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SUMMARY

Visual servo control systems use information from images along with knowledge of the optic parameters (i.e. camera
calibration) to position the camera relative to some viewed object. If there are inaccuracies in the camera calibration,
then performance degradation and potentially unpredictable response from the visual servo control system may occur.
Motivated by the desire to incorporate robustness to the camera calibration, different control methods have been developed.
Previous adaptive/robust controllers (especially for six degree-of-freedom camera motion) rely heavily on properties of
the rotation parameterization to formulate state estimates and a measurable closed-loop error system. All of these results
are based on the singular axis–angle parameterization. Motivated by the desire to express the rotation by a non-singular
parameterization, efforts in this paper address the question: Can state estimates and a measurable closed-loop error system
be crafted in terms of the quaternion parameterization when the camera calibration parameters are unknown? To answer
this question, a contribution of this paper is the development of a robust controller and closed-loop error system based
on a new quaternion-based estimate of the rotation error. A Lyapunov-based analysis is provided which indicates that the
controller yields asymptotic regulation of the rotation and translation error signals given a sufficient approximate of the
camera calibration parameters. Simulation results are provided that illustrate the performance of the controller for a range
of calibration uncertainty. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

When a camera takes a picture, the appearance of
the objects in the image depends on the position and
orientation (i.e. pose) and optic parameters of the
camera. Based on this fact, visual servo control systems
use information from images along with knowledge
of the optic parameters (i.e. camera calibration) to
regulate the camera to a desired pose. One important
issue that has limited the robustness of vision-based
control systems is the potential for corrupt sensor data
due to the lack of exact camera calibration. Exact
calibration is often assumed so that the image-space
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490 G. HU, N. GANS AND W. DIXON

sensor measurements can be related to the Euclidean
or joint-space for control computations. To relate the
image-space to the Euclidean-space, both intrinsic and
extrinsic parameters‡ of the optic model are required.
If these parameters are not exactly known, then
performance degradation and potentially unpredictable
response from the system may occur.

Motivated by the desire to incorporate robustness
to the camera calibration, different control approaches
have been proposed. For example, the results in [1–8]
compensate for uncertainty in the camera calibration
parameters, but they are constrained to planar visual
servo control applications. Other approaches have been
developed for six degree-of-freedom (DOF) camera
motion through strategic manipulation and estimation
of the image-Jacobian (i.e. interaction matrix). For
example, new adaptive controllers for image-Jacobian-
based control of a robot manipulator are developed
in [9–11]. One problem with methods based on the
image-Jacobian is that the estimated image-Jacobian
may contain singularities. The development in [9]
exploits an additional potential force function to drive
the estimated parameters away from the values that
result in a singular Jacobian matrix. Piepmeier et al.
published a series of papers (e.g. see [12–16]) that
exploit dynamic quasi-Newton recursive least-squares
estimators to solve a variety of visual servo control
problems despite an uncertain kinematic model and
uncertainty in the camera model. In [17], Shahamiri and
Jagersand used a nullspace-biased Newton-step visual
servo strategy with a Broyden-type Jacobian estimation
for online singularity detection and avoidance in an
uncalibrated visual servo control problem. Through an
innovative projection to a camera calibration invariant
space, the results in [18] illustrate how a task function
approach can be used to develop a local asymptotic
visual servo controller under the assumption of a full
rank image Jacobian (i.e. interaction matrix) and full
rank estimated image Jacobian. The results in [18]
are based on the additional assumption that the vector
of invariant feature points is sufficiently close to the

‡The camera calibration parameters are composed of the so-called
intrinsic parameters (i.e. image center, camera scale factors,
and camera magnification factor) and extrinsic parameters (i.e.
camera position and orientation).

associated vector generated from a goal image so that
a linear time-varying system can be analyzed.

One method to avoid potential singularities in the
image Jacobian is to develop an error system that is
composed of both reconstructed Euclidean informa-
tion and image-space information, as in the seminal
work in [19]. Motivated by the work in [19], the
results in [20] and [21] illustrate how sufficiently good
static estimates of the intrinsic calibration param-
eters could be used to develop homography-based
visual servoing methods that achieve exponential or
asymptotic regulation with respect to both camera and
hand–eye calibration errors for the six DOF problem.
Specifically, the authors of [21] relied on linearization
methods (e.g. [21, Theorem 2]) or perturbation-based
analysis methods to conclude local asymptotic stability.
In [20], the class of controllers in [21] was extended
to include controllers that yield exponential translation
based on a nonlinear Lyapunov-based approach. Both
of the results in [20, 21] rely heavily on properties of
the axis–angle rotation parameterization to formulate
state estimates and a measurable closed-loop error
system in the presence of uncertainty in the camera
calibration.

Motivated by applications where a non-singular rota-
tion parameterization is desired/required (e.g. satel-
lite attitude control), we recently introduced a new
quaternion-based visual servo controller for the rota-
tion error system in [22], under the assumption that
the camera calibration parameters are exactly known.
The results in this paper are motivated by the question:
Can state estimates and a measurable closed-loop error
system be crafted in terms of the quaternion parame-
terization when the camera calibration parameters are
unknown? To answer this question, a contribution of
this paper is the development of a quaternion-based esti-
mate for the rotation error system that is related to the
actual rotation error, the development of a new closed-
loop error system, and a new Lyapunov-based analysis
that demonstrates the stability of the quaternion error
system. One of the challenges is to develop a quaternion
estimate from an estimated rotation matrix that is gener-
ally not a true rotation matrix. To address this chal-
lenge, the similarity relationship between the estimated
and actual rotation matrices is used (as in [20, 21]) to
construct the relationship between the estimated and
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QUATERNION-BASED VISUAL SERVO CONTROL 491

actual quaternions. A Lyapunov-based stability analysis
is provided which indicates that a unique controller can
be developed to achieve the regulation result despite a
sign ambiguity in the developed quaternion estimate.
The stability analysis is predicated on the same condi-
tion given in [20, 21] that the static estimate of the
calibration matrix is sufficiently close to the actual
values. Simulation results illustrate the performance
of the developed controller in the presence of reason-
able calibration errors. The closed-loop errors are also
shown to converge in additional simulations where the
calibration parameters are an order of magnitude too
small or too large. Order of magnitude calibration errors
are well beyond typical inaccuracies, and these results
give an indication of the mildness of sufficient condi-
tion on the static calibration estimate.

2. EUCLIDEAN AND IMAGE-SPACE
RELATIONSHIPS

Without loss of generality,§ the subsequent develop-
ment is based on the assumption that four stationary
coplanar and non-collinear feature points [24] denoted
by Oi ∀i=1,2,3,4 can be determined from a feature
point tracking algorithm (e.g. Kanade–Lucas–Tomasi
(KLT) algorithm discussed in [25, 26]). The plane
defined by the four feature points is denoted by � as
depicted in Figure 1. A coordinate frame F is consid-
ered to be affixed to the single current camera viewing
the object, and a stationary coordinate frame F∗
denotes a constant (a priori determined) desired camera
position and orientation that is defined by a desired
image. The Euclidean coordinates of the feature points
Oi expressed in the frames F and F∗ are denoted by
xi (t), yi (t), zi (t)∈R and x∗

i , y
∗
i , z

∗
i ∈R, respectively.

The normalized Euclidean coordinate vectors, denoted

§ Image processing techniques can be used to select coplanar and
non-collinear feature points within an image. However, if four
coplanar target points are not available then the subsequent
development can also exploit the virtual parallax algorithm [23]
with no four of the eight target points being coplanar.

Figure 1. Coordinate frame relationships between a camera
viewing a planar patch at different spatiotemporal instances.

by mi (t)∈R3 and m∗
i ∈R3, are defined as

mi �
[
xi
zi

yi
zi

1
]T

(1)

m∗
i �

[
x∗
i

z∗i

y∗
i

z∗i
1
]T

(2)

with the standard assumption that the norm of m∗
i is

bounded, zi (t)>�1 and �1< z∗i <�2, where �1,�2 are
two positive constants. From standard Euclidean geom-
etry, relationships between mi (t) and m∗

i can be deter-
mined as [24]

mi = z∗i
zi︸︷︷︸
�i

(R+xhn
∗T)︸ ︷︷ ︸

H

m∗
i (3)

where �i (t)∈R is a scaling term and H(t)∈R3×3

denotes the Euclidean homography. The Euclidean
homography is composed of a scaled translation vector
xh(t)∈R3 expressed in F, the rotation between F
and F∗ denoted by R(t)∈ SO(3), and n∗ ∈R3 denotes
a constant unit normal to the plane �.

Each feature point Oi on � also has a pixel coor-
dinate pi (t)∈R3 and p∗

i ∈R3 expressed in the image
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492 G. HU, N. GANS AND W. DIXON

coordinate frame for the current image and the desired
image denoted by

pi � [ui vi 1]T (4)

p∗
i � [u∗

i v∗
i 1]T (5)

where ui (t),vi (t),u∗
i ,v

∗
i ∈R. The pixel coordinates

pi (t) and p∗
i are related to the normalized task-space

coordinates mi (t) and m∗
i by the following global

invertible transformation (i.e. the pinhole camera
model):

pi = Ami , p∗
i = Am∗

i (6)

where A∈R3×3 is a constant, upper triangular, and
invertible intrinsic camera calibration matrix that is
explicitly defined as [27]

A�

⎡
⎢⎢⎢⎣

� −�cot� u0

0
�

sin�
v0

0 0 1

⎤
⎥⎥⎥⎦ (7)

In (7), u0,v0∈R denote the pixel coordinates of the
principal point (i.e. the image center that is defined
as the frame buffer coordinates of the intersection of
the optical axis with the image plane), �,�∈R repre-
sent the product of the camera scaling factors and the
focal length, and �∈R is the skew angle between the
camera axes.

3. FEEDBACK CONTROL
MEASUREMENTS

The objective in this paper is to develop a kinematic
controller (i.e. the control inputs are considered the
linear and angular camera velocities) to ensure that the
position/orientation of the camera coordinate frame
F is regulated to the desired position/orientation
F∗. The only required sensor measurements for the
control development are the image coordinates of
the determined feature points (i.e. measurement of
the signals in (4)), where the static feature point
coordinates in the desired image are given a priori.
By measuring the current image feature points and

given the desired feature points, the relationship
in (6) can be used to determine the normalized
Euclidean coordinates of Oi provided that the intrinsic
camera calibration matrix is perfectly known. Unfor-
tunately, any uncertainty in A will lead to a corrupted
measurement of mi (t) and m∗

i . The computed normal-
ized coordinates are actually estimates, denoted by
m̂i (t), m̂∗

i ∈R3, of the true values since only an invert-
ible best-guess estimate of A, denoted by Â∈R3×3, is
available in practice. The normalized coordinate esti-
mates can be expressed as [21]

m̂i = Â−1 pi = Ãmi (8)

m̂∗
i = Â−1 p∗

i = Ãm∗
i (9)

where the calibration error matrix Ã∈R3×3 is defined as

Ã= Â−1A=

⎡
⎢⎢⎣
Ã11 Ã12 Ã13

0 Ã22 Ã23

0 0 1

⎤
⎥⎥⎦ (10)

where Ã11, Ã12, Ã13, Ã22, Ã23∈R denote unknown
intrinsic calibration mismatch constants. As mi (t) and
m∗

i cannot be exactly determined, the estimates in
(8) and (9) can be substituted into (3) to obtain the
following relationship:

m̂i =�i Ĥ m̂∗
i (11)

where Ĥ(t)∈R3×3 denotes the estimated Euclidean
homography [21] defined as

Ĥ = ÃH Ã−1 (12)

As m̂i (t) and m̂∗
i can be determined from (8) and (9),

a set of 12 linear equations can be developed from the
four image point pairs, and (11) can be used to solve for
Ĥ(t) (see [28] for additional details regarding the set of
linear equations). Provided that additional information
is available (e.g. at least four vanishing points), various
techniques (e.g. see [29, 30]) can be used to decompose
Ĥ(t) to obtain the estimated rotation and translation
components as follows:

Ĥ = ÃR Ã−1+ Ãxhn
∗T Ã−1

= R̂+ x̂h n̂
∗T (13)
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where R̂(t)∈R3×3 is defined as [20, 21]
R̂= ÃR Ã−1 (14)

and x̂h(t)∈R3, n̂∗ ∈R3 denote the estimate of xh(t) and
n∗, respectively, defined as

x̂h = � Ãxh (15)

n̂∗ = 1

�
Ã−Tn∗ (16)

where �∈R denotes the following positive constant:

�=‖ Ã−Tn∗‖ (17)

4. CONTROL OBJECTIVE

As stated previously, the objective in this paper is
to develop a kinematic controller to ensure that the
position/orientation of the camera coordinate frame
F is regulated to the desired position/orientation F∗
despite uncertainty in the intrinsic camera calibration
matrix. This objective is based on the assumption that
the linear and angular velocities of the camera are
control inputs that can be independently controlled (i.e.
unconstrained motion). For example, the linear and
angular camera velocities could be controlled by the
end-effector of a robotic manipulator. In addition to
uncertainty in the intrinsic camera calibration, uncer-
tainty could also exist in the extrinsic camera calibration
(e.g. the uncertainty in the rotation and translation of
the camera with respect to the robot end-effector). The
development in this paper could be directly modified
as described in [20, 21] to compensate for the extrinsic
calibration. Therefore, the effects of a mismatch in the
extrinsic calibration are not considered in the subse-
quent development for simplicity.

In the Euclidean space, the rotation control objective
can be quantified as

R(t)→ I3 as t→∞ (18)

The subsequent development is formulated in terms of
the four-dimensional unit quaternion defined as

q�[q0 qTv ]T (19)

In (19), qv(t)�[qv1(t) qv2(t) qv3(t)]T,q0(t),qvi (t)∈R

∀i=1,2,3, where the unit quaternion must also satisfy
the following nonlinear constraint:

qTq=1 (20)

Given the rotation matrix R(t), the corresponding unit
quaternion q(t) can be calculated by using the numeri-
cally robust method presented in [22, 31] based on the
corresponding relationship

R(q) = I3−2q0q
×
v +2(q×

v )2

= (q20 −qTv qv)I3+2qvq
T
v −2q0q

×
v (21)

where I3 is the 3×3 identity matrix, and the notation
q×
v (t) denotes the following skew-symmetric form of

the vector qv(t) [22].
From (20) and (21), the rotation regulation objective

in (18) can also be quantified as the desire to regulate
qv(t) as

‖qv(t)‖→0 as t→∞ (22)

The focus and contribution of this paper lie in
the ability to develop and prove the stability of a
quaternion-based rotation controller in the presence of
uncertainty in the camera calibration. The translation
controller developed in [20] is also presented and incor-
porated in the stability analysis to provide an example
of how the new class of quaternion-based rotation
controllers can be used in conjunction with transla-
tion controllers that are robust to camera calibration
uncertainty including (for example): the asymptotic
translation controllers in [21] and the exponential
translation controllers in [20]. The translation error,
denoted by e(t)∈R3, is defined as [20, 21]

e= zi
z∗i
mi −m∗

i (23)

where i denotes any of the four feature points (i.e. the
error vector only needs to be defined for a single feature
point). Without loss of generality, the subsequent devel-
opment is based on the translation error for the feature
point i=1. The translation objective can be stated as

‖e(t)‖→0 as t→∞ (24)

The subsequent section will target the control develop-
ment based on the objectives in (22) and (24).

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:489–503
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5. QUATERNION ESTIMATION

The control objective is defined as the desire to regulate
the rotation matrix to the identity matrix (or equiva-
lently to regulate the norm of the vector component
of the quaternion to zero as in (22)). As the rotation
matrix is not available due to uncertainty in the intrinsic
camera calibration matrix, an estimated rotation matrix
can be formulated from the development in (11)–(14).
The development in this section focuses on developing
a quaternion estimate that can related to the real quater-
nion (i.e. developing estimates q̂0(t) and q̂v(t) for q0(t)
and qv(t)), as a means to formulate a measurable error
system that is meaningful.

To facilitate the development of a quaternion esti-
mate, (20) and (21) are used to express the scalar
component of the quaternion in terms of the rotation
matrix R(t) as [31]

q20 = tr(R)+1

4

where q0(t) is restricted without loss of generality (this
restriction enables the minimum rotation to be obtained)
to be non-negative as

q0= 1
2

√
1+ tr(R) (25)

where tr(R) denotes the trace of R(t). Based on the
definition of a quaternion and the relationship in (25),
qv(t) can be determined as

qv =±u
√
1−q20 =± 1

2u
√
3− tr(R) (26)

where the rotation axis u(t) is the unit eigenvector with
respect to the eigenvalue 1 of R(t). For the quater-
nion vector in (26), the sign ambiguity can be resolved.
Specifically, (21) can be used to develop the following
expression:

RT−R=4q0q
×
v (27)

As the sign of q0(t) is restricted (i.e. assumed to be)
positive, then a unique solution for qv(t) can be deter-
mined from (26) and (27).

Based on the similarity between R̂(t) and R(t) as
stated in (14), the expressions in (25) and (26) provide
motivation to develop the quaternion estimate as

q̂0 = 1
2

√
1+ tr(R̂) (28)

q̂v = ± 1
2 û
√
3− tr(R̂) (29)

In (28) and (29), R̂(t) is the estimated rotation matrix
introduced in (13) that is computed from the homog-
raphy decomposition. As R̂(t) is similar to R(t) (see
(14)), R̂(t) is guaranteed to have an eigenvalue of 1,
where û(t) is the unit eigenvector that can be computed
from the eigenvalue of 1. As R̂(t) is not guaranteed to
be a true rotation matrix (and it will not be in general),
the relationships in (21) and (27) cannot be developed
and used to eliminate the sign ambiguity of the eigen-
vector û(t). However, the subsequent stability analysis
and simulation results indicate that the same stability
result is obtained invariant of the sign of û(t). Once
the initial sign of û(t) is chosen, the same sign can be
used for subsequent computations.

Based on the fact that R̂(t) is similar to R(t) (see
(14)), the properties that similar matrices have the same
trace and eigenvalues can be used to relate the quater-
nion estimate and the actual quaternion. As similar
matrices have the same trace, (25) and (28) can be used
to conclude that

q̂0=q0 (30)

As stated earlier, since similar matrices have the same
eigenvalues, R̂(t) is guaranteed to have an eigenvalue
of 1 with the associated eigenvector û(t). The following
relationships can be developed based on (14):

û= R̂û= ÃR Ã−1û (31)

Premultiplying Ã−1 on both sides of (31) yields

Ã−1û= R Ã−1û (32)

Hence, Ã−1û(t) is an eigenvector with respect to the
eigenvalue 1 of R(t) that can be expressed as

Ã−1û=±�u (33)
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where �(t)∈R is a positive scaling term defined as

�= 1

‖ Ãu‖ (34)

Based on (26), (29), and (33), the estimated quaternion
vector can now be related to the actual quaternion vector
as

q̂v =±� Ãqv (35)

As indicated in [32], the estimates q̂0(t) and q̂v(t)
satisfy the nonlinear constraint for a unit quaternion
given in (20). As also indicated in [32], the expression
for �(t) given in (34) can also be written as

�= ‖qv‖
‖ Ãqv‖

(36)

6. CONTROL DEVELOPMENT

The subsequent control design is focused on developing
a kinematic (i.e. linear and angular velocity) controller
for a camera with unconstrained motion. Owing to the
structure of the developed controller, standard back-
stepping methods [33] can be applied to incorporate
the robot dynamics. As discussed in detail in [34], the
inclusion of the dynamic model of the camera posi-
tioning device will likely result in improved robustness
and performance of the overall system. Some example
results that include the dynamics of a robotic system
include [3, 5, 7–9, 34–38].
6.1. Rotation control

The rotation open-loop error system can be developed
by taking the time derivative of q(t) as [39][

q̇0

q̇v

]
= 1

2

[ −qTv

q0 I3+q×
v

]
	c (37)

where 	c(t)∈R3 denotes the angular velocity of the
camera with respect to F∗ expressed in F. Based
on the open-loop error system in (37) and the subse-
quent stability analysis, the angular velocity controller
is designed as

	c=−K	q̂v (38)

where K	 ∈R denotes a positive control gain. Substi-
tuting (38) into (37), the rotation closed-loop error
system can be developed as

q̇0 = 1
2K	q

T
v q̂v (39)

q̇v = − 1
2K	(q0 I3+q×

v )q̂v (40)

6.2. Translation control¶

As stated previously, translation controllers such as
the class developed in [20, 21] can be combined with
the developed quaternion-based rotation controller. To
facilitate the subsequent stability analysis for the six
DOF problem, a translation controller proposed in [20]
is provided in this section. Specifically, one of the trans-
lation controllers in [20] is given by

vc=(Kv1+Kv2)ê (41)

where Kv1,Kv2∈R denote positive constant control
gains, and ê(t)∈R3 is defined as

ê= z1
z∗1
m̂1−m̂∗

1 (42)

where m̂1(t) and m̂∗
1 can be computed from (8) and (9),

respectively, and the ratio z1/z∗1 can be computed from
the decomposition of the estimated Euclidean homog-
raphy in (11). The open-loop translation error system
can be determined as [20]

ė=− 1

z∗1
vc−	×

c e+[m∗
1]×	c (43)

After substituting (38) and (41) into (43), the resulting
closed-loop translation error system can be determined
as

ė =
(

−(Kv1+Kv2)
1

z∗1
Ã+[K	q̂v]×

)

×e−K	[m∗
1]×q̂v (44)

¶The contribution of this paper is the rotation estimate and asso-
ciated control development. The translation controller developed
in this section is provided for completeness.
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7. STABILITY ANALYSIS

As stated previously, the quaternion estimate q̂v(t) has
a sign ambiguity, but either choice of the sign will
yield the same stability result. The following analysis
is developed for the case where

q̂v =� Ãqv (45)

A remark is provided at the end of the analysis, which
describes how the stability can be proven for the case
when

q̂v =−� Ãqv

Theorem 1
The controller given in (38) and (41) ensures asymptotic
regulation in the sense that

‖qv(t)‖→0, ‖e(t)‖→0 as t→∞ (46)

provided that the following inequalities are satisfied
[20, 21]:


min{ 12 ( Ã+ ÃT)} � 
0 (47)


max{ 12 ( Ã+ ÃT)} � 
1 (48)

where 
0,
1∈R are known positive constants, and the
control gains Kv1,Kv2, and K	 are selected based on
the following sufficient conditions:

Kv1>
z∗1K	‖m∗

1‖2

4
20

√
1


max( ÃT Ã)

Kv2>
z∗1K	


0

√
1


min( ÃT Ã)

(49)

where known upper bounds are assumed to exist for
the unknown constants z∗1,m∗

1.

Proof
Let V (t)∈R denote the following differentiable non-
negative function (i.e. a Lyapunov candidate):

V =qTv qv +(1−q0)
2+eTe (50)

After cancelling common terms, V̇ (t) can be expressed
as

V̇ = −�K	q
T
v Ãqv −(Kv1+Kv2)

1

z∗1
eT Ãe+�eT

×[K	q̂v]×e−�K	e
T[m∗

1]× Ãqv (51)

Based on (36), (47) and the facts that

‖[�]×‖2=‖�‖∀�∈R3 and ‖q̂v‖�1

the expression in (51) can be upper bounded as

V̇ � −�K	
0‖qv‖2− 
0
z∗1

(
Kv2− z∗1�K	


0

)
‖e‖2

+K	‖m∗
1‖‖qv‖‖e‖− 1

z∗1
Kv1
0‖e‖2 (52)

After completing the squares on the last two terms, the
inequality (52) can be rewritten as

V̇ � −K	
0�

Kv1

(
Kv1− z∗1K	‖m∗

1‖2
4
20�

)
‖qv‖2

−
0
z∗1

(
Kv2− z∗1�K	


0

)
‖e‖2 (53)

Provided that the sufficient conditions given in
(47)–(49) are satisfied,‖ the inequality in (53) can be
upper bounded as

V̇�−c1‖qv‖2−c2‖e‖2 (54)

where c1,c2∈R are positive bounding constants. Based
on (50) and (54), standard signal chasing arguments
can be used to conclude that the control inputs and all
the closed-loop signals are bounded. The expression in
(54) can also be used to conclude that qv(t) and e(t)∈
L2. As qv(t), q̇v(t),e(t), ė(t)∈L∞ and qv(t),e(t)∈
L2, Barbalat’s Lemma [40] can be used to prove the
result given in (46). �

‖See the Appendix for details regarding the development of the
sufficient condition for the control gains Kv1,Kv2, and K	.
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Remark 1
By modifying the Lyapunov function in (50) as follows:

V =qTv qv +(1+q0)
2+eTe

the same stability analysis arguments can be used to
prove Theorem 1 for the case when

q̂v =−� Ãqv

8. SIMULATION RESULTS AND
DISCUSSION

Numerical simulations were performed to illustrate the
performance of the controller given in (38) and (41)
for different camera calibration estimates. The actual
intrinsic camera calibration matrix is given by

A=
⎡
⎢⎣
122.5 −3.77 100

0 122.56 100

0 0 1

⎤
⎥⎦

The simulation was designed so that the camera would
view an object with four coplanar feature points with
the following Euclidean coordinates (in (m)):

O1 = [0.05 0.05 0]T
O2 = [0.05 −0.05 0]T
O3 = [−0.05 0.05 0]T
O4 = [−0.05 −0.05 0]T

(55)

The normalized coordinates of the vanishing points
were selected as

[0.02 0.02 1]T [0.02 −0.02 1]T

[−0.02 0.02 1]T [−0.02 −0.02 1]T
An orthogonal coordinate frame I was encoded with
the z-axis opposite to n∗ (see Figure 1) with the x-axis
and y-axis on the plane �. The rotation matrices R1
between F and I, and R2 between F∗ and I were
set as

R1 = Rx (160
◦)Ry(30

◦)Rz(−30◦)

R2 = Rx (120
◦)Ry(−20◦)Rz(80

◦)

where Rx (·), Ry(·), and Rz(·)∈ SO(3) denote rotation
of angle ‘·’ (degrees) along the x-axis, y-axis, and
z-axis, respectively. The translation vectors x f 1(t)
and x f 2(t) between F and I (expressed in F) and
between F∗ and I (expressed in F∗), respectively,
were selected as

x f 1 = [0.5 0.5 2.5]T (56)

x f 2 = [1.0 1.0 3.5]T (57)

The initial (i.e. pi (0)) and desired (i.e. p∗
i ) image-

space coordinates of the four feature points in (55) were
computed as (in pixels)

p1(0) = [126.50 123.64 1]T

p2(0) = [124.24 127.91 1]T

p3(0) = [120.92 125.40 1]T

p4(0) = [123.25 121.11 1]T

p∗
1 = [132.17 133.17 1]T

p∗
2 = [135.72 133.61 1]T

p∗
3 = [135.71 136.91 1]T

p∗
4 = [132.10 136.44 1]T

The initial (i.e. pvi (0)) and desired (i.e. p∗
vi ) image-

space coordinates of the four vanishing points in (55)
were computed as (in pixels)

pv1(0) = [124.02 139.34 1]T

pv2(0) = [129.02 141.61 1]T

pv3(0) = [131.02 136.54 1]T

pv4(0) = [126.03 134.35 1]T

p∗
v1 = [102.37 102.45 1]T

p∗
v2 = [102.53 97.55 1]T

p∗
v3 = [97.63 97.55 1]T

p∗
v4 = [97.47 102.45 1]T
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To test the performance of the controller under
different camera calibration estimates, three simula-
tions were performed. For the first simulation, the
best-guess estimate for A was selected based on a
conservative estimate of the results that would be
obtained from a typical calibration. Typical camera
calibration routines can provide calibration estimates
within 3% of error. In addition, typical cameras have
little to no skew, and the image center is exactly
known for digital cameras. For the first simulation, the
calibration estimate

Â=
⎡
⎢⎣100 −4 80

0 100 110

0 0 1

⎤
⎥⎦

contained approximately 20% of error for the param-
eters. The resulting calibration mismatch matrix is
given as

Ã=
⎡
⎢⎣1.225 0.0113 0.196

0 1.226 −0.1

0 0 1

⎤
⎥⎦

where the minimum and maximum eigenvalues of
1
2 ( Ã+ ÃT) fall between 0.95 and 1.27, which meet the
conditions given in (47) and (48). The control gains
K	 in (38) and Kv1 and Kv2 in (41) were selected as

K	 =5, Kv1=2, Kv2=3 (58)

Given the selection of K	 =5 and estimates for the
upper bounds of z∗1 =3 and ‖m∗

1‖=1 (the actual values
of z∗1 and ‖m∗

1‖ are 2.53 and 0.75, respectively), the
control gains Kv1 and Kv2 should be selected as

Kv1=5.23, Kv2=16.37

based on the sufficient gain conditions given in (49).
As is typical with Lyapunov analysis, the developed
sufficient gain conditions are very conservative. The
simulation results for this simulation (and the following
two simulations) use gain values that are well below
the indicated sufficient conditions. The resulting trans-
lation and rotation errors are plotted in Figures 2 and 3,
respectively. The image-space pixel error (i.e. pi (t)−
p∗
i ) is shown in Figure 4, and is also depicted in

Figure 5 in a 3D format. The translation and rotation
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Figure 2. Unitless translation error between m1(t) and m∗
1.
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Figure 3. Quaternion rotation error.

control outputs are shown in Figures 6 and 7, respec-
tively. Different results can be obtained with different
gain selections.

Order of magnitude calibration errors are well
beyond typical inaccuracies. Yet, to illustrate the
robustness of the developed controller and the mildness
of the developed sufficient condition on the static
calibration estimate, the second and third simulations
are based on calibration errors that are an order of
magnitude too large or too small, respectively. For the
second simulation, the estimate for the product of the
scale factor and focal length was selected to be an
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Figure 4. Image-space error in pixles between pi (t) and
p∗
i . In the figure, ‘O’ denotes the initial positions of the

four feature points in the image, and ‘*’ denotes the corre-
sponding final positions of the feature points.

115
120

125
130

135
140

110

120

130

140
0

2

4

6

8

10

u
i
 [pixel]

p4(0)

p1(0)
p3(0)

p2(0)

v
i
 [pixel]

T
im

e 
[s

ec
]

Figure 5. Image-space error in pixles between pi (t)
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in the image, and ‘*’ denotes the corresponding

final positions of the feature points.

order of magnitude greater than the actual values as

Â=
⎡
⎣1225 −4 80

0 1225.6 110
0 0 1

⎤
⎦
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Figure 6. Linear camera velocity control input.
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Figure 7. Angular camera velocity control input.

resulting in the estimation error matrix

Ã=
⎡
⎢⎣
0.1 −0.003 0.016

0 0.1 −0.008

0 0 1

⎤
⎥⎦

where the minimum and maximum eigenvalues of
1
2 ( Ã+ ÃT) fall between 0.1 and 1.0. The control gains
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Figure 8. Unitless translation error between m1(t) and m∗
1.

K	 in (38) and Kv1 and Kv2 in (41) were selected as

K	 =8, Kv1=5, Kv2=15

where the sufficient gain condition (under the same
estimates for z∗1 and ‖m∗

1‖) for Kv1 and Kv2 computed
using (49) are

Kv1=385, Kv2=1542

The resulting translation and rotation errors are given
in Figures 8 and 9, respectively.

For the third simulation, the estimate for the product
of the scale factor and focal length was selected to
be an order of magnitude less than the actual values
as follows:

Â=
⎡
⎢⎣
12.25 −4 80

0 12.256 110

0 0 1

⎤
⎥⎦

resulting in the estimation error matrix

Ã=
⎡
⎢⎣
10.0 2.96 1.37

0 10.0 −0.82

0 0 1

⎤
⎥⎦

where the minimum and maximum eigenvalues of
1
2 ( Ã+ ÃT) fall between 0.92 and 11.48. The control
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Figure 9. Quaternion rotation error.

gains K	 in (38) and Kv1 and Kv2 in (41) were
selected as

K	 =3, Kv1=1, Kv2=2

where the sufficient gain condition (under the same
estimates for z∗1 and ‖m∗

1‖) for Kv1 and Kv2 computed
using (49) are

Kv1=51.60, Kv2=16.60

The resulting translation and rotation errors are plotted
in Figures 10 and 11, respectively.

9. CONCLUSIONS

The seminal work by Malis and Chaumette [19]
provided a new method to develop visual servo
controllers for the six DOF problem. Since then, a
plethora of 2.5D or homography-based visual servo
control results have been developed. A common char-
acteristic with all of these results is that they rely on
the axis–angle rotation parameterization to develop
the rotation error system, and most results require the
camera calibration matrix to be known. Some recent
homography-based methods have been proven to yield
asymptotic convergence despite uncertainty in the
camera calibration. However, the methods rely heavily
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Figure 11. Quaternion rotation error.

on properties that originate from the axis–angle param-
eterization. Some applications are better suited for a
non-singular parameterization such as the quaternion.
The research in this paper sought to answer the ques-
tion: Can state estimates and a measurable closed-loop
error system be crafted in terms of the quaternion
parameterization when the camera calibration param-
eters are unknown? To provide an affirmative answer
to the question, a similarity relationship between an

estimated and the actual rotation matrices was used
to both construct a quaternion-based rotation estimate
and to relate the estimated quaternion to the actual
quaternion. This relationship was then used to construct
a measurable controller and a closed-loop rotation
error system for the actual quaternion error. A trans-
lation error system from literature was then combined
with the new quaternion rotation error system in a
Lyapunov-based stability analysis. Although the sign
of the quaternion estimate cannot be determined, a
unique controller was developed that achieves asymp-
totic regulation invariant of the sign ambiguity. A
potential limitation of the developed method (and other
homography-based methods that have been developed
for uncertain camera calibration) is the use of a suffi-
cient condition that the calibration estimate is selected
sufficiently close to the actual values. Simulation
results are provided to validate the proposed visual
servo approach, even in the presence of an order of
magnitude errors in the calibration estimate.

APPENDIX A: CONTROL GAIN SUFFICIENT
CONDITION DEVELOPMENT

From the expression in (53), V̇ (t) is negative semi-
definite if the following inequalities are satisfied:

Kv1>
z∗1K	‖m∗

1‖2
4
20�

, Kv2>
z∗1�K	


0
(A1)

Based on the definition of the positive scaling term in
(34), �2(t) can be expressed as

�2= uTu

uT ÃT Ãu

As Ã is full rank, the symmetric matrix ÃT Ã is positive
definite, and the Rayleigh–Ritz theorem can be used to
conclude that


min( Ã
T Ã)‖u‖2�uT ÃT Ãu�
max( Ã

T Ã)‖u‖2

where 
min( ÃT Ã) and 
max( ÃT Ã) denote the minimal
and maximum eigenvalues of ÃT Ã, respectively. Using
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the facts that �(t)>0 and ‖u(t)‖2=1, the following
inequalities can be developed:√

1


max( ÃT Ã)
���

√
1


min( ÃT Ã)
(A2)

Based on the inequalities in (A2), the sufficient condi-
tions in (A1) can be expressed as in (49).
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