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Abstract The quality of products from a machine tool
system is largely determined by the tolerances main-
tained, which is a function of how well the desired
contour is tracked. To mitigate contour errors in a
three-axis machine tool feed drive system, the control
development in this paper is based on an error system
that is transformed into tangential, normal, and binor-
mal components to the desired contour (i.e., a cross-
coupling controller (CCC)). Unlike previous CCCs, the
controller developed in this paper does not assume
exact knowledge of the inertia and friction matrices.
Specifically, an adaptive estimate is developed to com-
pensate for uncertain friction and inertial parameters.
Lyapunov-based methods are used to craft the adaptive
estimate and to prove global asymptotic contour track-
ing. Experimental results of the proposed controller on
the x–y-axes of the high speed milling machine showed
improvement of the contouring accuracy compared
to proportional-derivative controller and a benchmark
CCC.
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1 Introduction

The contour error in computer numerical control
(CNC) machine tool systems is defined as the error
component orthogonal to a desired tool path. The con-
tour error is a key factor used to quantify the quality of
the machined product. To reduce the contouring error,
historical controllers have focused on the improvement
of the individual axis performance only, resulting in a
simple single input single output (SISO) system. The
individual axis is typically controlled through a pro-
portional integral derivative strategy; however, some
inverse dynamics-based feedforward controllers have
also been proposed to eliminate the axial tracking er-
ror. Example feedforward controllers include the zero
phase error tracking controller (ZPETC) [1] and the
inverse compensation filter [2]. Also, recently, robust
controllers focus on rejecting uncertainties in the drive
parameters, maximizing the bandwidth within the phys-
ical limitations of the system, and compensating for
external disturbances. The main drawback of methods
that consider the performance of each axis separately
during contouring is that reducing the individual axis
errors does not necessarily reduce the contour error
during nonlinear motions.

To address this problem, the cross-coupling con-
troller (CCC) concept was introduced by Koren in [3]
and [4]. The CCC objective is to mitigate the contour
error rather than reducing the individual axis errors.
The cross-coupling concept requires the construction of
a contour error model that is used in the control de-
velopment. Specifically, CCC are developed by trans-
forming the inertial coordinate system to a coordinate
system that moves along a desired contour. Through
this transformation, the error between the current
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coordinates and the desired coordinates is decoupled
into normal, tangential, and binormal components. This
decoupling allows the normal error (i.e., the contour
error) to be regulated independently from the tracking
error (i.e., the tangential error).

In [5] and [6], Yeh and Hsu combined the CCC
strategy with the ZPETC method using a contouring
error transfer function. The resulting linear SISO error
system was proven to yield bounded-input bounded-
output stability. Yeh and Hsu also proposed a modified
variable-gain CCC in [7] that directly applies to arbi-
trary contours. Specifically, a linear contour approxi-
mation is used in lieu of the actual contour error as a
means to reduce the computational complexity.

Srinivasan and Kulkarni developed and experimen-
tally tested an optimal controller based on a linear feed
drive model for a multi-axis feed drive system [8]. One
conclusion stated in [8] is that improved performance
may be obtained by designing the controller using a
higher order linear model. Moreover, [8] stated that
the unmodeled nonlinear dynamics seemed to play a
significant role in the experimental demonstration. A
CCC for a biaxial feed drive system was also developed
and experimentally tested in [9]. However, the CCC in
[9] was still designed based on a linear model of the
machine. In [10], Chen et al. used a polar coordinate
representation of the contour error so that a linear
relationship between the contour error and the radial
position can be developed. Through the use of the polar
coordinate representation, the control objective in [10]
is formulated as a stabilization problem for which a
feedback linearizing controller was developed.

Difficulties in obtaining an accurate nonlinear model
of cross-coupled multi-axis machine tools motivated
Tarng et al. to employ a fuzzy logic feedforward con-
trol component in [11] and [12]. Degraded contour
tracking at high-speed feedrates due to the nonlinear
cross-coupled dynamics motivated Chuang and Liu to
develop an adaptive estimate in [13]. The adaptive
estimate was designed as a linear perturbed error model
described by a deterministic autoregressive moving av-
erage. An adaptive CCC feedforward scheme was also
proposed in [14]; however, as stated in [15], the ap-
proach is limited to a linear coordination objective (i.e.,
the desired contour is a linear relationship between the
axes). Motivated by the limitations in [14], Chiu and
Tomizuka formulated the contour tracking problem in
a task coordinated frame in [15]. Specifically, the result
in [15] encodes the desired contour as a combination
of a feedrate, velocity direction, and instantaneous cur-
vature, eliminating the need for an analytical contour
representation. The controller was developed in [15] for
a linear time-varying error system under the assump-

tion of exact model knowledge. Also under the assump-
tion of exact model knowledge of the dynamics except
for an additive bounded disturbance, [16] developed
an adaptive robust contour tracking controller where
the problem was formulated as a regulation objective.
More recently, [17] developed another adaptive robust
controller using a discontinuous adaptive estimate for a
linear motor driven X–Y table with uncertainty in the
nonlinear dynamics.

The CCC development in this paper is inspired by
the task coordinated problem formulation introduced
in the recent efforts in [15]. Lyapunov-based controllers
are developed for a three-axis CNC machine tool feed
drive system, although the results can be extended to
n-dimensional systems. The contribution of the results
over previous CCCs are that uncertainty in the re-
sulting transformed machine tool dynamics is consid-
ered. Specifically, standard adaptive nonlinear control
methods are applied to the transformed cross-coupled
machine dynamics to compensate for uncertain inertial
and friction parameters. A Lyapunov-based analysis
is used to prove global asymptotic contour tracking
for an arbitrary contour. The developed controller is
applied to a feed drive system on a high speed milling
machine (HSM2) in the University of Florida Machine
Tool Research Center. Experiments are performed to
illustrate the contouring performance of the proposed
controller compared to a proportional and derivative
(PD) controller and the benchmark CCC in [4].

2 Three-axis CNC machine tool dynamics

The dynamic model for a three-axis CNC machine tool
is assumed to have the following form:

Mẍ + Bẋ = T (1)

where x(t), ẋ(t), ẍ(t) ∈ R
3 denote the position, velocity,

and acceleration of the machine tool expressed in an
inertial coordinate system, respectively; M ∈ R

3×3 de-
notes the unknown diagonal inertia matrix; B ∈ R

3×3

denotes the unknown diagonal friction matrix; and
T(t) ∈ R

3 represents the input control force. To facil-
itate the subsequent CCC development, the machine
tool coordinates can be transformed from the inertial
coordinate system to a time-varying coordinate frame
as follows:

xf = FT x (2)

where xf(t), ẋf(t), ẍf(t) ∈ R
3 denote the position, veloc-

ity, and acceleration of the machine tool expressed in
the time-varying coordinate system, respectively. The
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subsequent development is based on the assumption
that xf(t) and ẋf(t) are measurable. In Eq. 2, the
known transformation matrix F(t) ∈ R

3×3 is composed
of a known unit tangent vector, denoted by t(t) ∈ R; a
known unit normal vector, denoted by n(t) ∈ R; and a
known binormal vector, denoted by b(t) ∈ R, defined
as b(t) = t(t) × n(t). The vectors t(t), n(t), and b(t) are
defined based on the tangent and normal components
of a desired contour, denoted by xd(t). That is, given
a desired contour xd(t), the tangential, normal, and
binormal components of xd(t) can be used to change
the coordinates of the machine tool from the inertial
reference frame to a time varying reference frame as
follows:

xfd = FT xd (3)

where xfd(t), ẋfd(t), ẍfd(t) ∈ R
3 denote the desired po-

sition, velocity, and acceleration of the machine tool
expressed in the time-varying coordinate system, re-
spectively. See Fig. 1.

Based on Eqs. 2 and 3, the dynamic model given in
Eq. 1 can be transformed as follows:

M̄ẍf + V̄mẋf + B̄ẋf + Nxf = T̄. (4)

In Eq. 4, M̄(t), V̄m(t), B̄(t), N(t), and T̄(t) are
defined as

M̄ = FT MF (5)

V̄m = −2FT (
MF ḞT)

F (6)

B̄ = FT BF (7)

Fig. 1 Time-varying coordinate frame

N = 2FT (
MF ḞT)

F
(
ḞT F

)
(8)

−FT BF
(
ḞT F

) − FT MF F̈T F

T̄ = FT T. (9)

The dynamic model in Eq. 4 exhibits the follow-
ing properties that are utilized in the subsequent
development.

Property 1 The inertia matrix M̄(t) is symmetric, posi-
tive definite, and satisfies the following inequalities [18]

m1 ‖ξ‖2 ≤ ξT M̄ξ ≤ m2 ‖ξ‖2 ∀ξ(t) ∈ R
3 (10)

where m1, m2 ∈ R are known positive constants and ‖·‖
denotes the standard Euclidean norm.

Property 2 The matrices
·

M̄(t) and V̄m(t) are skew-
symmetric in the sense that [18]

ξT
( ·

M̄(t) − V̄m(t)
)

ξ = 0 ∀ξ(t) ∈ R
3. (11)

Property 3 The dynamic model given in Eq. 4 can be
linearly parameterized as follows [18]:

Yθ = M̄ẍf + V̄mẋf + B̄ẋf + Nxf (12)

where θ ∈ R
6 contains the unknown constant system

parameters and Y(xf, ẋf, ẍf) ∈ R
3×6 denotes a regres-

sion matrix. The regression matrix formulation of
Eq. 12 can also be written in terms of the desired
contour in the following manner:

Ydθ = M̄ẍfd + V̄mẋfd + B̄ẋfd + Nxfd (13)

where the desired regression matrix is defined by
Yd(xfd, ẋfd, ẍfd) ∈ R

3×6.

Property 4 The time derivative of the transformation
matrix F(t) can be expressed as follows [15]:

ḞT = vRFT (14)

where v(t) = ‖ẋfd(t)‖ ∈ R denotes the desired feedrate
and R(t) ∈ R

3×3 is defined as

R =
⎡

⎣
0 κ 0

−κ 0 τ

0 −τ 0

⎤

⎦ . (15)

In Eq. 15, κ(t) ∈ R is a single-valued continuous func-
tion that denotes the desired curvature of the contour,
and τ(t) ∈ R is a single-valued continuous function that
denotes the desired torsion. The time derivative of
Eq. 14 can be determined as

F̈T = v̇RFT + v ṘFT + v2 RRFT . (16)
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Based on the assumption that the desired contour is
selected such that xfd(t), ẋfd(t), ẍfd(t), κ(t), τ(t), κ̇(t),
τ̇ (t) ∈ L∞, then Eqs. 14 and 16 can be used to conclude
that F(t), ḞT(t), F̈T(t) ∈ L∞.

Remark 1 The partial derivative of F(t) with respect
to the arc length of the desired contour is commonly
referred to as the Serret–Frenet [19–21] formulas. From
the fundamental theorem of space curves [22], the de-
sired contour can be uniquely specified (except in po-
sition and orientation) by the single valued continuous
functions κ(t) and τ(t).

Remark 2 The following inequalities can be developed
from Eqs. 5 to 10 and Property 4:

∥
∥M̄

∥
∥

i∞ ≤ ζm
∥
∥V̄m

∥
∥

i∞ ≤ ζv (17)
∥∥B̄

∥∥
i∞ ≤ ζb ‖N‖i∞ ≤ ζn (18)

where ζm, ζv, ζb , ζn ∈ R denote known positive bound-
ing constants.

3 Control development

3.1 Control objective

The objective in this paper is to develop a CCC for a
three-axis CNC machine tool so that a desired contour
is followed. To quantify the objective, a contour track-
ing error, denoted by e(t) ∈ R

3, is defined as follows:

e � xfd − xf (19)

where xfd(t) and xf(t) are defined in Eqs. 3 and
2, respectively. To facilitate the subsequent analy-
sis, a filtered tracking error, denoted by r(t) ∈ R

3, is
defined as

r � ė + αe (20)

where α ∈ R denotes positive constant control gain.
The subsequent control development is based on the
assumption that xf(t) and ẋf(t) are measurable and that
xfd(t), ẋfd(t), ẍfd(t),

...
x fd(t) are known and are bounded

(and hence e(t), ė(t) , r(t) can be computed).

3.2 Closed-loop error system

The open-loop error system for r(t) can be obtained by
taking the time derivative of Eq. 20 and premultiplying
the resulting expression by M̄(t) as follows:

M̄ṙ = M̄ (ẍfd − ẍf) + αM̄ė.

After utilizing Eqs. 4, 19, and 20, the following expres-
sion can be obtained:

M̄ṙ = −1
2

V̄mr + Ydθ + χ − T̄ (21)

where the product of the linear regression matrix
Yd(xfd(t), ẋfd(t), ẍfd(t)) ∈ R

3×6 and the vector of un-
known constants θ introduced in Eq. 12 is given by the
following expression:

Ydθ = M̄ẍfd + V̄mẋfd + B̄ẋfd + Nxfd, (22)

and the auxiliary expression χ(e, r) ∈ R
3 is defined as

χ = V̄mαe + (
αM̄ − B̄

)
(r − αe) − Ne − 1

2
V̄mr. (23)

By utilizing Eqs. 17, 18, and 23, the following upper
bound can be developed for χ(e, r):

‖χ‖ ≤ ζ1 ‖z‖ where z(t) �
[

eT rT
]T

(24)

where ζ1 ∈ R is a known, positive bounding constant.
Based on Eq. 21 and subsequent stability analysis, T̄(t)
is designed as follows:

T̄ = (
k1 + knζ

2
1

)
r + Ydθ̂ + e. (25)

In Eq. 25, k1, kn ∈ R denote positive constant control
gains, and θ̂ (t) ∈ R

6 denotes an adaptive estimate that
is generated from the following differential equation:
·
θ̂ = 	YT

d r θ̂ (0) = θ̄ (26)

where 	 ∈ R
6×6 is a constant diagonal matrix of adapta-

tion gains and θ̄ ∈ R
6 denotes an initial best-guess esti-

mate of the unknown parameters in θ . The closed-loop
error system for r(t) can be obtained after substituting
Eq. 25 into Eq. 21 as follows:

M̄ṙ = −1
2

V̄mr + Ydθ̃ + χ − (
k1 + knζ

2
1

)
r − e (27)

where θ̃ (t) ∈ R
6 denotes the adaptive estimate mis-

match defined as follows:

θ̃ = θ − θ̂ . (28)

3.3 Stability analysis

Theorem 1 Provided the control gain kn is selected ac-
cording to the following suf f icient condition:

kn >
1

4λ1
(29)

where λ1 = min(k1, α), the control law given in Eq. 25
ensures global asymptotic tracking control in the
sense that

lim
t→∞ ‖e(t)‖ = 0. (30)
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Proof Let V(t) ∈ R denote the following nonnegative
Lyapunov function:

V = 1
2

rT M̄r + 1
2

eTe + 1
2
θ̃	−1θ̃ . (31)

The time derivative of Eq. 31 can be written as follows:

V̇ = −αeTe − (
k1 + knζ

2
1

)
rTr + rTχ (32)

where Eqs. 11, 20, 26, and 27 were utilized. Based on
Eq. 24, the following inequality can be developed for
Eq. 32

V̇ ≤ −λ1 ‖z‖2 + [
ζ1 ‖r‖ ‖z‖ − knζ

2
1 ‖r‖2] (33)

where λ1 was introduced in Eq. 29. The following ex-
pression can be obtained after completing the squares
on the bracketed terms in Eq. 33

V̇ ≤ −λ1 ‖z‖2 + ‖z‖2

4kn
. (34)

Provided kn is selected according to the sufficient con-
dition given in Eq. 29, the following inequality can be
developed

V̇ ≤ −β ‖z‖2 (35)

for some positive constant β ∈ R. From Eqs. 31 and
35, we can conclude that V(t) ∈ L∞; hence, e(t), r(t),
θ̃ (t) ∈ L∞. The expressions in Eqs. 31 and 35 can also
be used to conclude that e(t), r(t) ∈ L2. Given that e(t),
r(t) ∈ L∞, linear analysis methods can be used to prove
that ė(t) ∈ L∞ from Eq. 20. Since θ̃ (t) ∈ L∞, Eq. 28 can
be used to prove that θ̂ (t) ∈ L∞. The assumption that
xfd(t), ẋfd(t), ẍfd(t) ∈ L∞ can be used along with Eqs. 17
and 18 to conclude that Yd(xfd(t), ẋfd(t), ẍfd(t)) ∈ L∞.
Based on these facts, Eqs. 24–27 can be used to prove

that χ(e, r) , T̄(t),
·
θ̂ (t), ṙ(t) ∈ L∞. Since e(t), ė(t), r(t),

ṙ(t) ∈ L∞ (i.e., a sufficient condition for e(t) and r(t) to
be uniformly continuous) and e(t), r(t) ∈ L2, Barbalat’s
Lemma can be used to prove the result in Eq. 30. Since
F(t) is a unique transformation, Eqs. 2 and 3 can be
used to prove that if the result in Eq. 30 is obtained,
then

x → xd as t → ∞.

�	

4 Experimental results

The proposed controller was applied to a feed drive
system on a HSM2 developed at the Machine Tool

Fig. 2 High speed milling machine

Research Center at the University of Florida (see
Fig. 2). For simplicity in result analysis, the contour
error produced by the x- and y-axes is considered.
However, z-axis could be easily applied to the pro-
posed controller since the developed control law is
based on the n-dimensional matrix format. Figure 3
shows the overall configuration of HSM2. The x-axis,
which supports the workpiece, retains a rotary servo
motor, hydrostatic leadscrew and nut, and the table.

Fig. 3 Configuration of high speed milling machine
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The y-axis, which supports the column that contains
the z-axis and spindle, is driven by two linear motors.
As guideways for the x- and y-axes, the hydrostatic
guideways are used to reduce friction and wear. The
Turbo PMAC2 controller from Delta-Tau Inc. is used
as a controller which performs the phase commuta-
tion for the servomotors and closes the current loop
digitally providing the pulse width modulation format
for the motor power with 1 ms servo update time. To
implement the proposed controller on this controller,
the user-written servo algorithm provided by the Turbo
PMAC2 controller is used. Position feedback for the
x-axis is provided by a rotary encoder which translates
to a linear resolution of 2 μm. A single linear encoder
with 1 μm resolution attached to the end of the column
is used for the y-axis position feedback.

The dynamics for the x- and y-axes of HSM2 are
given as follows:

[
Mx1 0

0 Mx2

] [
ẍ1

ẍ2

]
+

[
Bx1 0
0 Bx2

] [
ẋ1

ẋ2

]
= T

where Mx1 = 0.05916 kg m2 denotes the equivalent
moment of inertia of the x-axis, Mx2 = 1,144 kg denotes
the moving mass of the y-axis, Bx1 = 0.01725 N m/rad/s
denotes the friction of the x-axis, and Bx2 = 967 N/m/s
denotes the friction of the y-axis. These system para-
meters are obtained through the system identification
procedure and verified by comparison between simu-
lation and experiment [23]. For the initial best-guess
estimate of unknown parameters in Eq. 26, these
values are used. Three circular trajectories on the
x–y-axes of HSM2 are used to examine the perfor-
mance of the proposed controller (see Table 1). For
circular motions, the contour error ε is calculated as ε =√

(px − x0)2 + (py − y0)2 − ρ where ρ ∈ R is the circle
radius, (x0, y0) is the corresponding center of the circle,
and (px(t), py(t)) is the actual tool position.

Since the HSM2 x–y feed drive system is a 2-D
contouring system, the transformation matrix F(t) is
represented by

F(t) =
[

cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
(36)

Table 1 Specification of trajectories

Case Radius Feedrate Acceleration
(m) (m/s) (m/s2)

I 0.1 0.2 0.4
II 0.1 0.4 1.6
III 0.06 0.4 2.67
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Fig. 4 Contour error at 0.2 m/s with 0.1 m radius (case I)
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Fig. 5 Contour error at 0.4 m/s with 0.1 m radius (case II)
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Fig. 6 Contour error at 0.4 m/s with 0.06 m radius (case III)
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Fig. 7 Control effort at
0.2 m/s with 0.1 m radius
(case I)
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where θ(t) is defined as the incline angle between the
desired velocity vector and the x-axis. For a 2-D circular
contour,

R =

⎡

⎢⎢
⎢
⎣

0
1
ρ

− 1
ρ

0

⎤

⎥⎥
⎥
⎦

(37)

where ρ is the circle radius.

The control force T(t) in Eqs. 1, 9, and 25 can be
expressed as

T = kv(F RFT)(xd − x) + (αk + 1)(xd − x)

+k
( ·
xd − ·

x
) + F

(
Ydθ̂

)
(38)

where k = (k1 + knζ
2
1 ), and Eqs. 2, 3, 9, 14, 19, and

20 have been utilized. The control force in Eq. 38
can be described as a cross-coupling component (i.e.,
the first set of terms), a proportional component (i.e.,
the second set of terms), a derivative component
(i.e., the third set of terms), and the adaptive

Fig. 8 Control effort at
0.4 m/s with 0.1 m radius
(case II)
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Fig. 9 Control effort at
0.4 m/s with 0.06 m radius
(case III)
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feedforward component (i.e., the fourth set of terms).
For the 2-D circular contour, Eqs. 36 and 37 can be used
to express the cross-coupling component of Eq. 38 as

kv(F RFT)(xd − x)

=

⎡

⎢
⎢
⎣

(
kv

ρ

)

1
0

0
(

kv

ρ

)

2

⎤

⎥
⎥
⎦

[
xd2 − x2

−(xd1 − x1)

]

. (39)

Contour errors obtained from implementing a PD
controller and the benchmark CCC developed in [4] are
also examined for comparison. The axial gains for PD
controller are determined as

Px = 360,000, Dx = 9,000,000,

Py = 58,000, Dy = 1,450,000.

To select the PD gains, firstly for each axis, the best
gain which results in the lowest following error with-

Table 2 comparison of contouring performance

Case Controller ‖ε‖MAX (μm) εRMS (μm)

I PD 119 43
Benchmark CCC 46 15
Developed CCC 63 12

II PD 288 160
Benchmark CCC 149 56
Developed CCC 125 28

III PD 530 250
Benchmark CCC 215 86
Developed CCC 219 49

out overshoot is chosen by gradually increasing the
gain. Then, by balancing the gains between the X- and
Y-axes, the final PD gain which results in the minimal
contour error is determined. For the benchmark CCC,
the proportional control law is used and the best gain is
determined as 3,584. Since the second and third terms
in Eq. 38 represent the PD controller, the existing PD
controller is used for those. The gains that resulted in
the best performance in circular contours are deter-
mined as follows:
(

kv

ρ

)

1
= 422,

(
kv

ρ

)

2
= 1359,

	 =

⎡

⎢
⎢
⎣

5 × 10−2 0 0 0
0 5 × 10−2 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

Table 3 comparison of control effort

Case Controller X-axis torque Y-axis force
(TRMS (N m)) (FRMS (N))

I PD 3.85 287
Benchmark CCC 3.83 293
Developed CCC 3.86 288

II PD 15.2 1,270
Benchmark CCC 15.3 1,310
Developed CCC 15.3 1,280

III PD 24.0 1,980
Benchmark CCC 24.2 2,010
Developed CCC 24.2 1,990
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Since the maximum and the average contouring er-
rors are the main contributors to the quality of the
final part, the maximum absolute contouring error
‖ε(t)‖MAX and the root mean square (RMS) contouring
error εRMS(t) are used to compare the performance of
each control algorithm. Figure 4 shows the contouring
error for case I. While the RMS contouring error for
the PD controller is 43 μm, the RMS contouring error
for the benchmark CCC and proposed CCC are 15
and 12 μm, respectively. Figures 5 and 6 indicate an
improvement in contouring performance by the pro-
posed control algorithm as the feedrate and accelera-
tion increase when compared to [4]. This improvement
is attributed to the fact that the proposed CCC accounts
for uncertain nonlinear terms through the adaptive
feedforward component. The control efforts in each
case are shown in Figs. 7, 8, and 9, respectively, which
accounts for the economic feasibility of the developed
CCC. Table 2 summarizes the circular contouring per-
formance of each controller, and Table 3 compares the
respective control effort.

5 Conclusion

In this paper, Lyapunov-based controllers are devel-
oped for a three-axis CNC machine tool feed drive
system. To mitigate contour errors, the control de-
velopment was based on an error system that was
transformed into tangential, normal, and binormal
components to the desired contour. The contribution of
the results over previous CCCs are that uncertainty in
the machine tool dynamics is considered. Specifically,
an adaptive estimate was developed to compensate for
uncertain inertia and friction parameters. The proposed
control law was implemented on the feed drive system
of HSM2, and experimental results showed improve-
ments in contouring performance over the existing PD
controller and the benchmark CCC. Ongoing efforts
are focused on semi-global asymptotic contour follow-
ing in the presence of uncertain friction and cutting
force disturbances on HSM2.
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