control gains for the experiments were
obtained by choosing gains and then adjusting them based on the
transient and steady-state performance. If the response exhibited a

1Let U¢~x þ � The set of times K¢ft 2 ½0;1Þ : resðtÞT K½sgnðUðtÞÞ�
�resðtÞT K½sgnðUðtÞÞ� 6¼ f0gg is equal to the set of times ft : UðtÞ ¼ 0 � resðtÞ 6¼ 0g
Using the fact that g ¼ _� þ a�, res can be expressed as res ¼ _U þ aU Thus, the set
K can also be represented by ft : UðtÞ ¼ 0 � _UðtÞ 6¼ 0g Since / : ½0;1Þ ! Rn is
continuously differentiable, it can be shown that the set of time instances
ft : UðtÞ ¼ 0 � _UðtÞ 6¼ 0g is isolated, and thus, measure zero; hence, K is measure
zero.
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prolonged transient response (compared with the response obtained
with other gains), the proportional gains were adjusted. If the
response exhibited overshoot, derivative gains were adjusted. The
control gains for the experiments were tuned based on this trial and
error basis. In contrast to this trial and error approach, the control
gains could have been adjusted using more methodical approaches
as described in various survey papers on the topic [34,35].

The performance of the proposed output feedback controller is
compared with two controllers: a classical PID controller and the
discontinuous OFB controller in Ref. [15]. A standard backward dif-
ference algorithm is used to numerically determine velocity from
the encoder readings to implement the PID controller. Control gains
for the discontinuous controller in Ref. [15] were selected as
K1 ¼ 0:2; K2 ¼ diagð410; 38Þ, and control gains for the PID con-
troller were selected as Kd ¼ diagð120; 30Þ; Kp ¼ diagð750; 90Þ;
and Ki ¼ diagð650; 100Þ: The DNN-based observer yields better
velocity estimation in comparison with the high frequency content
results from a backward difference method as depicted in Fig. 1.
Moreover, the tracking errors and control torques for all controllers
are illustrated in Figs. 2 and 3, respectively. Table 1 shows the root-
mean-square (RMS) and peak tracking errors and torques of Links 1
and 2 at steady-state for all methods. The developed controller is
shown to exhibit lower tracking errors with less control authority
than the comparative controllers. Hence, the experiments illustrate
that using the velocity estimation from a DNN-based observer,
which adaptively compensates for unknown uncertainties in the

system, results in improved control performance with lower fre-
quency content than the compared methods. To illustrate the lower
frequency response of the proposed method compared to Ref. [15]
and the PID controller, the frequency analysis plots of the experi-
ment results are shown in Fig. 4. The high frequency content in the
velocity estimation of the backward difference method results in the
highest frequency content in control torques of PID controller. The
proposed method is a robust adaptive controller with a DNN struc-
ture to learn the system uncertainties to asymptotically observe the
unmeasurable state and asymptotically track the desired trajectory.
On the other hand, the OFB control method in Ref. [15] is a purely
robust feedback method, where all uncertainties are damped out by
a sliding mode term resulting in higher frequency control torques
than the proposed adaptive control method, as seen in experiment
results.

7 Conclusion

A DNN observer-based output feedback control of a class of
second-order nonlinear uncertain systems is developed. The
DNN-based observer works in conjunction with a dynamic filter
to estimate the unmeasurable state. The DNN is updated online by
weight update laws based on the estimation error, tracking error,
and filter output. The controller is a combination of the NN feed-
forward term, and the estimated state feedback and sliding mode
terms. Asymptotic estimation of the unmeasurable state and

Fig. 1 Velocity estimation _x ðtÞ using (a) DNN-based observer and (b) numerical backwards difference: (a) velocity estima-
tion by DNN observer and (b) velocity estimation by backwards difference

Fig. 2 The tracking errors e(t) of (a) link 1 and (b) link 2 using classical PID, robust discontinuous OFB controller [15], and
proposed controller: (a) link 1 tracking error and (b) link 2 tracking error
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asymptotic tracking results are achieved, simultaneously. Results
from an experiment using a two-link robot manipulator demon-
strate the performance of the proposed output feedback controller.
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