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I. Introduction

H IGH-PERFORMANCE fighter aircraft experience store-
induced limit cycle oscillations (LCOs) [1], which are charac-

terized by a limited amplitude, antisymmetric motion of thewing and
lateral motion of the fuselage and cockpit. The main concern with
LCO motion is its negative impact on a pilot’s ability to complete
a mission; specifically, the lateral motion of the cockpit causes
difficulties when reading cockpit gauges and the head-up display [1].
Additional concerns arise over the ability to release ordnance during
LCO motion and the effects of LCO on target acquisition for smart
weapons and accuracy for unguided munitions [2]. The adverse
effects of LCO behavior on flight performance necessitate the
development of a control strategy capable of suppressing LCO
motion.
Several control strategies have been developed to mitigate LCO

behavior in an aeroelastic system requiring exact knowledge of the
dynamics, including linear-quadratic regulator (LQR) [3–5], feed-
back linearization [6], linear multivariable control on a linear reduced-
order model [7,8], and state-dependent Riccati equation and
sliding-mode control approaches [9]. These controllers do not
compensate for uncertainties in the aerodynamic and structural
models or external disturbances and are restricted to specific flight
regimes.
Adaptive controllers have been developed to compensate for

structured uncertainties, including partial feedback linearization
[10], model reference adaptive control (MRAC) [11], and structured
MRAC [12]. Previous controllers considered structured uncertainties

in the torsional stiffness model only. A robust integral of the sign of
the error (RISE) controller was developed in the preliminary work in
[13] to suppress LCO behavior in a two-degree-of-freedom (2DOF)
airfoil section with uncertainties in the dynamics that can not be
classified as linear-in-the-parameters and an additive, unknown
nonlinear disturbance. A feedforward neural network is used to
compensate for the system uncertainties, whereas a RISE feedback
term guarantees asymptotic tracking of a desired angle of attack
(AOA). Simulation results indicated that the maximum control effort
is sensitive to variations in the system uncertainties, which could lead
to unexpected actuator saturation during the transient period.
Although the developed controller does compensate for modeling
uncertainties and exogenous disturbances, it does not account for
actuator limits.
Previously developed controllers that target theLCOproblemhave

neglected the fact that the commanded input may exceed the
actuation limits of the system. The objective in this Note is to develop
a controller (based on the preliminary work by the authors in [14])
capable of mitigating LCO behavior in a 2DOF airfoil section in
the presence of time-varying nonlinear disturbances and modeling
uncertainties, while also compensating for actuator constraints. The
currentwork builds on the control structure in [13]; however, the error
system, control development, and stability analysis are all redesigned
to compensate for the actuator constraints. Motivated by the desire to
achieve an asymptotic tracking result in the presence of exogenous
disturbances, the control development is based on a RISE-based
control structure [15]. Furthermore, based on the desire to account for
actuator saturation, the developed controller leverages the saturated
RISE-based structure in [16]. Specifically, the theoretical architec-
ture in [16] of embedding a RISE controller in a saturated hyperbolic
function is adopted in this result, where the argument of the
trigonometric function, and hence the resulting closed-loop error
system, is modified to address the specific challenges of the LCO
mitigation problem.

II. Aeroelastic Model

Consider an aeroelastic model of a 2DOF airfoil (see Fig. 1) given
by [13,17]

M �q� C _q� Kq � F (1)

whereq ≜ � h α �T ∈ R2 is a vector of the system states, whereα and
h ∈ R denote the vertical position of the airfoil section and the AOA
of the airfoil section, respectively.
Based on the description of LCObehavior [2], the system states are

bounded as kqk ≤ κ1, k _qk ≤ κ2, and k �qk ≤ κ3, where κ1; κ2; κ3 ∈ R
are known positive constants. In Eq. (1), the matrices M ∈ R2×2,
C ∈ R2×2, K ∈ R2×2, and the vector F ∈ R2 are defined as

M ≜
�
m1 m2

m2 m4

�
; C ≜

�
ch1 ch2 _α
0 cα

�
(2)

K ≜
�
kh 0

0 kα

�
; F ≜

�
−L
PM

�
(3)

The unknown constants m1 and m4 ∈ R from Eq. (2) are defined as

m1 ≜ ms �mw (4)

m4 ≜ ��rx − a�2 � �rh − ah�2�b2mw
� ��sx − a�2 � �sh − ah�2�b2ms � Iw � Is (5)
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and m2 ∈ R is defined as

m2 ≜ �rx − a�mwb cos�α� � �sx − a�msb cos�α�
− �sh − ah�msb sin�α� − �rh − ah�mwb sin�α� (6)

where mw, ms, b, rx, rh, a, ah, sx, sh, Iw, and Is ∈ R are unknown
constants. Specifically, mw and ms denote the mass of the airfoil
section and store, respectively; b denotes the semichord of the airfoil,
rx and rh represent the distance from the wing center of mass to the
airfoil midchord and the distance from the store center of mass to the
airfoil midchord in percentage of thewing semichord, respectively; a
and ah are the distances from the elastic axis of the airfoil section
to the airfoil midchord and chord line in percentage of the wing
semichord, respectively; sx and sh are the distances from the store
center of mass to the wing midchord and chord line in percentage of
the wing semichord, respectively; and Iw and Is represent the wing
and store moments of inertia, respectively. In Eq. (2), cα ∈ R and
ch1 ∈ R are the unknown damping coefficients in the AOA and
vertical positionmotions, respectively, and ch2 ∈ R is defined as [13]

ch2 ≜ −�rx − a�mwb cos�α� − �sx − a�msb cos�α�
− �sh − ah�msb sin�α� − �rh − ah�mwb sin�α�

In Eq. (3), kh ∈ R denotes the constant unknown stiffness coefficient
in the vertical position, and kα ∈ R denotes the unknown nonlinear
pitch stiffness coefficient and is modeled as

kα � kα1 � kα2α� kα3α2 � kα4α3 � kα5α4 � kα6α5

where the stiffness parameters kαi ∈ R, i � 1; : : : ; 6 are uncertain
constants. In Eq. (3), L ∈ R and PM ∈ R are modeled as

L � ρU2bSClααef � Clδ δ (7)

PM � ρU2b2SClα

�
1

2
� a

�
αef � Cmδ

δ (8)

where ρ ∈ R denotes the constant unknown atmospheric density;
U ∈ R denotes the constant unknown freestream velocity; S ∈ R
represents a constant unknown reference length; Clα , Clδ , and Cmδ

∈
R denote the constant unknown airfoil lift coefficient, control surface
lift coefficient, and control surface pitch moment coefficient, respec-
tively; δ ∈ R represents the control surface deflection angle; and
αef ∈ R represents the effective AOA and is modeled as

αef ≜ α�
_h

U
�
b�1

2
− a� _α
U

The system dynamics in Eq. (1) can be expressed as [see [13] for
details on the existence ofM−1�α�]

�q � M−1�Cδδ − ~C _q− ~Kq� � d (9)

where Cδ ≜ �−Clδ Cmδ
�T ∈ R2, d ≜ �dh dα �T ∈ R2 denotes an

unknown nonlinear disturbance that represents unmodeled, unsteady
aerodynamic effects, and ~C, ~K ∈ R2×2 are defined as

~C ≜

2
4 ch1 � CL ch2 _α� CLb

�
1
2
− a

�
−CLb

�
1
2
� a

�
cα − CLb2

�
1
4
− a2

�
3
5 �

�
~C11

~C12
~C21

~C22

�
;

~K ≜

2
4 kh CLU

0 kα − CLUb
�
1
2
� a

�
3
5 �

�
~K11

~K12

0 ~K22

�

and CL ≜ ρUbSClα ∈ R is an unknown constant. The subsequent
control development is based on the assumption that the nonlinear
disturbances are bounded as

jdhj ≤ ξ1; j _dhj ≤ ξ2; jdαj ≤ ξ3; j _dαj ≤ ξ4

where ξj ∈ R, (j � 1; : : : ; 4) are positive, known constants.

III. Control Objective

The objective is to develop a limited amplitude continuous
controller that guarantees asymptotic tracking of the airfoil section
AOA. The subsequent development is based on the assumption that
αd; _αd; �αd; αd; αd ∈ L∞, where αd ∈ R denotes the desired AOA
trajectory. The control objective is quantified by defining a tracking
error e1 ∈ R as

e1 ≜ α − αd (10)

To facilitate the control design, the auxiliary tracking errors e2, r ∈ R
are defined as [16]

e2 ≜ _e1 � γ1 tanh�e1� � tanh�ef� (11)

r ≜ _e2 � γ2 tanh�e2� � γ3e2 (12)

where γ1; γ2; γ3 ∈ R are positive constant control gains, and the
auxiliary signal ef ∈ R is defined as the solution to the following
differential equation [16]:

_ef ≜ cosh2�ef��−γ4e2 � tanh�e1� − γ5 tanh�ef��;
ef�t0� � efo (13)

where efo ∈ R is a known initial condition, and γ4; γ5 ∈ R are
positive constant control gains. The subsequent development is based
on the assumption that q and _q are measurable; hence, e1 and e2 are
measurable, and ef can be computed from measurable terms, but
r is not measurable or known because it depends on �q. The fol-
lowing inequality properties [18] will be used in the subsequent
development:

jξj ≥ j tanh�ξ�j; j tanh�ξ�j2 ≥ tanh2�jξj� (14)

ξ tanh�ξ� ≥ tanh2�ξ�; jξj2 ≥ ln�cosh�ξ�� ≥ 1

2
tanh2�jξj� (15)

Fig. 1 Diagram of the 2DOF airfoil section based on that in [17].
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IV. Control Development

Substituting the dynamics from Eq. (9) into Eq. (12) and
multiplying by det�M�∕g yields

det�M�
g

r � f
g
� det�M�

g
dα � δ (16)

where the auxiliary terms f ∈ R and g ∈ R are defined as

f ≜ −m1� ~C21
_h� ~C22 _α� ~K22α� �m2� ~C11

_h� ~C12 _α

� ~K11h� ~K12α� − det�M� �αd � det�M�γ1 cosh−2�e1�
× �e2 − γ1 tanh�e1� − tanh�ef�� − det�M�γ5 tanh�ef�
� det�M��tanh�e1� � γ2 tanh�e2� � γ3e2 − γ4e2�;

g ≜ m2Clδ �m1Cmδ

The auxiliary term g is positive, provided the sufficient conditions on
the airfoil geometry and store location in [13] are satisfied.
Based on the open-loop error system in Eq. (16), the control

surface deflection is designed as [16]

δ � −γ4 tanh�v� (17)

where v ∈ R is the generalized Filippov solution to the following
differential equation:

_v � β cosh2�v�sgn�e2�; v�t0� � vo (18)

where β ∈ R is a constant positive control gain and vo ∈ R is a
known initial condition. The theory of differential inclusions in [19]
and ([20]Chapter 4) can be used to show the existence of solutions for
_v ∈ K�w1�, where w1: R → R is defined as the right-hand side of
Eq. (18),

K�w1� ≜ ⋂
τ>0

⋂
μSm�0

cow1�e1; B − Sm�

and

⋂
μSm�0

denotes the intersection of sets of Lebesque measure zero, co
represents convex closure, and B � fε ∈ Rjje2 − εj < τg [21,22].
FromEq. (17), it is clear that the control input is bounded andwill not
breach the actuator limitations provided the control gain γ4 is selected
to be less than the actuator limit. Motivation for the use of the
hyperbolic tangent function in Eq. (17) stems from the desire to inject
a smooth saturation function into the control structure. The design of
the auxiliary term v in Eq. (18) is motivated by the extra derivative
that will be applied to the closed-loop system in Eq. (16), which is
typical in RISE analysis methods. The extra derivativewill introduce
a cosh−2�v� term in the closed-loop dynamics that will be canceled by
the cosh2�v� in Eq. (18).
The closed-loop tracking error can be obtained by taking the time

derivative of Eq. (16) and substituting the time derivative of Eq. (17)
to yield

det�M�
g

_r � −
1

2

d

dt

�
det�M�
g

�
r� ~N � Nd �Ω − tanh�e2�

− e2 −
det�M�
g

γ4r − βγ4 sgn�e2� (19)

where ~N ∈ R, Nd ∈ R, and Ω ∈ R are defined as

~N ≜ −
1

2

d

dt

�
det�M�
g

�
r� d∕dt�det�M��

g
γ1 cosh

−2�e1�

× �e2 − γ1 tanh�e1� − tanh�ef��

−
2 det�M�

g
γ1 cosh

−2�e1� tanh�e1� _e21

−
det�M�
g

γ12 cosh
−4�e1� _e1 � tanh�e2� � e2

−
det�M�
g2

Clδ _m2�γ1 cosh−2�e1� _e1 − γ5 tanh�ef� � tanh�e1�

� γ2 tanh�e2� � γ3e2�

−
d∕dt�det�M��

g
�γ5 tanh�ef� − tanh�e1� − γ2 tanh�e2� − γ3e2�

−
det�M�
g
�γ5 tanh�e1� − γ25 tanh�ef� − cosh−2�e1� _e1

− γ2 cosh
−2�e2� _e2 − γ3 _e2�

� det�M�
g

γ1 cosh
−2�e1�� _e2 − tanh�e1� � γ5 tanh�ef��

(20)

Nd ≜
_m2

g
� ~C11

_h� ~C12 _α� ~K11h� ~K12α� −
m1

g
� ~C21

�h� ~C22 �α

� ~K22 _α� _~K22α� −
det�M�
g

αd �
m2

g
� ~C11

�h� ~C12 �α

� _~C12 _α� ~K11
_h� ~K12 _α� −

d∕dt�det�M��
g

�αd �
d

dt

�
det�M�
g

�
dα

� det�M�
g

_dα �
Clδ _m2

g2
�m1� ~C21

_h� ~C22 _α� ~K22α�

−m2� ~C11
_h� ~C12 _α� ~K11h� ~K12α� � det�M� �αd� (21)

Ω ≜ γ4e2

�
det�M�
g
�γ1 cosh−2�e1� � γ5 � γ3� −

d∕dt�det�M��
g

�
_m2Clδ det�M�

g2

�
� det�M�

g
γ2γ4 tanh�e2� (22)

Using the assumptions on the desired trajectories and boundedness of
the LCO states, upper bounds can be developed for Eqs. (20) and (21)
as

j ~Nj ≤ ζ0kxk; jNdj ≤ ζ1; j _Ndj ≤ ζ2 (23)

where ζ0; ζ1; ζ2 ∈ R are known bounding constants, and x ∈ R4 is
defined as

x ≜ � tanh�e1� e2 r tanh�ef� �T (24)

V. Stability Analysis

Theorem 1: The controller given in Eqs. (17) and (18) yields
asymptotic tracking in the sense that all Filippov solutions to the
differential equations in Eqs. (11–13) and (19) are bounded and
satisfy e1 → 0 as t→ ∞, provided that the control gains are selected
as

γ1 >
1

2
; γ3 > γ24 � 1; βγ4 > ζ1 �

ζ2
γ3
;

λ1γa >
c21
2
; γ5 >

γ24
2
; λ >

ζ20
4λ1γb

(25)

where
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λ ≜ min

�
γ1 −

1

2
; 2γ2 � γ3; γ3 − γ24 − 1; λ1γa −

c21
2
; γ5 −

γ24
2

�

where c1 and λ1 ∈ R are positive bounding constants, where λ1 ≤
�det�M�∕g� and

c1 ≥
				
�
det�M�
g
�γ1 � γ3 � γ5� −

d∕dt�det�M��
g

�
_m2Clδ det�M�

g2

�
2

�
�
γ2

det�M�
g

�
2
				;

≥ �cm1
�γ1 � γ3 � γ5� � cm2

� cm3
Clδ �2 � γ22c

2
m1

where

cm1
>
det�M�
g

; cm2
>
d∕dt�det�M��

g
; and cm3

>
_m2 det�M�
g2

(See Appendix for details.)
Remark 1: The control gains γ1 and γ2 can be selected indepen-

dently of the remaining control gains and γ4 is selected less than the
actuator limit. After γ4 is selected, the lower bounds on γ3, γ5, and β
can be calculated. The selection of γa depends on the severity of the
LCOmotion which is captured in the constant c1. If the LCOmotion
is too severe, the gain condition for γa cannot be satisfied without
increasing the saturation limit.
Proof: See [16] for details.

VI. Numerical Simulations

A numerical simulation is presented to illustrate the performance
of the developed controller and to provide a comparison with the
controller in [13]. The controller in [13] is given by

δ � −
f̂d
gd

− μ (26)

where f̂d∕gd ≜ Ŵ
Tσ�V̂Txd� ∈ R is a neural network (NN)

feedforward term used to approximate the unknown structural and
aerodynamic parameters, Ŵ ∈ Rn2�1 and V̂ ∈ R6×n2 are estimates of
the ideal NN weights, σ: R6 → Rn2�1 denotes a NN activation func-
tion, n2 ∈ R denotes the number of neurons in the hidden layer of the
NN, and xd ∈ R6 represents the inputs to the NN. The ideal NN
weight estimates are updated according to the update laws defined as

_̂
W ≜ proj�Γ1σ̂

0V̂T _xde2� (27)

_̂
V ≜ proj�Γ2 _xd�σ̂ 0TŴe2�T � (28)

where Γ1 ∈ R�n2�1�×�n2�1� and Γ2 ∈ R6×6 are constant positive-
definite control gain matrices, and

σ̂ 0 ≜
dσ�V̂Txd�
d�V̂Txd�

Moreover, in Eq. (26), μ ∈ R denotes the RISE feedback term
defined as

μ ≜ kse2 − kse2�0�� v; _v ≜ ksα2e2� β1 sgn�e2�; v�t0� � v0

where ks, α2, and β1 ∈ R are constant positive control gains, and
v0 ∈ R is a known initial condition.
Themodel parameters for the simulation are shown in Table 1. The

open-loop system was simulated with the following initial condi-
tions: h�0� � 0 m, _h�0� � 0 m∕s, α�0� � 11.5 deg, and _α�0� �
0 deg ∕s. It is evident from Fig. 2 that the open-loop system, under

the preceding initial conditions and no exogenous disturbances,
experiences LCO behavior.
The control objective in the subsequent numerical simulations is

to regulate the AOA to 0 deg. In addition, an external disturbance,
selected as d�t� � � 0 0.25 sin�t� �T , was added to the numerical
simulation and a zero-mean noise signal uniformly distributed over
an interval was added to eachmeasurement. For the vertical displace-
ment and velocity, the interval was �2.5 × 10−3 m and �2.5 ×
10−3 m∕s, respectively. For the AOA and AOA rate, the interval was
�4.5 × 10−2 rad and �1 × 10−2 rad∕s. Based on the identification
performance of the NN, the NN feedforward parameters for the
controller developed in [13] were selected as n2 � 25, Γ1 � 10I26,
and Γ2 � 10I7, where Im denotes an m ×m identity matrix. The
RISE feedback control gains for the controller developed in [13]were
determined through a 1500 sample Monte Carlo simulation in which
the RISE feedback control gains for each sample were selected at
random from within a specified interval. The gains used in the
comparison study were selected as those that returned the minimum
value for the following cost function

J �































1

n

�X
i�1

n

α2�ti�
�vuuut (29)

where n is the total number of time steps in the numerical simulation.
The set of control gains that produced the smallest AOA rms error
were α2 � 3.9513, ks � 2.6112, and β1 � 0.9966. Figures 3 and 4
depict the performance of the unsaturated RISE controller developed
in [13] and that same RISE controller with an ad hoc saturation ap-
plied to the commanded control. Although the unsaturated controller

Table 1 Aeroelastic model parameters

Parameter Value Parameter Value

mw 4.0 kg kh 2200 N∕m
ms 4.0 kg kα1 0.5 N∕rad
rx 0.0 kα2 −11.05 N∕rad2
rh 0.0 kα3 657.75 N∕rad3
a −0.6 kα4 −4290 N∕rad4
ah 0.0 kα5 8644.85 N∕rad5
b 0.14 m kα6 0.0 N∕rad6
sx 0.098 ρ 1.225 kg∕m3

sh 1.4 U 15 m∕s
Iw 0.043 kg · m2 S 1.0 m
Is 0.0050 kg · m2 Clα 6.8 1∕rad
ch1 27.43 kg∕s Clδ 93 N∕rad
cα 0.036 kg · m2∕s Cmδ

2.3 N · m∕rad

0 5 10 15 20 25
−0.1

−0.05

0

0.05

0.1

Time (s)

V
er

tic
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Fig. 2 Aeroelastic system open-loop response without disturbances.
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suppressed the LCO behavior, the commanded control effort
breached the actuator limit several times. When the ad hoc saturation
was applied to the controller, the LCO behavior could not be
suppressed and the system returned to an LCO state. In fact, after
approximately 9 s, the ad hoc controller saturates at the lower limit for
the remainder of the simulation. This highlights the unpredictable
response that can occur when applying an ad hoc saturation without
considering the stability of the resulting closed-loop system.
The developed control strategy was applied to the system with the

following gains: γ1 � 0.8375, γ2 � 17.7604, γ3 � 33.9025, γ4 �
0.1745, γ5 � 15.4652, and β � 5.5539. Note that γ4 represents the
actuator limit in radians,whichwas taken to be�10 deg. The control
gains for the developed controller were determined by applying the
sameMonte Carlo approach used to select the gains for the controller
in [13].
The states and control surface deflection of the ad hoc saturated

controller and the developed saturated controller are shown in Figs. 5
and 6, respectively. Although different gain selections will alter the
performance, Figs. 5 and 6 illustrate that the developed control
strategy is capable of suppressing LCO behavior in the presence of
actuator limits. The benefit of the developed method is that the
saturation limit is included in the stability analysis, guaranteeing
asymptotic tracking, versus the ad hoc saturation which yields an
unpredictable response.
A 1500 sample Monte Carlo simulation was also performed to

demonstrate the robustness of the developed saturated controller to
plant uncertainties and measurement noise (see Table 2). The model
parameters were varied uniformly over a range that extended from 95
to 105% of the parameter values listed in Table 1. Although the
developed saturated controller successfully regulated the AOA for all
1500 samples, the transient performance varied significantly between
samples.
The system states and control surface deflection for all 1500

samples are shown in Figs. 7–9. Figure 7 indicates that the AOA for
most samples converges to zero after approximately 7 s, however, the
considered range of model uncertainties does impact the transient
performance of the controller. The sensitivity in transient perfor-
mance can be attributed to the saturation on the commanded control
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Fig. 3 State trajectories of the controller developed in [13] with and

without saturation.
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Fig. 4 Commanded control effort for the controller developed in [13]

with and without saturation.
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Fig. 5 State trajectories of the controller in [13] and the developed

saturated controller.
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Fig. 6 Commanded control effort of the controller in [13] and the

developed saturated controller.

Table 2 Monte Carlo simulation results

Mean, deg Standard deviation, deg

Maximum tracking error 12.72 3.04
Rms tracking error 2.13 2.53
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effort. As noted previously, under certain conditions, the severity of
the LCO can become more than the saturated controller can suppress
and the systemwill return to an LCO state. From the figures, it is clear
that some of the samples were close to producing LCOs that the
saturated controller could not suppress.

VII. Conclusions

This Note presents a robust control strategy for the suppression of
LCO behavior in an airfoil section. The control strategy uses a
saturatedRISE controller to asymptotically track a desiredAOA trajec-
tory without exceeding actuator limits. A Lyapunov-based stability
analysis guarantees asymptotic tracking in the presence of actuator
constraints, exogenous disturbances, and modeling uncertainties.
Simulation results are presented to illustrate the performance of the
developed control strategy. A numerical simulation was presented that
demonstrated the unpredictable closed-loop system response when an
ad hoc saturation strategy is applied to a previously developed
controller. A comparison study revealed that the saturated controller
developed in this Note achieved asymptotic tracking of the desired
AOA trajectory, whereas the ad hoc saturation strategy was unable to
suppress the LCO behavior. A 1500 sample Monte Carlo simulation
was presented to demonstrate the robustness of the developed control-
ler to variations in the model parameters. A potential drawback of the
developed control strategy is that, under certain conditions, the severity
of the produced LCO may result in sufficient gain conditions that
cannot be satisfied. That is, if the disturbances to the system are large
enough, then the system could be destabilized. This is a direct result of
the actuator limit; increasing the actuator limit relaxes the sufficient
gain conditions and allows for larger disturbances. Furthermore, an
adaptive feedforward term could potentially be included to com-
pensate for the uncertain dynamics, thereby relaxing the sufficient gain
conditions. However, for any controller that has restricted control
authority, it is possible for some disturbance to dominate the
controller’s ability to yield a desired or even stable performance.
There is a lack of clarity among researchers regarding the driving

mechanism behind LCO. As in the work in [17], the LCO symptoms
are captured by including a nonlinear torsional stiffness. As the
driving mechanism of LCO is better understood, higher fidelity
models can be used with the control structure developed in this work
because the developed controller does not require knowledge of the
model parameters, only upper bounds on the modeling uncertainties.
The only changewould be to modify the sufficient gain conditions to
reflect the addition of the upper bounds on the uncertainties associ-
ated with the driving mechanism.
Future efforts are focused on improving the accuracy of the system

model by considering the wing as a cantilevered beam undergoing
bending and twisting deformations. This model will capture LCO
behavior in a flexiblewing, rather than a 2DOFairfoil section, using a
set of partial differential equations. Boundary control techniques will
then be used to suppress LCOmotion in the flexible-wing model. As
the drivingmechanism behind LCO is better understood, that knowl-
edge can be incorporated into the flexible-wing model and boundary
control techniques to provide a more complete control strategy for
suppressing LCO behavior.

Appendix: Details on the Development
of the Constants cm1

, cm2
, and cm3

Using the results of ([13] Appendix B), g > ε1 where ε1 ∈ R is a
known positive constant. The determinant ofM can be expressed as
det�M� � m1m4 −m2

2. Since m
2
2 ≥ 0, j det�M�j ≤ m1m4 and

				 det�M�g

				 ≤ m1m4

ε1
< cm1

Taking the time derivative of det�M� yields
d

dt
�det�M�� � −2m2 _m2

� 2m2mwb _α�rh − ah� cos�α�
�2m2mwb _α�rx − a� sin�α�
�2m2msb _α�sh − ah� cos�α�
�2m2msb _α�sx − a� sin�α�

Fig. 7 AOA trajectories for all 1500 Monte Carlo samples.

Fig. 8 Vertical position trajectories of all 1500 Monte Carlo samples.

Fig. 9 Control surface deflection for all 1500 Monte Carlo samples.
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Since k _qk ≤ κ2 and using the result in ([13] Appendix B), the time
derivative of det�M� can be upper bounded as

d

dt
�det�M�� < ε2

where ε2 ∈ R is a known positive constant. Since g > ε1,

d∕dt�det�M��
g

can be upper bounded as

				 d∕dt�det�M��g

				 ≤ ε2
ε1
� cm2

Using the result in ([13] Appendix B) and the upper bound on
d∕dt�det�M��, _m2 can be upper bounded as _m2 ≤ ε3, where ε3 ∈ R is
a known positive constant. Using ([13] Appendix B), the term

_m2Clδ det�M�
g2

can be upper bounded as

_m2Clδ det�M�
g2

≤
ε3Clδ ε4

ε21
< cm3

where ε4 > j det�M�j.
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