
J. Math. Anal. Appl. 463 (2018) 576–592
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The Mittag Leffler reproducing kernel Hilbert spaces of entire and 

analytic functions

Joel A. Rosenfeld a,∗, Benjamin Russo b,∗∗, Warren E. Dixon c

a Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 
United States
b Department of Mathematics, University of Connecticut, Storrs, CT, United States
c Nonlinear Controls and Robotics (NCR) Laboratory, Department of Mechanical and Aerospace 
Engineering, University of Florida, Gainesville, FL, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 August 2017
Available online 16 March 2018
Submitted by E. Saksman

Keywords:
Reproducing kernel Hilbert space
Bargmann–Segal
Fock
Entire functions
Caputo
Fractional calculus

This paper investigates the function theoretic properties of two reproducing 
kernel functions based on the Mittag-Leffler function that are related through a 
composition. Both spaces provide one parameter generalizations of the traditional 
Bargmann–Fock space. In particular, the Mittag-Leffler space of entire functions 
yields many similar properties to the Bargmann–Fock space, and several results 
are demonstrated involving zero sets and growth rates. The second generalization, 
the Mittag-Leffler space of the slitted plane, is a reproducing kernel Hilbert space 
(RKHS) of functions for which Caputo fractional differentiation and multiplication 
by zq (for q > 0) are densely defined adjoints of one another.

© 2018 Published by Elsevier Inc.

1. Introduction

The genesis of fractional derivatives goes back to the 1600s with a letter between l’Hopital and Leibniz 
[9,20]. Since then, the fractional calculus has seen slow progress that lagged behind that of its integer 
order counterpart. In the 1960s fractional calculus had a tremendous impact on the study of mechanical 
properties of materials beginning with the works of Caputo and Mainardi in [5,6]. Subsequently, fractional 
calculus has been applied to wide ranging application domains including developments in control theory, 
psychology, mathematical physics, geophysics, and finance [9]. Many results analogous to integer order 
differential equations have been established for fractional order differential equations (FODEs), such as 
existence and uniqueness theorems [1,9,10,24], boundary value problems, Lyapunov stability analyses [15–
17], and numerical methods [8,9,11,19].
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FODEs appear in fractional order models of quantum mechanical phenomenon, including fractional order 
harmonic oscillators and Schrödinger equations [14]. For classical problems in quantum mechanics, the 
Bargmann–Fock space has played a vital role. The Bargmann–Fock space is a particular realization of 
the Stone–Von Neumann theorem that transports the raising and lowering operators associated with the 
quantum harmonic oscillator to multiplication by z and differentiation in the Bargmann–Fock reproducing 
kernel Hilbert space (RKHS) via the Bargmann transform [2,12,25]. With recent developments in fractional 
order quantum mechanics [14] there is motivation to pursue a generalization of the Bargmann–Fock space 
that can play the same role for FODEs and fractional order quantum mechanics.

The Bargmann–Fock space has maintained significant interest independent of its applications to quantum 
mechanics. A large amount of research has investigated the study of properties of functions within the 
Bargmann–Fock space. In [21], Seip investigated interpolation sequences of the Bargmann–Fock space, and 
in [25, Theorem 5.9] Zhu produced examples of zero sets where the space of functions that have those zeros 
was finite dimensional. The finite dimensionality of this subspace is a property that sets the Bargman–Fock 
space apart from other RKHSs of analytic functions, such as the Hardy space and the Bergman space. The 
study of zero sets yields information concerning the growth rate of functions, helps determine the uniqueness 
sets of a function space, and has applications to signal processing.

In [19], the Mittag-Leffler RKHS of a real variable was introduced as a means to estimate the Caputo 
fractional derivative of a function of a real variable. The kernel associated with this RKHS arises from the 
Mittag-Leffler function, which is itself a generalization of the exponential function [13]. The objective of the 
present work is to extend this RKHS to functions of a complex variable and demonstrate that the resulting 
Mittag-Leffler RKHS of entire functions is a natural one parameter generalization of the Bargmann–Fock 
space.

This work explores the function theoretic aspects of the Mittag-Leffler RKHS, such as growth rates, 
zero sets, and determines an integral representation for the norm of the Mittag-Leffler space. The primary 
focus will be on the Mittag-Leffler RKHS of entire functions, which is defined in Section 3. Examination of 
the Mittag-Leffler space of entire functions allows for the utilization of a large amount of existing work on 
entire functions and zero sets (cf. [4,25]) in Section 4. The Mittag-Leffler RKHS of the slitted plane (which 
is composed of functions analytic everywhere except for the negative real line) is discussed in Section 5
and is obtained from the Mittag-Leffler space of entire functions via a composition with zq (for q > 0). In 
particular, the Mittag-Leffler RKHS of the slitted plane is associated with a natural generalization of the 
Bargmann–Fock space where the Caputo fractional derivative becomes a densely defined operator and is 
adjoint to multiplication by zq. Moreover, Theorem 5.3 indicates that the Mittag-Leffler space of the slitted 
plane is the unique space with this adjoint correspondence.

2. Preliminaries

This section presents several preliminary concepts related to the Caputo fractional derivative. The two 
more prominent time fractional derivatives extant in the literature are the Riemann–Liouville fractional 
derivative and the Caputo fractional derivative. Both fractional derivatives are realized through an in-
terplay between the Riemann–Liouville fractional integral, denoted by Jq for q > 0, and integer order 
derivatives. The Riemann–Liouville fractional derivative first applies the fractional integral to a function 
followed by an integer order derivative, while the Caputo fractional derivative first applies an integer order 
derivative followed by the fractional integral. Since fractional integration and integer order differentia-
tion do not commute, the two versions of the fractional derivatives lead to different fractional calculi. 
It can be seen through the Laplace transform of the two fractional differentiation operators, that the 
Riemann–Liouville fractional derivative results in initial value problems that require knowledge of initial 
conditions of fractional derivatives, whereas the Caputo fractional derivative yields initial value problems 
that require only integer order initial conditions [9]. This distinction has motivated the use of the Caputo 
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fractional derivative for applications in engineering and science. Moreover, the Mittag-Leffler special func-
tion,1 Eq(z) :=

∑∞
n=0 Γ(qn + 1)−1zn, satisfies an eigenvalue problem for the Caputo fractional derivative, 

similar to that of the exponential function for integer order differentiation, that is leveraged in this work to 
generalize the Bargmann–Fock space.

Definition 1. The Riemann–Liouville fractional integral for q ∈ R+ is defined as

(Jqf)(t) := 1
Γ(q)

t∫
0

(t− τ)q−1f(τ)dτ.

Definition 2. Let n ∈ N. For an n-times differentiable function f : R+ → R, the Caputo fractional derivative 
of order q, where n − 1 < q ≤ n, is given by

Dq
∗f(t) := Jn−q dn

dtn
f(t)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Γ(n− q)

t∫
0

f (n)(τ)
(t− τ)q+1−n

dτ n− 1 < q < n, n ∈ N

f (n)(t) q = n ∈ N.

The real-valued Mittag-Leffler RKHS was first introduced to facilitate a numerical method for estimating 
the Caputo fractional derivative of a function in [19]. The real-valued Mittag-Leffler space possesses a 
universal property that positions it as a suitable venue for the approximation of continuous functions of a 
real variable and their fractional derivatives. Linear combinations of the Mittag-Leffler kernels were used in 
[19] to estimate fractional derivatives through interpolation.

Definition 3. The real-valued Mittag-Leffler RKHS of order q > 0 is the RKHS associated with the kernel 
functions Kq(t, λ) := Eq(λqtq), i.e.

ML2(R+; q) :=
{
f(z) =

∞∑
n=0

anz
qn

∣∣∣∣∣
∞∑

n=0
|an|2Γ(qn + 1) < ∞

}
.

The Mittag-Leffler function is entire and is a generalization of the exponential function. Similar to the 
relationship of the exponential to integer order differentiation, the Mittag-Leffler function serves as an 
eigen-function of the Caputo fractional derivative as Dq

∗Eq(λtq) = λEq(λtq). When q = 1, the resulting 
equation is the familiar relation d

dx exp(λt) = λ exp(λt) [9,13].
The Bargmann–Fock space is the RKHS of entire functions which are L2 under the Gaussian measure. 

More explicitly,

F 2(C) =
{
f(z) =

∞∑
n=0

anz
n

∣∣∣∣∣
∞∑

n=0
|an|2n! < ∞

}
.

The kernel function for the Bargmann–Fock space K(z, w) = exp(wz), which coincides with the Mittag-
Leffler kernel function, K1(z, w), when z and w are restricted to R+. In the next section, the Mittag-Leffler 
space of entire functions will generalize the Bargmann–Fock space by offering a complexification of the 
(real-valued) Mittag-Leffler space.

1 The function, Γ : C \ {−1, −2, ...} → C, is the Gamma function given by Γ(z) :=
∫∞
0 tz−1e−tdt when z is a complex number 

with a positive real part and satisfies the functional equation Γ(z + 1) = zΓ(z).
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3. The Mittag-Leffler RKHS of entire functions

Definition 4. For q > 0, the Mittag-Leffler space of entire functions of order q > 0, denoted ML2(C; q), is 
the RKHS of entire functions associated with the kernel functions given by2

Kq(z, w) = Eq(wz) =
∞∑

n=0

wnzn

Γ(qn + 1) ,

i.e.

ML2(C; q) =
{
f(z) =

∞∑
n=0

anz
n

∣∣∣∣∣
∞∑

n=0
|an|2Γ(qn + 1) < ∞

}
. (1)

The major difference between the real-valued Mittag-Leffler RKHS and the Mittag-Leffler space of entire 
functions is that the former space is composed of functions that are represented by series in tq whereas the 
latter space is composed of functions that are represented as series in z. Consideration of the Mittag-Leffler 
space of entire functions allows for direct comparison with properties of the Bargmann–Fock space, itself a 
space of entire functions. However, by considering only functions that are series in z as opposed to series 
in zq, an important property is lost in translation from the Bargmann–Fock space to the Mittag-Leffler 
space of entire functions; the operator Dq

∗ does not act as a lowering operator for the Mittag-Leffler space 
of entire functions. Therefore, in some cases a modified Mittag-Leffler RKHS will be considered, namely the 
Mittag-Leffler space of the slitted plane.

From (1), the following result holds, which will be used to establish several integral and norm relations 
for the rest of the functions in ML2(C; q).

Lemma 3.1. The set of functions

{gn(z)}∞n=0 =
{

zn√
Γ(qn + 1)

}∞

n=0

(2)

is an orthonormal basis for ML2(C; q).

For q = 1, ML2(C; q) = F 2(C) and the norm can be expressed as

‖f‖F 2 =

√√√√ 1
π

∫
C

|f(z)|2e−|z|2dA(z), (3)

where the integral is taken with respect to Lebesgue area measure [25, Section 2.1]. The integral rep-
resentation of the norm for the Bargmann–Fock space is pivotal in the study of solutions to the heat 
equation, Toeplitz operators, growth rates, zero sets, atomic decompositions, and many other properties of 
the Bargmann–Fock space. Therefore, it is desirable to establish an analogous integral formula for the norm 
of ML2(C; q).

Theorem 3.2. Given q > 0, the norm for the space ML2(C; q) can be expressed as

‖f‖2
ML2(C;q) = 1

qπ

∫
C

|f(z)|2|z| 2q−2e−|z|
2
q
dz < ∞. (4)

2 Henceforth, the function given by Kq will denote the kernel associated with the Mittag-Leffler space of entire functions rather 
than the function given in Definition 3.
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Proof. For the sake of argument, assume that there exists a radially symmetric measure, μ, for which 
‖f‖2 =

∫
C
|f(x)|2dμ(z). From the Mittag-Leffler kernel function and the series definition of the norm given 

in (1) it can be seen that ‖zn‖2
ML2(C;q) = Γ(qn + 1). Thus,

Γ(qn + 1) =
∫
C

|z|2ndμ(z) = 2π
∞∫
0

r2n+1dμ̂(r) (5)

where μ̂ is a measure on the real line.
However, the Γ function can be expressed as an integral over the positive real line as Γ(qn + 1) =∫∞

0 tqne−tdt. Letting r2 = tq, yields r2/q = t and 2
q r

2
q−1 dr = dt, so that

∞∫
0

r2n+1dμ̂(r) =
∞∫
0

r2n+1 ·
(

1
qπ

r
2
q−2e−r

2
q

)
dr. (6)

Thus, the norm determined by the measure given by

dμ = 1
qπ

|z| 2q−2e−|z|
2
q
dz, (7)

agrees with ‖f‖2
ML2(C;q) when f(z) = zn. Since zn is an orthogonal basis for ML2(C; q), the theorem is 

complete. �
Note that when q = 1 the measure in (4) becomes dμ = 1

π e
−|z|2 , and thus the measure for the Bargmann–

Fock space is recovered. From Theorem 3.2, ML2(C; q) consists of entire functions f for which

‖f‖2
ML2(C;q) =

∫
C

|f(z)|2 1
qπ

|z| 2q−2e−|z|
2
q
dz < ∞.

Since the Gaussian measure dλ(z) = 1
π e

−|z|2 bounds the measure given by (7) the following proposition is 
immediate.

Proposition 3.3. For 0 < q ≤ p if f ∈ ML2(C; p) then f ∈ ML2(C; q). Moreover,

lim
q→p−

‖f‖ML2(C;q) = ‖f‖ML2(C;p).

In particular, F 2(C) ⊂ ML2(C; q) for 0 < q ≤ 1.

Proof. Note that 
{

zn√
Γ(pn+1)

}
is a orthonormal basis for the Fock space. If f(z) =

∑
anz

n ∈ ML2(C; p), 
then

f(z) =
∞∑

n=0
an

zn√
Γ(pn + 1)

=
∞∑

n=0

(
an

√
Γ(qn + 1)
Γ(pn + 1)

)
zn√

Γ(qn + 1)
.

Moreover, it follows that

‖f‖ML2(C;p) =
∑

|an|2 ≥
∑

|an|2
Γ(qn + 1) = ‖f‖ML2(C;q), (8)
Γ(pn + 1)
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since Γ(z) is a monotonically increasing function on the real line and

Γ(qn + 1)
Γ(pn + 1) ≤ 1

for all n ∈ N. The proposition follows by way of the dominated convergence theorem and (8). �
4. Growth properties and zero sets

While the Mittag-Leffler function lacks some of the properties of the exponential function, such as the 
semi-group property, it retains similar growth characteristics. This section establishes theorems concerning 
the order and type of functions in ML2(C; q) that are analogous to theorems on the Bargmann–Fock space. 
Foremost, this section begins with a standard point-wise estimate for functions in ML2(C; q).

Lemma 4.1. For all z ∈ C and f ∈ ML2(C; q),

|f(z)|2 ≤ Eq(|z|2)‖f‖2
ML2 .

Proof. By an application of Cauchy–Schwarz:

|f(z)|2 ≤
( ∞∑

n=0
|an||zn|

)2

=
( ∞∑

n=0
|an|

√
Γ(qn + 1) · |zn|√

Γ(qn + 1)

)2

≤
( ∞∑

n=0
|an|2Γ(qn + 1)

)
·
( ∞∑

n=0

|zn|2
Γ(qn + 1)

)

= ‖f‖2
ML2(C;q)Eq(|z|2). �

Lemma 4.1 establishes a bound on f in terms of the Mittag-Leffler function of order q. Growth rates for 
entire functions are often expressed in terms of order and type. Recall the following definition which can be 
found in [7].

Definition 5.

(a) Let f be an entire function. The function f is said to be of finite order if there is a positive constant 
a > 0 and r0 > 0 for which |f(z)| < e|z|

a for all |z| > r0. If f is of finite order, then the order of f is 
given by λ = inf{a : |f(z)| < e|z|

a for |z| sufficiently large}.
(b) If f is an entire function of order a, then f is of finite type if there some 0 < γ < ∞ for which 

|f(z)| ≤ eγ|z|
a for all z sufficiently large. For a function of order a and finite type, the quantity γ′ =

inf{γ > 0 : |f(z)| < eγ|z|
a for |z| sufficiently large} is the type of f .

The functions in the Bargmann–Fock space are of order at most 2, which is the result of the Gaussian 
measure in (3). Similarly, it will be shown that a bound on the order of a function in ML2(C; q) may be 
established that is connected to the measure in (6). There is a strong connection between the zeros of an 
entire function and its growth rate [4,7]. The relationship between zero sets and the growth rate will be 
considered in Theorem 4.8.
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The following estimate may be found in [13, Proposition 3.1 and Corollary 3.7], and it will be used to 
refine Lemma 4.1 by establishing the order and type of entire functions in ML2(C; q).

Lemma 4.2. For q > 0 the Mittag-Leffler function, Eq, is of order 1/q and type 1. Specifically, |Eq(z)| ≤
Ce|z|

1
q for some C > 0.

Proposition 4.3. Let q > 0. If f ∈ ML2(C, q), then f is of order at most 2
q , and if f is of order 2

q then it is 
of type at most 1

2 .

Proof. By Lemma 4.2, |Eq(|z|2)| ≤ Ce|z|
2
q for some C > 0. Therefore, |f(z)| ≤ C‖f‖ML2(C;q) e

1
2 |z|

2
q by 

Lemma 4.1, which establishes both the order and type of f . �
The following restriction on order and type for functions in ML2(C; q) has a well established analogue 

for the Bargmann–Fock space [3,23,25]. Proposition 4.4 is facilitated by the integral equation developed 
in Theorem 3.2, where the measure allows for a clear determination of order and type for functions in 
ML2(C; q).

Proposition 4.4. Let q > 0. If f is entire and of order less than 2
q , or of order equal to 2

q and of type less 
than 1

2 , then f is in ML2(C, q).

Proof. Let f : C → C be an entire function with order less than 2
q . Therefore, |f(z)| ≤ Ce|z|

2
q
−ε

for some 
ε > 0. By Theorem 3.2 the norm of f may be written as

‖f‖2
ML2(C;q) = 1

qπ

∫
C

|f(z)|2|z| 2q−2e−|z|
2
q
dz ≤ 1

qπ

∫
C

|C|2|z| 2q−2e2|z|
2
q
−ε−|z|

2
q
dz.

For sufficiently large |z|, 2|z| 2q−ε − |z| 2q < 0, and the integrand decays exponentially. Consequently, 
‖f‖ML2(C;q) < ∞, and f ∈ ML2(C; q). The case of f being of order 2

q with type less than 1
2 follows 

by a similar argument. �
Theorem 4.5. Let q > 0 and 2

q > ε > 0. If {zn} is a sequence of complex numbers such that

∞∑
n=1

1
|zn|

2
q−ε

< ∞,

then {zn} is a zero set for ML2
∗(C, q).

Proof. Let p = 	2
q − ε
 − 1 and let

Fp(z) = (1 − z) exp
(
z + z2

2 + . . . + zp

p

)
.

The function,

f(z) =
∞∏

n=1
Fp

(
z

zn

)

is of order less than or equal to 2
q − ε (see [7, p. 287]). An appeal to Proposition 4.4 completes the proof. �
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Theorem 4.6. Let {zn} be the zero sequence, repeated according to multiplicity and arranged so that 0 <
|z1| ≤ |z2| ≤ . . ., of a function f ∈ ML2(C, q) such that f(0) �= 0. If q > 0 then there exists a positive 
constant c such that |zn| ≥ cn

q
2 .

The following proof is a modification of the one found in [25, Section 5.1].

Proof. Fix r > 0, such that f has no zero on |z| = r and let n(r) denote the number of zeros in |z| < r. By 
Jensen’s formula [7]

n(r)∑
k=1

log r

|zk|
= 1

2π

2π∫
0

log |f(reiθ)|dθ.

By Proposition 4.3, |f(reiθ)| ≤ C‖f‖ML2(C;q) e
1
2 r

2
q . Hence,

n(r)∑
k=1

log r

|zk|
≤ C̃ + r

2
q

2 , (9)

where C̃ = log (C‖f‖ML2). The inequality in (9) may be rewritten as

n(r)∏
n=1

r

|zk|
≤ exp

(
r

2
q

2 + C̃

)
.

If n < n(r), then

n∑
k=1

log r

|zk|
≤

n(r)∑
k=1

log r

|zk|
.

Hence,

n∏
k=1

r

|zk|
≤

n(r)∏
k=1

r

|zk|
.

In addition, if n > n(r), then since 0 < |z1| ≤ |z2| ≤ . . . and r/|zk| < 1 when k > n(r) it follows that

n∏
k=1

r

|zk|
≤

n(r)∏
k=1

r

|zk|
.

Therefore, for any n (independent of r) the inequality

n∏
n=1

r

|zk|
≤ exp

(
r

2
q

2 + C̃

)

holds for all r > 0 such that f has no zeros of |z| = r. Since {|zn|}∞n=1 is non-decreasing

rn

|zn|n
≤ exp

(
r

2
q

2 + C̃

)
,
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and therefore,

1
|zn|

≤ 1
r

exp
(
r

2
q

2n + C̃

n

)
. (10)

Choose a sequence {rk} such that rk → n
q
2 and f has no zero on |z| = rk. By (10) it follows that

1
|zn|

≤ 1
n

q
2

exp
(

1
2 + C̃

n

)
. �

The analysis of zero sets for the Bargmann–Fock space is incomplete and often requires delicate argu-
ments. As described in [25, Section 5.3] only some square lattices will be zero sets for the Bargmann–Fock 
space. There is a lower bound on the spacing of a square lattice that allows it to be a zero set for the 
Bargmann–Fock space. As will be seen in the following discussion, order is a sufficient tool to differentiate 
between the zero sets of Mittag-Leffler spaces of different parameters q.

Definition 6. Let

Λα :=
{
ωmn =

√
π

α
(m + in) : (m,n) ∈ Z

2
}

denote the square lattice in the complex plane with fundamental region

Ωα :=
{
z = x + iy : |x| < 1

2

√
π

α
, |y| < 1

2

√
π

α

}
.

The Weierstrass σ-function associated to Λα is3 σα(z) = z
∏′

m,n

(
1 − z

ωm,n

)
exp

(
z

ωm,n
+ 1

2
z2

ω2
m,n

)
(cf. [25, 

Equation 1.14]).

Lemma 4.7. For q > 1 and α > 0, the function σα(z) is not a member of ML2(C; q).

Proof. For 1 < q since the σα-function is of order 2 (cf. [25, Corollary 1.21]) then it cannot lie in the 
space ML2(C; q) since the maximum order of functions in those spaces is 2

q (which is less than 2) by 
Proposition 4.3. �

Lemma 4.7 establishes that the Weierstrass sigma function is not in ML2(C; q) for a specific range of q’s. 
This suggests that square lattices may not be zero sets for ML2(C; q) when 1 < q. Theorem 4.8 demonstrates 
that square lattices are zero sets for ML2(C; q) when 0 < q < 1 but not when 1 < q. This is significant, 
since square lattices are fundamental for the description of sampling and interpolation sequences in the 
Bargmann–Fock space [21,25], and many of the pathological properties of zero sets of the Bargmann–Fock 
space, such as finite dimensional zero subspaces, utilize square lattices as a foundation [25, Section 5.3].

Theorem 4.8.

(a) For 0 < q < 1 every square lattice is a zero set for ML2(C; q).
(b) For q > 1 no square lattice is a zero set for ML2(C; q).
(c) For q = 1 some square lattices are zero sets for ML2(C; 1) = F 2(C).

3 The notation ∏′
n,m indicates that the product is to be taken over all n, m ∈ Z except for (n, m) = (0, 0).
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Proof. (a) For 0 < q < 1, square lattices, Λα = {zn}, when arranged in order of magnitude satisfy c
√
n <

|zn| < C
√
n for some pair constants, c, C > 0. Theorem 4.5 demonstrates that Λα is a zero set, since ∑

z∈Λα

1
|z|r converges for any r > 2. Alternatively, note that σα is an entire function of order 2, thus by 

Proposition 4.4, σα ∈ ML2(C; q) and Λα is a zero set for ML2(C; q).
(b) Points in a square lattice, when ordered according to modulus, satisfy |zn| < C

√
n for some C > 0. 

However, if {zn} were a zero set for ML2(C; q) with 1 < q, then by Theorem 4.6 cn
q
2 < |zn| for some 

c > 0. Since q2 > 1
2 , |zn| does not grow fast enough to be a zero set for ML2(C; q) with 1 < q.

(c) For q = 1, ML2(C; 1) = F 2(C). It is well established that there is a minimum spacing required for a 
square lattice to be a zero set for F 2(C) [25, Lemma 5.6 and Lemma 5.7]. Thus, when the spacing is 
too small, the lattice is no longer a zero set for the Bargmann–Fock space. �

The square lattice is a limiting case of zero sets for the Bargmann–Fock space. In particular, a square 
lattice fails the condition for Theorem 4.5. Indeed, 

∑∞
n=1

1
|zn|2 = ∞ when Λα = {zn}. However, for a wide 

range of α > 0, Λα is a zero set for F 2(C). Note that for the same sequence of zeros 
∑∞

n=1
1

|zn|2+ε converges 
for all ε > 0. An open question remains as to the determination of a similar limiting configuration of zeros 
for the Mittag-Leffler space of entire functions. Such a collection of points, Ωq,α, should satisfy

1. Ω1,α = Λα.
2. Ωq,α is a zero set for ML2(C; q) for sufficiently large α > 0.
3. Ωq,α is a zero set for ML2(C; p) for all 0 < p < q and all α > 0.
4. Letting Ωq,α = {zn}, 

∑∞
n=1

1
|zn|

2
q

= ∞ and for every ε > 0, 
∑∞

n=1
1

|zn|
2
q
+ε

converges.

5. There is an α > 0 such that Ωq,α is not a zero set for ML2(C; q) and there is a finite collection of points 
{a1, ..., an} ∈ Ωq,α such that Ωq,α \ {a1, ..., an} is a zero set for ML2(C; q).

The main challenge to determine limiting configurations lies is establishing Property 5 for such a set. 
The difficulty in establishing a sufficient Ωq,α comes from the lack of a corresponding Weierstrass sigma 
function. The properties of the Weierstrass sigma function arise from leveraging the periodicity of the 
square lattice in a nontrivial way, and thus establishes the property that |σα(z)|e−α

2 |z|2 is doubly periodic 
[25, Corollary 1.21]. The double periodicity allows for the examination of zero sets for which Property 5 
holds. In particular, σα(z)

z(z−z1) is a function in the Bargmann–Fock space, but has two fewer zeros than σα. 
For q �= 1, it is clear that the set Ωq,α will not have periodic spacing of its points, since that would lead to 
a square lattice, which cannot be a zero set for ML2(C; q) when 1 < q. One possible first step would be 
to establish a function analogous to the Weierstrass sigma function which would make the integrand in (4)
nonzero and of polynomial growth with a resulting divergent integral.

Proposition 4.9. For q > 0 and α > 0, the set

Ωq,α := {z ∈ C : z1/q ∈ Λα}

satisfies Properties 1–4 in the paragraphs above.

Proof. From the definition of Ωq,α, Ω1,α = Λα. Let {zn} = Ωq,α be a sequence ordered by modulus. Since 
|zn|2/q ≈ n, Property 4 follows as well.

Property 4 gives the exponent of convergence for Ωq,α (cf. [4]), and by Theorem 2.6.5 in [4], the function 

fq,α(z) :=
∏∞

n=1 Fp

(
z
zn

)
has order 2

q where p is an integer such that p < 2
q < p +1. If 2/q /∈ N then Lemma 

2.9.5 in [4] guarantees that fq,α is of finite type, since

n(r) := {z ∈ C : fq,α(z) = 0 and |z| < r} = O
(
r

2
q

)
.
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Thus, |fq,α(z)| ≤ Ceβ|z|
2/q for β > 0 from which Property 3 follows. Note that for λ > 0, fq,λα(z) =

fq,α(zλq/2). Therefore, |fq,λα(z)| ≤ Ce(β/λ)z2/q and there exists λ > 0 such that β/λ < 1/2. Property 2 
then follows from Proposition 4.4.

When 2
q ∈ N, it must be established that the sums S(r) =

∑
|zn|<r

1
z
2/q
n

are bounded to ensure that fp,α
is of finite type (cf. [4, Theorem 2.10.1]). When q = 1, Ωq,α = Λα and the sum, 

∑
|zn|<r

1
z2
n
, can be seen to 

be bounded through the symmetry of the square lattice. For q �= 1, z1/q
n ∈ Λα by definition. Thus, the sums 

are bounded for the same reason they are bounded for Λα. �
The function, fq,α, defined in Proposition 4.9 seems to be a viable candidate for a generalized Weierstrass 

function. A lower bound can be determined when the argument lies outside of a neighborhood of its zeros. 
Indeed, given any ε > 0 there exists R > 0 and σ > 0 such that

e−|z|
2
q
+ε

< |fq,α(z)| (11)

for all z ∈ C satisfying |z| > R and z /∈ B|zn|−σ(zn) (cf. Lemma 2.6.19 [4]). If the lower bound of (11) can 

be replaced by an equation of the form Ce−β|z|
2
q then fq,α may be used to prove Property 5 of Ωq,α just as 

the Weierstrass sigma function was used to prove Property 5 for Λα. However, the authors are not aware of 
a result of this kind.

5. Mittag-Leffler space of the slitted plane

This section considers the Mittag-Leffler space of the slitted plane, ML2(C \ R−; q). The Mittag-Leffler 
space of the slitted plane is demonstrated to be a more natural analogue of the Bargmann–Fock space than 
the Mittag-Leffler space of entire functions by demonstrating an adjoint relationship between fractional 
differentiation and multiplication by zq in this section. Each function in ML2(C \ R−; q) space can be 
obtained from functions in the former space via the composition f(zq), where zq is determined via the 
principle branch cut of the logarithm [7]. Specifically, Definition 7 defines the Mittag-Leffler space of the 
slitted plane.

Definition 7. For q > 0, the Mittag-Leffler space on the slitted plane is defined as

ML2(C \ R−; q) := {f : C \ R− → C : f(z1/q) ∈ ML2(C; q)}

i.e.

ML2(C \ R−; q) =
{
f(z) =

∞∑
n=0

anz
qn :

∞∑
n=0

|an|2Γ(qn + 1) < ∞
}
.

The Mittag-Leffler space of the slitted plane is a RKHS equipped with the inner product

〈f(z), g(z)〉ML2(C\R;q) =
〈
f(z1/q), g(z1/q)

〉
ML2(C;q)

.

In a sense, even though it is not composed of entire functions, the Mittag-Leffler space of the slitted 
plane is a more natural generalization of the Bargmann–Fock space. The operation Dq

∗ is densely defined 
over ML2(C \ R−) just as d

dz is densely defined over F 2(C) as demonstrated in Proposition 5.2. Moreover, 
Dq

∗ can act as a lowering operator for ML2(C \R−) in a fashion similar to d
dz for the Bargmann–Fock space. 

Consequently, the structure of the Mittag-Leffler space of the slitted plane bears a stronger resemblance to 
that of the Bargmann–Fock space.
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In previous sections, the Caputo fractional derivative has only been defined for positive real values; 
however, it is not restricted to real arguments as can be seen in [20]. Since the Mittag-Leffler space of the 
slitted plane is composed of functions analytic in C \ R−, there is only one choice of Caputo fractional 
derivative that agrees with the traditional Caputo fractional derivative on the real line while also yielding 
a function analytic in C \ R−. The following definition and theorem from [9] motivates a definition of the 
Caputo fractional derivative that extends to the rest of the slitted plane.

Definition 8. Let q > 0 and let ν be an entire function with power series expansion ν(x) =
∑∞

n=0 anx
n. 

Then, the operator Gq that maps the function ν to the function Gqv with

Gqν(x) :=
∞∑

n=1
an

Γ(qn + 1)
Γ(q(n− 1) + 1)x

n−1

is called the Gel’fond–Leont’ev operator of order q [9].

Theorem 5.1. Let q > 0 and let ν be an entire function with power series expansion ν(x) =
∑∞

n=0 anx
n. 

Moreover, let f(x) := ν(xq) for x ≥ 0. Then Dq
∗f(x) = Gqv(xq) [9].

Definition 8 and Theorem 5.1 establish that if a function is expressible as a power series in xq, the 
Caputo fractional derivative of the function is simply the term by term Caputo differentiation of the series. 
This yields a natural and obvious definition for a complex Caputo fractional derivative for functions in the 
Mittag-Leffler space of the slitted plane.

Definition 9. Let q > 0 and f ∈ ML2(C \R; q) be given by f(z) =
∑∞

n=0 anz
qn, then the Caputo fractional 

derivative of f at z ∈ C \ R−, denoted Dq
∗f(z), is given by

Dq
∗f(z) =

∞∑
n=1

an
Γ(qn + 1)

Γ(q(n− 1) + 1)z
q(n−1) (12)

The function Dq
∗f is called the Caputo fractional derivative of f of order q.

According to Theorem 5.1, Definition 9 agrees with the traditional Caputo fractional derivative for func-
tions in ML2(C \R−; q) for positive reals. Note that Dq

∗f is analytic over C \R−. Therefore Dq
∗f is uniquely 

determined by its values on the positive reals via the identity theorem [7]. The correspondence between 
the series definition of the Caputo fractional derivative given in Definition 9 and an integral representation 
similar to that given in Definition 2 over the complex plane is further explored in Appendix A.

In [2], it was demonstrated that differentiation d
dz and multiplication by z were adjoint operators on the 

Bargmann–Fock space. In [23], it was further shown that the Gaussian weight is the only continuous radial 
weight such that differentiation and multiplication by z are adjoints on polynomials (a common domain for 
the unbounded operators). The next proposition establishes an analogous result for the Caputo fractional 
derivative and polynomials in zq.

Definition 10. The operators Zq and Yq are defined on ML2(C \ R; q) as

Zq : Dom(Zq) ⊆ ML2(C \ R; q) → ML2(C \ R; q) where (Zqf)(z) = zqf(z)

and

Yq : Dom(Yq) ⊆ ML2(C \ R; q) → ML2(C \ R; q) where (Yqf)(z) = Dq
∗f(z).
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The domains for Zq and Yq are defined explicitly as

Dom(Zq) := {f ∈ ML2(C \ R−) : zqf ∈ ML2(C \ R−)}

and

Dom(Yq) := {f ∈ ML2(C \ R−) : Dq
∗f ∈ ML2(C \ R−)}.

Proposition 5.2. Let q > 0. The operators Zq and Yq are closed, moreover Z∗
q = Yq, and Y ∗

q = Zq.

Proof. The operator Zq is a multiplication operator over a RKHS, which means it is closed [22]. Moreover, 
since polynomials in zq are dense in ML2(C \ R−; q), Zq is densely defined. Therefore, Z∗

q , the unbounded 
adjoint of Zq, is both densely defined and closed [18]. The domain of Z∗

q is given by

Dom(Z∗
q ) = {g ∈ ML2(C \ R−; q) : Lg(f) := 〈Zqf, g〉 is continuous on Dom(Zq)}

(cf. [18, Chapter 5]). For each g ∈ Dom(Z∗
q ) there is a unique h ∈ ML2(C \R−; q) for which 〈Zqf, g〉 = 〈f, h〉

for all f ∈ Dom(Zq). The vector h is then declared as Z∗
q g [18].

For f ∈ Dom(Zq) and g ∈ ML2(C \ R−; q) with f(z) =
∑∞

n=0 anz
qn and g(z) =

∑∞
n=0 bnz

qn consider 
the inner product,

〈Zqf, g〉 =
∞∑

n=0
an−1bnΓ(qn + 1).

If a function h were to satisfy 〈f, h〉 =
∑∞

n=0 an−1bnΓ(qn + 1) for all f ∈ Dom(Zq), then h(z) =∑∞
n=0 bn+1

Γ(q(n+1)+1)
Γ(qn+1) zqn by the density of Dom(Zq). Through the inspection of (12), h(z) = Dq

∗g(z) = Yqg. 
This places a constraint on Dom(Z∗

q ) to consist of functions g ∈ ML2(C \ R−; q) for which Dq
∗g ∈

ML2(C \ R−; q) (i.e. Dom(Z∗
q ) ⊂ Dom(Yq)). Moreover, if Dq

∗g ∈ ML2(C \ R−; q), then Lg(f) is a con-
tinuous functional (i.e. Dom(Yq) ⊂ Dom(Z∗

q )). Thus, Dom(Z∗
q ) = Dom(Yq), and Z∗

q = Yq. Since Zq is 
closed, Y ∗

q = Z∗∗
q = Zq [18]. �

As seen in [23] the Bargmann–Fock space is essentially the unique space with a radially symmetric 
measure such that multiplication by z and differentiation with respect to z are adjoint operations to each 
other. The analogous result holds for the slitted Mittag-Leffler space as established by Theorem 5.3.

Theorem 5.3. For q > 0 the function w(z) = 1
qπ |z|

2
q−2e−|z|

2
q is the unique radial weight, continuous on 

C \ {0}, such that for polynomials p(z) = anz
qn + · · · + a0 and s(z) = bmzqm + · · · + b0 under the inner 

product

〈p(z), s(z)〉 =
∫
C

p(z1/q)s(z1/q)w(z)dz (13)

the operations of multiplication by zq and Caputo differentiation are adjoint, and the function f ≡ 1 has 
norm 1.

Proof. Consider the monomials in zq, p(z) = zq(n−1) and s(z) = zqm, and suppose that Zq and Dq
∗ are 

adjoint operations on ML2 under the inner product (13). Specifically,

〈Zqp(z), s(z)〉 = 〈p(z), Dq
∗s(z)〉. (14)
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Under condition (14)
∫
C

znz̄mw(z)dz = Γ(qm + 1)
Γ(q(m− 1) + 1)

∫
C

zn−1z̄m−1w(z)dz (15)

where dz is the normal area measure in C. Let z = reiθ and suppose that w(z) is a radially symmetric 
weight (i.e. w(z) = w(r)). The integral relation in (15) becomes

2π
∞∫
0

r2n+1w(r)dr = 2π Γ(qn + 1)
Γ(q(n− 1) + 1)

∞∫
0

r2n−1w(r)dr.

Letting

γn := 2π
∞∫
0

r2n+1w(r)dr, for n ∈ N

the following recursive relation is established

γn = Γ(qn + 1)
Γ(q(n− 1) + 1)γn−1 for n ∈ N. (16)

Since the function f ≡ 1 has norm 1, then

1 =
∫
C

w(z)dz = 2π
∞∫
0

rw(r)dr = γ0.

From the recursive relation in (16) on γn, it can be concluded that γn = Γ(qn + 1). Hence, from the adjoint 
condition in (14) along with the condition that the function f ≡ 1 has norm 1, ‖zqn‖2 = Γ(qn +1). Assuming 
continuity of the measure on C \ {0}, noting for all functions f(z) ∈ ML2(C \R−; q) that 

∫
C
f(z)w(z)dz =∫

C\{0} f(z)w(z)dz, and by performing the same calculations as in (5) and (6) it is established that

w(z) = 1
qπ

|z| 2q−2e−|z|
2
q for q > 0. �

Theorem 5.3 is stronger than Theorem 3.2 in that it establishes the measure to be the unique measure 
that yields the Mittag-Leffler space of the slitted plane. The establishment of this uniqueness theorem was 
made possible through the adjoint relationship between multiplication by zq and the Caputo fractional 
derivative in this space, which in itself justifies the investigation of the Mittag-Leffler space of the slitted 
plane in addition to the Mittag-Leffler space of entire functions.

6. Conclusion

This paper introduced and examined the function theoretic properties of two RKHSs associated with the 
Mittag-Leffler functions. Each space was obtained through the invocation of the Aroszajn-Moore theorem 
and two methods were used to determine integral representations of their norms. Collections of zero sets 
were studied for the Mittag-Leffler space of entire functions with a particular emphasis on square lattices 
which are important for the Bargmann–Fock space. A replacement for the square lattice as important zero 
sets for the Mittag-Leffler space of entire functions was developed when q �= 1.
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Following the study of the Mittag-Leffler space of entire functions, the Mittag-Leffler space of the slitted 
plane was investigated, where the Mittag-Leffler space of the slitted plane allows for a generalization of 
the classical adjoint relationship of multiplication by z and d

dz present in the Bargmann–Fock space. In 
particular, it was demonstrated that in the Mittag-Leffler space of the slitted plane that multiplication by 
zq and Dq

∗ are closed densely defined adjoints of one another.
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Appendix A. Caputo derivatives of a complex argument

This appendix explores the direct extension of the Riemann–Liouville fractional integral to complex 
arguments and compares the resulting Caputo fractional derivative to the series definition given in (12). 
Similar results may be found in [9,20]. The results of this appendix are well known in the community, however 
the authors were unable to locate a reference that included a treatment comparing the two definitions of 
the Caputo fractional derivative given by (12) and (A.1) for complex arguments. Therefore, this appendix 
is included for the sake of completeness. The development in this section leverages the construction found 
in [20] and makes adjustments suitable for the Caputo fractional derivative.

Suppose a function f is defined on the slitted complex plane C \R−. Note that C \R− is starlike relative 
to the origin [7]. Therefore, line segments connecting points in C \R− to the origin remain in the set C \R−.

Definition 11. Let α > 0, define the Riemann–Liouville fractional integral of a function f : C \ R− → C of 
order α at z ∈ C \ R− as

(Iα0 f)(z) := 1
Γ(α)

z∫
0

f(ξ)
(z − ξ)1−α

dξ

where the integration is over the line-segment from 0 to z.

The use of the slitted complex plane arises from the selection of the principle branch of the multivalued 
function (z − ξ)1−α. Moreover, since integration is taken over a line segment connecting the origin and the 
point z, θ := arg(z) = arg(ξ), where −π < θ < π. The following is given as an alternate definition to (12)
for the Caputo fractional derivative of a complex argument.

Definition 12. Let f : C \ R− → C and m − 1 < q < m where m ∈ N and q > 0. Define

(Dqf)(z) = Im−q
0 f (m)(z) (A.1)

to be the Caputo fractional derivative of complex argument.

Theorem A.1 demonstrates that the Caputo fractional derivative given in (12) coincides with that given 
in (A.1). Therefore, the integral representation and the series representation for the Caputo fractional 
derivative agree for complex arguments.

Theorem A.1. Let m ∈ N and let q ∈ (m − 1, m). If f ∈ ML2(C \ R−; q), then Dqf = Dq
∗f .
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Proof. Given a function f(z) =
∑∞

n=0 anz
qn, it will be demonstrated that Dqf(z) = Dq

∗f(z) for all z ∈
T \ {−1}, where T = {z ∈ C : |z| = 1}. By the identity theorem (cf. [7]) the Dqf(z) = Dq

∗f(z) for all 
z ∈ C \ R−. Moreover, since the collection of functions en(z) := zqn for n ∈ N constitutes a basis for 
ML2(C \R−; q), it is sufficient to establish the theorem for each en and then apply the result term by term 
to f via a dominated convergence argument. Consider the power function fd(z) := zd where d ∈ R

+ and 
let α > 0. In addition, assume that d > m. Note that

(Iα0 f (m))(z) =
∏m−1

i=0 (d− i)
Γ(α)

z∫
0

ξd−m

(z − ξ)1−α
dξ. (A.2)

Since z = eiθ ∈ T \ {−1}, the path connecting 0 to z may be parameterized as ξ = (1 − ρ)eiθ, ρ ∈ [0, 1]. 
Therefore, after a change of variables (A.2) becomes

(Iα0 f
(m)
d )(z) =

ei(α+d−m)θ∏m−1
i=0 (d− i)

Γ(α)

1∫
0

ρα−1(1 − ρ)(d−(m−1))−1 dρ.

Utilizing the following well-known identity of the Beta function (cf. [13, Equation A.2.4]):

B(x, y) =
1∫

0

tx−1(1 − t)y−1dt = Γ(x)Γ(y)
Γ(x + y) ,

and properties of the Gamma function

(Iα0 f
(m)
d )(z) =

∏m−1
i=0 (d− i) · Γ(d− (m− 1))

Γ(α + d− (m− 1)) zα+d−m

= Γ(d + 1)
Γ(α + d− (m− 1))z

α+d−m.

Let α = m − q and d = qn for n ∈ N the equation,

Dq(zqn) = Γ(qn + 1)
Γ(q(n− 1) + 1)z

q(n−1) for z ∈ T \ {−1},

is established by the argument above. For q > 0 (12) yields

Dq
∗(zqn) = Γ(qn + 1)

Γ(q(n− 1) + 1)z
q(n−1) for z ∈ C \ R−.

Since the two functions agree on T \ {−1}, which has cluster points, the functions Dqen and Dq
∗en must 

agree over C \ R− by the identity theorem. Hence, Dqf(z) = Dq
∗f(z) for all z ∈ C \ R− by a dominated 

convergence argument. �
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[21] K. Seip, Density theorems for sampling and interpolation in the Bargmann–Fock space, Bull. Amer. Math. Soc. (N.S.) 

26 (2) (1992) 322–328.
[22] F.H. Szafraniec, The reproducing kernel Hilbert space and its multiplication operators, in: Complex Analysis and Related 

Topics, Cuernavaca, 1996, in: Oper. Theory Adv. Appl., vol. 114, Birkhäuser, Basel, 2000, pp. 253–263.
[23] J. Tung, Fock Spaces, PhD thesis, University of Michigan, 2005.
[24] S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl. 252 (2) 

(2000) 804–812.
[25] K. Zhu, Analysis on Fock Spaces, Grad. Texts in Math., vol. 263, Springer, New York, 2012.

http://refhub.elsevier.com/S0022-247X(18)30242-7/bib426F61732E426F61732E656131393534s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib43617075746F2E43617075746F2E656131393731s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib43617075746F2E43617075746F2E656132303037s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib43617075746F2E43617075746F2E656132303037s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib436F6E7761792E436F6E7761792E656131393733s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib436F6E7761792E436F6E7761792E656131393733s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4461667461726461722D47656A6A692E4461667461726461722D47656A6A692E656132303035s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4461667461726461722D47656A6A692E4461667461726461722D47656A6A692E656132303035s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4469657468656C6D2E4469657468656C6D2E656132303130s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4469657468656C6D2E4469657468656C6D2E656132303130s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4469657468656C6D2E4469657468656C6D2E656132303032s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4469657468656C6D2E4469657468656C6D2E65613230303261s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4469657468656C6D2E4469657468656C6D2E65613230303261s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib466F6C6C616E642E466F6C6C616E642E656131393839s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib466F6C6C616E642E466F6C6C616E642E656131393839s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib476F72656E666C6F2E476F72656E666C6F2E656132303134s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib476F72656E666C6F2E476F72656E666C6F2E656132303134s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib486572726D616E2E486572726D616E2E656132303134s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4B616E2E4B616E2E656132303135s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4B616E2E4B616E2E656132303135s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4C692E4C692E656132303039s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4C692E4C692E656132303039s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4C692E4C692E656132303130s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib4C692E4C692E656132303130s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib506564657273656E2E506564657273656E2E656131393839s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib526F73656E66656C642E526F73656E66656C642E656132303137s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib526F73656E66656C642E526F73656E66656C642E656132303137s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib53616D6B6F2E53616D6B6F2E656131393837s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib53616D6B6F2E53616D6B6F2E656131393837s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib536569702E536569702E656131393932s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib536569702E536569702E656131393932s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib537A616672616E6965632E537A616672616E6965632E656132303030s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib537A616672616E6965632E537A616672616E6965632E656132303030s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib54756E672E54756E672E656132303035s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib5A68616E672E5A68616E672E656132303030s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib5A68616E672E5A68616E672E656132303030s1
http://refhub.elsevier.com/S0022-247X(18)30242-7/bib5A68752E5A68752E656132303132s1

	The Mittag Lefﬂer reproducing kernel Hilbert spaces of entire and analytic functions
	1 Introduction
	2 Preliminaries
	3 The Mittag-Lefﬂer RKHS of entire functions
	4 Growth properties and zero sets
	5 Mittag-Lefﬂer space of the slitted plane
	6 Conclusion
	Acknowledgments
	Appendix A Caputo derivatives of a complex argument
	References


